

 [image: Cover of Rust Web Programming _Third Edition by Maxwell Flitton]

 Rust Web Programming

 Third Edition

 A hands-on guide to Rust for modern web development, with microservices and nanoservices

 Maxwell Flitton

 [image:]

 Rust Web Programming

 Third Edition

 Copyright © 2026 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Portfolio Director: Ashwin Nair

 Relationship Lead: Bhavya Rao

 Project Manager: Ruvika Rao

 Content Engineer: Runcil Rebello

 Technical Editor: Rohit Singh

 Copy Editor: Safis Editing

 Indexer: Rekha Nair

 Proofreader: Runcil Rebello

 Production Designer: Ganesh Bhadwalkar

 Growth Lead: Priyadarshini Sharma

 First published: February 2021

 Second edition: January 2023

 Third edition: January 2026

 Production reference: 1230126

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83588-776-9

 www.packtpub.com

 Contributors

 About the author

 Maxwell Flitton is the CTO at Kioko, where he applies the engineering techniques present in this book to build production systems with 100% unit test coverage. Kioko is essentially Cursor for CAD, helping teams move faster from ideas to manufacturable geometry and working with Formula 1 teams on designing components for their cars.

 Maxwell previously worked in open-source financial loss modeling at Oasis LMF. After that, he joined SurrealDB, where he helped build the database’s machine learning engine, before moving on to Kioko. He was also an early software engineer at Monolith AI (since acquired by CoreWeave). Maxwell is an Honorary Researcher at King’s College London, applying Rust to computer vision for surgical robotics.

 In 2011, Maxwell earned a BSc in Nursing from the University of Lincoln (UK). While working 12-hour shifts in A&E departments, he completed a Physics degree with the Open University, followed by a Postgraduate Diploma in Physics and Engineering in Medicine at UCL (London).

 About the reviewers

 Joshua Mo is currently a DevRel Engineer who is working at the intersection of Rust and AI with Playgrounds Analytics Inc. He is part of the core maintainer team for Rig, an agentic AI framework written in Rust. He also regularly gives talks on Rust, as well as other subjects. His primary area of work involves WebAssembly (via wasm-bindgen) and he is currently spearheading a project to make Rig usable from JavaScript via WebAssembly. He is also a coach at Codebar, which is a charity dedicated to facilitating the growth of diverse tech communities by running free programming workshops for minority groups within tech.

 Jack Walters is currently a software engineer working at Faculty in the Frontier team. Before that, he has worked at Roke and Nemisindo as a software engineer. He has completed his MSc in Computer Science from Queen Mary University of London in 2021. In his free time, Jack is a musician and has composed, produced, and arranged a jazz and neo-soul EP.

 Preface

 Do you want to build modern web applications that are fast, safe, and scalable but without sacrificing developer productivity? Rust is no longer limited to systems programming. It has rapidly emerged as a powerful and reliable choice for web development, combining memory safety, performance, and concurrency in a single language. This book shows you why Rust is becoming a serious contender for building web applications and how you can start using it today, even if you have no prior experience with Rust. Designed with a gentler learning curve, this new edition helps you understand Rust concepts in the context of web development, making it easier to transition from other programming languages.

 You’ll begin by exploring the Rust ecosystem for the web and getting hands-on with popular and emerging frameworks such as Actix, Axum, Rocket, and Hyper. You’ll expand into frontend integration, injecting Rust into the browser using WebAssembly and configuring secure HTTPS connections with NGINX.

 As you progress, you’ll dive deeper into asynchronous programming, exploring TCP networking, framing, and the design of async systems. These concepts will help you understand how Rust handles concurrency and performance at scale, preparing you to build responsive and resilient web services.

 Throughout the book, you’ll apply what you learn by building a complete to-do application with authentication using a microservice-based architecture. This application will compile into a single Rust binary, embedding a frontend JavaScript application directly within it. You’ll also implement end-to-end atomic testing and create a deployment pipeline to ensure your application is production-ready.

 By the end of this book, you’ll have a deep understanding of why Rust matters for web development and the confidence to build robust, scalable, and high-performance web applications from scratch using Rust.

 Who this book is for

 Th is book on web programming with Rust is for web developers who have programmed in traditional languages, such as Python, Ruby, and JavaScript, and are looking to develop high-performance web applications with Rust. Although no prior experience with Rust is necessary, a solid understanding of web development principles and basic knowledge of HTML, CSS, and JavaScript is required if you want to get the most out of this book.

 What this book covers

 Chapter 1, A Quick Introduction to Rust, focuses on what’s different about Rust and provides the basics of the Rust programming language.

 Chapter 2, Useful Rust Patterns for Web Programming, covers the syntax and borrowing rules of the strict type system of Rust.

 Chapter 3, Designing Your Web Application in Rust, covers building and managing applications in Rust.

 Chapter 4, Async Rust, focuses on the basics of async Rust and how async runtimes work under the hood.

 Chapter 5, Handling HTTP Requests, covers building a basic Rust server that handles HTTP requests using the Actix Web framework.

 Chapter 6, Processing HTTP Requests, focuses on extracting and handling data from an incoming HTTP request.

 Chapter 7, Displaying Content in the Browser, covers displaying data from the server and sending requests to the server from the browser with HTML, CSS, and JavaScript with React.

 Chapter 8, Injecting Rust in the Frontend with WebAssembly, focuses on concepts around serving WebAssembly modules to the frontend to be loaded and used in the browser.

 Chapter 9, Data Persistence with PostgreSQL, covers managing and structuring data in PostgreSQL and interacting with the database with the Rust web server.

 Chapter 10, Managing User Sessions, covers authentication and managing of user sessions when making requests to the web server.

 Chapter 11, Communicating Between Servers, focuses on getting servers talking to each other either directly in memory or via HTTP requests.

 Chapter 12, Caching Auth Sessions, covers building custom caching functionality directly inside Redis to control the state of the user session.

 Chapter 13, Observability Through Logging, discusses the need for a logging setup and how this helps with debugging and monitoring the health of the system.

 Chapter 14, Unit Testing, helps you to understand the importance of unit testing and enables you to write unit tests.

 Chapter 15, End-to-End Testing, focuses on understanding the importance of end-to-end testing and building end-to-end tests.

 Chapter 16, Deploying Our Application on AWS, covers building automated build and deployment pipelines to deploy on AWS using Docker and automating the infrastructure building with Terraform.

 Chapter 17, Configuring HTTPS with NGINX on AWS, covers configuring HTTPS and routing to servers via load balancing on AWS with NGINX and routing traffic to different applications depending on endpoints in the URL.

 Chapter 18, Practicalities of Using Microservices and Nanoservices, explores the positive and negative effects of microservices in relation to collaborating with other developers and managing a complex system as well as how nanoservices can help improve these trade-offs.

 Chapter 19, Low-Level Networking, elaborates on how protocols are built to help you understand networking on a deeper level.

 Chapter 20, Distributed Computing, covers implementing a queuing system where the tasks can be distributed across multiple computers to be processed using Redis.

 To get the most out of this book

 You will need to know some basic concepts around HTML and CSS. You will also need to have some basic understanding of JavaScript. However, the HTML, CSS, and JavaScript is only needed for displaying data in the browser. If you are just reading the book to build backend API servers in Rust, then knowledge of HTML, CSS, and JavaScript is not needed.

 Some basic understanding of programming concepts such as functions and loops will also be needed as these will not be covered in the book.

 	
 Software/hardware covered in the book

 	
 Operating system requirements

 	
 Rust

 	
 Windows, macOS, or Linux (any)

 	
 Node (for JavaScript)

 	
 Windows, macOS, or Linux (any)

 	
 Python 3

 	
 Windows, macOS, or Linux (any)

 	
 Docker

 	
 Windows, macOS, or Linux (any)

 	
 docker-compose

 	
 Windows, macOS, or Linux (any)

 	
 Postman

 	
 Windows, macOS, or Linux (any)

 	
 Terraform

 	
 Windows, macOS, or Linux (any)

 To take full advantage of the deployment on AWS chapters, you will need an AWS account, which might cost if you are not eligible for the Free Tier. However, the builds are automated with Terraform, so spinning up builds and tearing them down will be quick and easy, so you will not need to keep the infrastructure running while working through the book, keeping the costs to a minimum.

 By the of this book, you will have a solid foundation of building and deploying Rust servers. However, it must be noted that Rust is a powerful language. As this book focuses on web programming and deployment, there is scope for improvement in Rust programming after the book. Further reading on Rust is advised after the book to enable you to solve more complex problems.

 Download the example code files

 This book includes a complete downloadable code bundle containing all the example projects and files used throughout the chapters. We recommend downloading the bundle so you can follow along smoothly and experiment with the examples.

 Use the bundle as a practical starting point. Modify it, extend it, and apply what you learn by creating your own variations as you progress through the chapters.

 Get the code bundle

 If you bought the book directly from Packt:

 	Go to packtpub.com

 	Click your profile picture and select Your Orders

 	Find this book and click Download Code

 If you bought this book from Amazon or any other channel partner:

 	Go to packtpub.com/unlock or scan the following QR code:

 [image:]

 	Search for this book

 	Sign up or log in to your free Packt account

 	Upload your proof of purchase and download the code bundle locally

 Usage note: You’re free to use and modify this code for personal learning and non-commercial projects.

 Download the color images

 Your purchase includes a color, DRM-free PDF copy of this book, ideal for viewing color images, screenshots, and diagrams. Refer to Free benefits with your book at the end of the Preface to unlock your PDF copy.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and X/Twitter handles. For example: “The User#handle_github_event method deals only with domain objects, so it doesn’t escape to the upper layers.”

 A block of code is set as follows:

 struct DbCacheHandle <T: CanCreate, X: CanDelete> {
 create_handle: T,
 delete_handle: X
}

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 struct DbCacheHandle <T: CanCreate, X: CanDelete> {
 create_handle: T,
 delete_handle: X
}

 Any command-line input or output is written as follows:

 | capitalize!(32);
| ---------------- in this macro invocation
|
= help: the trait `std::iter::FromIterator<char>` is not implemented for `{integer}`

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “We can inspect the reason why by clicking on the Not Secure statement.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book or have any general feedback, please email us at customercare@packt.com and mention the book’s title in the subject of your message.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

 Free benefits with your book

 This book comes with free benefits to support your learning. Activate them now for instant access (see the “How to Unlock” section for instructions).

 Here’s a quick overview of what you can instantly unlock with your purchase:

 [image:]
 How to Unlock

 Scan the QR code (or go to packtpub.com/unlock). Search for this book by name, confirm the edition, and then follow the steps on the page.

 [image: A qr code on a white background AI-generated content may be incorrect.]

 [image:]

 Note: Keep your invoice handy. Purchases made directly from Packt don’t require one.

 Share your thoughts

 Once you’ve read Rust Web Programming, Third Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 1

 A Quick Introduction to Rust

 Rust is growing in popularity, but it has a reputation for having a steep learning curve. However, if taught correctly, this learning curve can be reduced. By covering the basic rules around Rust, as well as learning how to manipulate a range of data types and variables, we will be able to write simple programs in the same fashion as dynamically typed languages, using a similar number of lines of code.

 Understanding the basics is the key to effective web programming in Rust. I have maintained entire Kubernetes clusters where all the servers are written in Rust. Because I utilized traits, error handling, and generics effectively, it made reusing code in Rust extremely effective. In my experience, it takes fewer lines of code to build out Rust servers than it does Python servers if the basics of Rust are well utilized.

 The goal of this chapter is to cover the main differences between Rust and generic dynamic languages and to provide you with a quick understanding of how to utilize Rust.

 In this chapter, we will cover the following topics:

 	What is Rust?

 	Reviewing data types and variables in Rust

 	Controlling variable ownership

 	Building structs

 Once we have covered the main concepts in this chapter, you will be able to code basic programs in Rust that will run. You will also be able to debug your programs and understand the error messages that are thrown by the Rust compiler. As a result, you will have the foundations to be productive in Rust. You will also be able to move on to structuring Rust code over multiple files.

 In this chapter and the following chapter, we will cover enough Rust to be productive in web programming. However, we will not be able to do the entire Rust programming language justice in two chapters. If you want to dive deeper into the Rust programming language after reading this chapter, then you can explore the further reading list at the end of the chapter.

 	
 Your purchase includes a free PDF copy + code bundle

 Your purchase includes a DRM-free PDF copy of this book, the code bundle, and additional exclusive extras. See the Free benefits with your book section in the Preface to unlock them instantly and maximize your learning.

 Technical requirements

 For this chapter, we only need access to the internet, as we will use the online Rust playground to implement the code. The code examples provided can be run in the online Rust playground at https://play.rust-lang.org/.

 You can download the example project and code for this book by following the instructions in the Download the example code files section in the Preface of this book.

 This chapter’s code files are included in the downloadable code bundle.

 What is Rust?

 Rust is a cutting-edge systems programming language that has been making waves since Mozilla Research introduced it in 2010. With a focus on safety, concurrency, and performance, Rust is a formidable alternative to traditional languages like C and C++. Its most notable feature, the ownership system, enforces rigorous memory safety rules at compile time. This approach effectively eradicates common pitfalls like null pointer dereferencing and buffer overflows, all without needing a garbage collector.

 Designed for high performance, Rust provides granular control over hardware and memory, making it perfect for developing operating systems, game engines, and other performance-critical applications. Its syntax is both modern and expressive, offering features typically seen in higher-level languages, such as pattern matching and algebraic data types, while retaining the efficiency required for system-level programming. Consequently, Rust has rapidly attracted a strong and active community, bolstered by excellent documentation and a burgeoning ecosystem of libraries and tools.

 Rust’s adoption has been nothing short of remarkable, particularly in tech sectors where safety and performance are crucial. Major players like Microsoft, Amazon, and Dropbox have integrated Rust into their technology stacks to capitalize on its reliability and efficiency. Rust’s consistent ranking since 2016 as the most loved programming language in Stack Overflow’s annual developer surveys is a testament to its appeal. Developers laud Rust for its unique blend of performance and safety, alongside its supportive and vibrant community.

 Moreover, Rust’s ecosystem, highlighted by its package manager, Cargo, offers a seamless development experience. Cargo simplifies dependency management, project building, and testing, streamlining workflows that can be cumbersome in other systems programming languages. This robust combination of features positions Rust as a unique and powerful tool for developers aiming to create reliable, high-performance software.

 Why is Rust revolutionary?

 With programming, there is usually a trade-off between speed and resources and development speed and safety. Low-level languages such as C/C++ can give a developer fine-grained control over a computer, with fast code execution and minimal resource consumption. However, this is not free. Languages such as C/C++ need manual memory management, which can introduce bugs and security vulnerabilities. A simple example of this is a buffer overflow attack.

 A buffer overflow attack occurs when the programmer does not allocate enough memory. For instance, if the buffer only has a size of 15 bytes, and 20 bytes are sent, then the excess 5 bytes might be written past the boundary. An attacker can exploit this by passing in more bytes than the buffer can handle. This can potentially overwrite areas that hold executable code with their own code.

 There are other ways to exploit a program that does not have correctly managed memory. On top of increased vulnerabilities, it takes more code and time to solve a problem in a low-level language. As a result of this, C++ web frameworks do not take up a large share of web development. Instead, it usually makes sense to go for high-level languages such as Python, Ruby, and JavaScript. Using such languages will generally result in a developer solving problems safely and quickly.

 However, it must be noted that this memory safety comes at a cost. These high-level languages generally keep track of all the variables defined and their references to a memory address. When there are no more variables pointing to a memory address, the data in that memory address gets deleted. This process is called garbage collection and consumes extra resources and time, as a program must be stopped to clean up the variables.

 With Rust, memory safety is ensured without the costly garbage collection process. Rust ensures memory safety through a set of ownership rules, checked at compile time with a borrow checker. Because of this, Rust enables rapid, safe problem-solving with truly performant code, thus breaking the speed/safety trade-off.

 Memory safety is the property of programs having memory pointers that always point to valid memory.

 With more data processing, traffic, and complex tasks lifted into the web stack, Rust, with its growing number of web frameworks and libraries, has now become a viable choice for web development. This has led to some truly amazing results in the web space for Rust. In 2020, Shimul Chowdhury ran a series of tests against servers with the same specs but different languages and frameworks. The results can be seen in the following figure (note that the Rust frameworks comprise Actix Web and Rocket):

 [image: Table Description automatically generated]
 Figure 1.1 – Results of different frameworks and languages by Shimul Chowdhury (found at https://www.shimul.dev/en/blog/2020/benchmarking-flask-falcon-actix-web-rocket-nestjs/)

 In the preceding figure, we can see that there are some variations in the languages and frameworks. These Rust servers are in a completely different league when it comes to total requests handled and data transferred. Other languages, such as Golang, have come onto the scene, but the lack of garbage collection in Rust has managed to outshine Golang. This was demonstrated in Jesse Howarth’s 2020 blog post Why Discord is switching from Go to Rust (https://discord.com/blog/why-discord-is-switching-from-go-to-rust). In this post, it was clear that Golang servers were producing latency spikes, whereas the Rust servers were not.

 The garbage collection that Golang was implementing to keep the memory safe resulted in two-minute spikes. But it does not stop there. In 2022, AWS produced a report called “Sustainability with Rust,” wherein they created a ratio of energy consumption, resulting in the following table:

 	
 Language

 	
 Energy Rating

 	
 C

 	
 1.00

 	
 Rust

 	
 1.03

 	
 JavaScript

 	
 4.45

 	
 PHP

 	
 29.30

 	
 Ruby

 	
 69.91

 	
 Python

 	
 75.88

 Table 1.1 – Energy Rating of Languages from an AWS report (found at https://aws.amazon.com/blogs/opensource/sustainability-with-rust/)

 Rust was second only to C in energy consumption and startup time. AWS is not the only fan of Rust. In 2024, the Whitehouse recommended Rust over C and C++ for future projects in the “Back to the Building Blocks: A Pat Toward Secure and Measurable Software” report. Finally, the compatibility of Rust with other systems has created an inflection point where we can integrate it. For instance, PostgreSQL and Redis now support modules that can be written in Rust and uploaded. Cloudflare has written a battle-tested load balancer in Rust that serves more than 40 million internet requests per second.

 I personally think that Rust is the future of backend web programming. Like C pushed forward hardware, where all developers agreed on standards and rowed in the same direction, you will hopefully appreciate after finishing this book that Rust could push forward a backend standard, where the developer has a memory-safe language that can interact directly with other components, such as load balancers and databases, in a way that garbage-collected languages just cannot.

 Why Rust? cheatsheet

 	Balance: Rust balances speed, resource efficiency, development speed, and safety without compromising any aspect.

 	Low-level control: Like C/C++, Rust provides fine-grained control over the computer, leading to fast code execution and minimal resource consumption.

 	Rust’s memory safety: Languages like Python, Ruby, and JavaScript offer memory safety via garbage collection, but at the cost of additional resources and potential performance overhead. Rust ensures memory safety through compile-time ownership rules and a borrow checker, eliminating the need for garbage collection.

 	Web development: Rust’s growing number of web frameworks and libraries make it a strong candidate for web development, offering both safety and performance.

 	Integration: Rust’s compatibility with systems like PostgreSQL and Redis, as well as its use in high-performance components like Cloudflare’s load balancer, demonstrate its versatile integration capabilities.

 Now that we understand why we want to code in Rust, we can move on to reviewing data types in the next section.

 Reviewing data types and variables in Rust

 If you have coded in another language before, you will have used variables and handled different data types. However, Rust does have some quirks that can put off developers. This is especially true if the developer has come from a dynamic language, as these quirks mainly revolve around memory management and reference to variables. These can be intimidating initially, but when you get to understand them, you will learn to appreciate them.

 Some people might hear about these quirks and wonder why they should bother with the language at all. This is understandable, but these quirks are why Rust is such a paradigm-shifting language. Working with borrow checking and wrestling with concepts such as lifetimes and references gives us the high-level memory safety of a dynamic language, such as Python. However, we can also get memory-safe, low-level resources, such as those delivered by C and C++.

 This means that we do not have to worry about dangling pointers, buffer overflows, null pointers, segmentation faults, data races, and other issues when coding in Rust. Issues such as null pointers and data races can be hard to debug. The borrow-checking rules enforced are a good trade-off, as we must learn Rust’s quirks to get the speed and control of non-memory-safe languages, but we do not get the headaches these non-memory-safe languages introduce.

 Before we do any web development, we need to run our first program. We can do this in the Rust playground at https://play.rust-lang.org/.

 If you have never visited the Rust playground before, you will see the following layout once you are there:

 fn main() {
 println!("hello world");
}

 The preceding code will look like the following screenshot in the online Rust playground, after we have pressed the RUN button on the top left-hand side of the screen:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.2 – View of the online Rust playground

 In our hello world code, what we have is a main function, which is our entry point. This function fires when we run our program. All programs have entry points. If you have not heard of the concept before, due to coming from a dynamic language, the entry point is the script file that you point your interpreter at. For Python, a closer analogy would be the main block that runs if the file is directly run by the interpreter, denoted as follows:

 if __name__ == " __main__":
 print("Hello, World!")

 If you were to code in Python, you would probably see this used in a Flask application.

 Right now, we have not done anything new. This is a standard Hello, World! example with a little change in syntax; however, even with this example, the string that we print is not all that it seems. For instance, let us write our own function that accepts a string and prints it out with the following code:

 fn print(message: str) {
 println!("{}", message);
}
fn main() {
 let message = "hello world";
 print(message);
}

 This code should work in other interpreted languages, such as Python or JavaScript. We pass it into our function and print it. However, if we do print it, we get the following printout:

 10 | print(message);
 | ^^^^^^^ doesn't have a size known at compile-time
 |
 = help: the trait `Sized` is not implemented for `str`
 = note: all function arguments must have a statically known size

 This is not very straightforward, but it brings us to the first area we must understand if we are to code in Rust, which is strings. Don’t worry; strings are the quirkiest variables that you need to get your head around to write functional Rust code.

 Using strings in Rust

 Before we explore the error in the previous section, let us rectify it so that we know what to work toward. We can get the print function to work without any errors with the following code:

 fn print(message: String) {
 println!("{}", message);
}
fn main() {
 let message = String::from("hello world");
 print(message);
}

 What we did was create a String from "hello world" and pass it into the print function. This time, the compiler did not throw an error because we always know the size of a String, so we can keep the right amount of memory free for it. This may sound counterintuitive because strings are usually of different lengths; it would not be a very flexible programming language if we were only allowed to use the same length of letters for every string in our code. We can make all strings have the same size of memory by passing round pointers, implemented as a vector of bytes, which in Rust is denoted as Vec<u8>. This holds a reference to the string content (str, also known as a string slice) in the heap memory, as seen in the following figure:

 [image: A diagram of a stack memory Description automatically generated]
 Figure 1.3 – A string’s relationship to str “one”

 We can see in Figure 1.3 that a string is a vector of three numbers. One is the actual memory address of the str it references. The second number is the size of the memory allocated, and the third is the length of the string content. Therefore, we can access string literals in our code without having to pass variables of various sizes around our code. We know that String has a set size and, therefore, can allocate this size in the print function parameter. Note that String is on the stack memory while our string literal is on the heap memory.

 Considering that we know that String has a set size while our string literal varies, we can deduce that the stack memory is used for predictable memory sizes and is allocated ahead of time when the program runs. The stack memory allocation order is decided on compilation and optimized by the compiler. Our heap memory is dynamic, and therefore, memory is allocated when it is needed.

 Now that we know the basics of strings, we can use the different ways in which they are created, as seen in the following code:

 let string_one = "hello world".to_owned();
 let string_two = "hello world".to_string();
 let string_three = string_two.clone();

 Note that creating string_three is costly, as we must copy the underlying data in the heap, and heap operations are expensive. This is not a unique quirk of Rust. In our example, we are just experiencing what happens under the hood. For instance, if we alter strings in Python, we will have different outcomes:

 # slower method
data = ["one", "two", "three", "four"]
string = ""
for i in data:
 string += i
faster method
"".join(data)

 Looping through and adding the strings is slower because Python must allocate new memory and copy an entire string to that new memory address. The join method is faster because Python can allocate the memory of all the data of the list and then copy over the strings in the array, meaning the string must only be copied once. This shows us that although high-level languages like Python may not force you to think about the memory allocation of strings, you will still end up paying the price if you don’t acknowledge it.

 We can pass a string literal into the print function by borrowing it, as seen in the following Rust code:

 fn print(message: &str) {
 println!("{}", message);
}
fn main() {
 let message: &str = "hello world";
 print(message);
}

 The : &str is a type annotation of the type of variable that is being assigned to message. We do not need the type annotation; the compiler will work out the type automatically. However, for our exercise, it does illustrate what is happening. The borrow is denoted by &. We will cover borrowing later in the chapter. For now, however, we can deduce that the borrow is only a fixed-size reference to a variable-sized string slice. If the borrow was not a fixed size, we would not be able to pass it into the print function because we would not know the size.

 At this point, we can comfortably use strings in Rust productively. The next concept that we must understand before we start writing Rust programs is integers and floats.

 Using integers and floats

 In most high-level web programming languages, we just assign a float or integer to a variable name and move on with the program. However, from what we have been exposed to in the previous section on strings, we now understand that we must worry about memory size when using strings in Rust. This is no different with integers and floats. We know that integers and floats have a range of sizes. Therefore, we must tell Rust what we pass around our code.

 Rust supports signed integers, which are denoted by i, and unsigned integers, which are denoted by u. Both unsigned and signed integers consist of 8, 16, 32, 64, or 128 bits. We will cover what unsigned and signed integers are in this section.

 8-byte integers

 Exploring the math behind numbers being represented in binary is not relevant for this book; however, we do need to understand the range of numbers that can be represented with several bits, as this will help us understand what the different types of floats and integers in Rust denote.

 Because binary is either a 0 or a 1, we can calculate the range of unsigned integers that can be represented by the bits, by raising 2 to the power of the number of bits we have. For example, if we have an integer that is represented by 8 bits, 2 to the power of 8 equates to 256. We must remember that 0 is also represented. Considering this, an integer of 8 bits has a range of 0 to 255. We can test this calculation with the following code:

 let number: u8 = 256;

 This is one higher than the range that we calculated. As a result, we should not be surprised to see the following overflow error:

 the literal `256` does not fit into the type
`u8` whose range is `0..=255`

 So we can deduce that if we lower the unsigned integer to 255, it will pass. However, let’s say we change the unsigned integer into a signed integer with the following code:

 let number: i8 = 255;

 We will see that we get a helpful error message, as follows:

 the literal `255` does not fit into the type
`i8` whose range is `-128..=127`

 With this helpful error message, we can see that a signed integer considers negative numbers, so the absolute value that a signed integer can take is roughly half.

 16-byte integers

 We can increase the range by assigning the number as a 16-bit signed integer with the following code:

 let number: i16 = 255;

 This would work. However, let us add our 16-bit integer with our 8-bit integer, using the following code:

 let number = 255i16;
let number_two = 5i8;
let result = number + number_two;

 The previous code might look a little different to you. All we have done in the preceding code is define the data type with a suffix instead. So number has a value of 255 and a type of i16, and number_two has a value of 5 and a type of i8. If we run the previous code, we get the following error:

 11 | let result = number + number_two;
 | ^ no implementation for `i16 + i8`
 |
 = help: the trait `Add<i8>` is not implemented for `i16`

 We will cover traits later in this chapter. For now, all we must understand is that we cannot add the two different integers. If they were both the same type, then we could.

 We can change the integer type through casting, using as, as seen in the following line of code:

 let result = number + number_two as i16;

 This means that number_two is now a 16-bit integer, and result will be 260. However, we must be careful with casting because if we were to do it the wrong way, we could end up with a silent bug, which is unusual for Rust.

 Embrace the errors when learning Rust

 Rust’s strict compilation process can seem daunting, but it’s a key feature that prevents runtime failures common in other languages. Rust refuses to compile code with errors, ensuring safety and reliability. By encountering and understanding these errors early, you can learn Rust more effectively.

 Trying out code variants without error warnings can lead to confusion and frustration later. Teaching Rust by showing errors upfront and explaining them helps us to grasp the language’s principles, making our learning process smoother and more engaging.

 If we cast number as i8 instead of casting number_two as i16, then result would equate to 4, which does not make sense because 255 + 5 equals 260. This is because i8 is smaller than i16. So, if we cast an i16 integer as an i8 integer, we are essentially chopping off some of the data, by just taking the lower bits of the number and disregarding the upper bits. Therefore, number ends up being a -1 if we cast it to an i8 integer. To be safer, we can use the i8::from function, as seen in the following code:

 let result = i8::from(number) + number_two;

 Running this will give us the following error:

 let result = i8::from(number) + number_two;
| ^^^^^^^^ the trait `From<i16>` is not
 implemented for `i8`

 Again, we will go over traits later on in the chapter, but we can see in the preceding code that because the trait From<i16> is not implemented for an i8 integer, we cannot cast an i8 integer into an i16 integer. With this understanding, we are free to work with integers safely and productively.

 Type system to the rescue

 Type errors for multiplying two different numerical types prevent silent bugs. If the type system did not flag the differences, then we could have bugs that get thrown when the program is running or, even worse, silent bugs where we don’t know that there is a bug.

 Previously, I worked on a financial loss calculation engine. If the number was not loaded to the correct precision of the spec, then the calculations at the end of the financial loss model would be wildly different. The type system here ensures that we do not multiply a number that is a different precision to the spec defined in the code.

 Introducing floats

 One last point about integer sizes in Rust is that they are not continuous. The supported sizes are shown in the following table:

 	
 Bits

 	
 Calculation

 	
 Size

 	
 8

 	
 2^8

 	
 256

 	
 16

 	
 2^16

 	
 65536

 	
 32

 	
 2^32

 	
 4294967296

 	
 64

 	
 2^64

 	
 1.8446744e+19

 	
 128

 	
 2^128

 	
 3.4028237e+38

 Table 1.2 – Size of integer types

 When it comes to floats, Rust accommodates f32 and f64 floating point numbers. Both these floating-point types support negative and positive values. Declaring a floating-point variable requires the same syntax as integers, as seen in the following code:

 let float: f32 = 2.6;

 With this, we can comfortably work with integers and floats in our Rust code. However, we know as developers that just declaring floats and integers is not very useful. We want to be able to contain and loop through them. In the next section, we will do just that with vectors and arrays.

 Storing data in arrays

 In Rust, we can store our floats, integers, and strings in arrays and vectors. First, we will focus on arrays.

 Arrays are stored in stack memory. Knowing this, and remembering what we learned about strings, we can deduce that arrays are of a fixed size. This is because, as we remember, if a variable is stored on the stack, then the memory is allocated on compilation and loaded into the stack when the program starts. We can define an array of integers, loop through it, print each integer, and then access an integer by index with the following code:

 fn main() {
 let int_array: [i32; 3] = [1, 2, 3];
 for i in int_array {
 println!("{}", i);
 }
 println!("{}", int_array[1]);
}

 With the previous code, we define the type and size by wrapping them in square brackets. For instance, if we were going to create an array of floats with a length of 4, we would use int_array: [f32; 4] = [1.1, 2.2, 3.3, 4.4]. Running the preceding code will give you the following printout:

 1
2
3
2

 In the preceding printout, we can see that the loop works and we can access the second integer with square brackets. Although the memory size of the array is fixed, we can still change it. This is where mutability comes in.

 When we define a variable as mutable, it means that we can mutate it. In other words, we can alter the value of the variable after it has been defined if it is mutable. If you tried to update any of the variables in the code that we have written in this chapter, you will have realized that you can’t. This is because all variables in Rust are immutable by default. However, we can make any variable in Rust mutable by putting a mut tag in front of the variable name.

 Going back to the fixed array, we cannot change the size of it, meaning we cannot append/push new integers to it due to it being stored in stack memory. However, if we define a mutable array, we can update parts of it with other integers that are the same memory size. An example of this is the following code:

 fn main() {
 let mut mutable_array: [i32; 3] = [1, 2, 0];
 mutable_array[2] = 3;
 println!("{:?}", mutable_array);
 println!("{}", mutable_array.len());
}

 In the preceding code, we can see that the last integer in our array is updated to 3. We then print out the full array and then the length. You may have also noted that the first print statement of the preceding code now employs {:?}. This calls the Debug trait. If Debug is implemented for the thing that we are trying to print, then the full representation of the thing we print is displayed in the console. You can also see that we print out the result of the length of the array. Running this code will give the following printout:

 [1, 2, 3]
3

 With the preceding printout, we can confirm that the array is now updated. We can also access slices with our arrays. To demonstrate this, we can create an array of 100 zeros. We can then take a slice of this and print it out with the following code:

 fn main() {
 let slice_array: [i32; 100] = [0; 100];
 println!("length: {}", slice_array.len());
 println!("slice: {:?}", &slice_array[5 .. 8]);
}

 Running the preceding code will result in the following printout:

 length: 100
slice: [0, 0, 0]

 We are now able to be productive with arrays. Arrays can be useful for caching. For instance, if we know the amount that we need to store, then we can use arrays effectively. However, we have only managed to store one type of data in the array. If we tried to store strings and integers in the same array, we would have a problem. How would we define the type? This problem applies to all collections, such as vectors and HashMaps. There are multiple ways to do this, but the most straightforward is using enums.

 Storing data in vectors

 What we have covered with arrays can be applied to vectors. The only difference is that we do not have to define the length and can increase the size of the vector if needed. This is because vectors put their data onto the heap, meaning that vectors are pointers, pointing to a collection of items in heap memory that are all next to each other, making vectors fast for looping through and reading data. If the allocated memory on the heap runs out, the vector can allocate a bigger section of memory and copy the existing data over to the new memory address. To demonstrate this flexibility, we will create a vector of strings and then add a string to the end, with the following code:

 let mut string_vector: Vec<&str> = vec!["one", "two", "three"];
 println!("{:?}", string_vector);
 string_vector.push("four");
 println!("{:?}", string_vector);

 In the preceding code, we can see that we use the vec! macro to create the vector of strings. You may have noticed with macros such as vec! and println! that we can vary the number of inputs. We will cover macros later in the chapter. Running the preceding code will result in the following printout:

 ["one", "two", "three"]
["one", "two", "three", "four"]

 We can also create an empty vector with the new function from the Vec struct, with let _empty_vector: Vec<&str> = Vec::new();.

 You may be wondering when to use vectors and when to use arrays. Vectors are more flexible. You may be tempted to opt for arrays for performance gains. At face value, this seems logical, as arrays are stored in the stack. Accessing the stack is going to be quicker because the memory sizes can be computed at compile time, making the allocation and deallocation simpler compared to the heap. However, because it is on the stack, it cannot outlive the scope that it is allocated. Moving a vector around would require moving a pointer around. However, moving an array requires copying the whole array. Therefore, copying fixed-size arrays is more expensive than moving a vector. If you have a small amount of data that you only need in a small scope and you know the size of the data, then reaching for an array does make sense. However, if you’re going to be moving the data around, even if you know the size of the data, using vectors is a better choice.

 We must also take note of our initial introduction of vectors. If the heap memory allocated for a vector runs out, the data is copied over to a new address. This copying over is not free. If you know the size of the data you need, you can prevent this copying with a Vec::with_capacity(100) constructor, initially setting aside the memory you need. 100 is just an example of a size of items to be put in a vector; you have the freedom to input whatever value you need. Don’t worry if you exceed this later; the memory reallocation will still work.

 Now that we can be productive with basic collections, we can move on to a more advanced collection, a HashMap.

 Mapping data with enums

 Enums are, well, enums. In dynamic languages such as Python, you may not have had to use them, due to being able to pass any type anywhere you want. However, they are still available. Enum is short for enumerated type and basically defines a type with possible variants. In our case, we want our array to store strings and integers in the same collection. We can do this by initially defining our enum with the following code:

 enum SomeValue {
 StringValue(String),
 IntValue(i32)
}

 In the preceding code, we can see that we defined an enum with the name of SomeValue. We then denoted that StringValue holds the value of a string and that IntValue holds the value of an integer. We can then define an array with a length of 4, consisting of two strings and two integers, with the following code:

 let multi_array: [SomeValue; 4] = [
 SomeValue::StringValue(String::from("one")),
 SomeValue::IntValue(2),
 SomeValue::StringValue(String::from("three")),
 SomeValue::IntValue(4)
];

 In the preceding code, we can see that we wrap our strings and integers in our enum. Now, looping through and exporting it is going to be another task. For instance, there are things that we can do to an integer that we cannot do to a string, and vice versa. Considering this, we are going to have to use a match statement when looping through the array, as seen in the following code:

 for i in multi_array {
 match i {
 SomeValue::StringValue(data) => {
 println!("The string is: {}", data);
 },
 SomeValue::IntValue(data) => {
 println!("The int is: {}", data);
 }
 }
 }

 In the preceding code, we can see that if i is SomeValue::StringValue, we then assign the data wrapped in SomeValue::StringValue to the variable name data. We then pass data into the inner scope to be printed. We use the same approach with our integer. Even though we are merely printing to demonstrate the concept, we can do anything in these inner scopes to the data variable that the type allows us to. Running the preceding code gives the following printout:

 The string is: one
The int is: 2
The string is: three
The int is: 4

 Using enums to wrap data and match statements to handle them can be applied to HashMaps and vectors.

 Mapping data with HashMaps

 In some other languages, HashMaps are referred to as dictionaries. They have a key and a value. We can insert and get values using the key. Now that we have learned about handling collections, we can get a little more adventurous in this section.

 We can create a simple profile of a game character. In this character profile, we are going to have a name, age, and a list of items that they have. This means that we need an enum that houses a string, an integer, and a vector that also houses strings. We will want to print out the complete HashMap to see if our code is correct in one glance. To do this, we are going to implement the Debug trait for our enum, as seen in the following code:

 #[derive(Debug)]
enum CharacterValue {
 Name(String),
 Age(i32),
 Items(Vec<String>)
}

 In the preceding code, we can see that we have annotated our enum with the derive attribute. An attribute is metadata that can be applied to the CharacterValue enum in this case. The derive attribute tells the compiler to provide a basic implementation of a trait. So, in the preceding code, we are telling the compiler to apply the basic implementation of Debug to the CharacterValue enum. With this, we can then create a new HashMap that has keys pointing to the values we defined in the preceding code with the following:

 use std::collections::HashMap;
fn main() {
 let mut profile: HashMap<&str, CharacterValue> = HashMap::new();
}

 We stated that it is mutable because we are going to insert values with the following code:

 profile.insert("name", CharacterValue::Name("Maxwell".to_string()));
profile.insert("age", CharacterValue::Age(34));
profile.insert("items", CharacterValue::Items(vec![
 "laptop".to_string(),
 "book".to_string(),
 "coat".to_string()
]));
println!("{:?}", profile);

 We can see that we have inserted all the data that we need. Running this would give us the following printout:

 {"items": Items(["laptop", "book", "coat"]), "age": Age(34),
"name": Name("Maxwell")}

 In the preceding output, we can see that our data is correct. Inserting it is one thing; however, we now must get it out again. We can do this with a get associated function.

 Associated functions are functions attached to a type, such as an enum, struct, or datatype. They can reference the entity that they are associated with, or even consume them. In some cases, a reference to the type they are associated with isn’t needed at all. Later on in the book, we will associate functions with database handle structs where the functions have no reference to the struct.

 The get associated function returns an Option type. The Option type returns either Some or None. So if we were to get name from our HashMap, we would need to do two matches, as seen in the following code:

 match profile.get("name") {
 Some(value_data) => {
 match value_data {
 CharacterValue::Name(name) => {
 println!("the name is: {}", name);
 },
 _ => panic!("name should be a string")
 }
 },
 None => {
 println!("name is not present");
 }
}

 In the preceding code, we can check to see if there is a name in the keys. If there is not, then we just print out that it was not present. If the name key is present, we then move on to our second check, which prints out the name if it is CharacterValue::Name. However, there is something wrong if the name key does not house CharacterValue::Name. So, we add only one more check to match, which is _. This is a catch, meaning anything else. We are not interested in anything other than CharacterValue::Name. Therefore, the _ catch maps to a panic! macro, which essentially throws an error.

 We could make this shorter. If we know that the name key is going to be in the HashMap, we can employ the unwrap function with the following code:

 match profile.get("name").unwrap() {
 CharacterValue::Name(name) => {
 println!("the name is: {}", name);
 },
 _ => panic!("name should be a string")
 }

 The unwrap function directly exposes the result. However, if the result is None, then it will directly result in an error terminating the program, which would look like the following printout:

 thread 'main' panicked at 'called `Option::unwrap()` on a `None` value'

 Using the unwrap function is risky, and we should try and avoid it as much as possible. We can avoid using the unwrap function by handling our results and errors, which we cover in the next section.

 Handling results and errors

 In the previous section, we learned that directly unwrapping Option, resulting in None, panics a thread. There is another outcome that can also throw an error if unsuccessfully unwrapped, and this is Result. The Result type can return either Ok or Err. To demonstrate this, we can create a basic function that returns a Result type, based on a simple Boolean that we pass into it, with the following code:

 fn error_check(check: bool) -> Result<i8, &'static str> {
 if check {
 Err("this is an error")
 }
 else {
 Ok(1)
 }
}

 In the preceding code, we can see that we return Result<i8, &'static str>. This means that we return an integer if Result is Ok, or we return an integer if Result is Err. The &'static str variable is basically our error string. We can tell that it’s a reference because of &. The 'static part means that the reference is valid for the entire lifetime of the running program. If this does not make sense now, don’t worry; we will cover lifetimes later in the chapter.

 Now that we have created our error-checking function, we can test to see what these outcomes look like with the following code:

 fn main() {
 println!("{:?}", error_check(false));
 println!("{:?}", error_check(false).is_err());
 println!("{:?}", error_check(true));
 println!("{:?}", error_check(true).is_err());
}

 Running the preceding code gives us the following printout:

 Ok(1)
false
Err("this is an error")
true

 In the preceding output, we can see that it returned exactly what we wanted. Also note that we can run the is_err() function on Result variable, resulting in false if we return Ok or true if we return Err. We can also directly unwrap but add extra tracing to the stack trace with the following expect function:

 let result: i8 = error_check(true).expect("this has been caught");

 The preceding function will result in the following printout:

 thread 'main' panicked at 'this has been caught: "this is an error"'

 Through the preceding example, we can see that we get the message from the expect function first, and then the error message returned in Result. With this understanding, we can throw, handle, and add extra tracing to errors.

 We can now throw errors, but how can we handle them? An obvious choice would be a match statement, but we can also use the ? operator. For instance, let us return the same return type for another function that calls our error_check function, as seen in the following code:

 fn error_check_two(check: bool) -> Result<i8, &'static str> {
 let outcome: i8 = error_check(check)?;
 Ok(outcome)
}

 Here, we can see that the ? operator is used when calling error_check(check)?. What happens here is that if the error_check function returns an error, that error is just directly returned as an error for the error_check_two function. If the error_check function returns an Ok result, then this is automatically unwrapped and assigned to the variable outcome. This will save you a lot of code. Throughout the book, we will map errors so that we can exploit the ? operator, instead of writing matches everywhere. We will even configure our errors to automatically construct an HTTP response. It’s a complete myth that we need to write a lot of Rust code for web programming.

 Rust data types and variables cheatsheet

 	Strings: The String type is heap-allocated and its size is known, whereas &str is a fixed-size reference to a string slice. Use String::from or .to_string() to create a String. Use &str to borrow a string slice without ownership transfer.

 	Integers and floats: Rust requires explicit size declarations for integers (e.g., i8, u16) and floats (e.g., f32 and f64). Different integer sizes have specific ranges (e.g., u8 ranges from 0 to 255, and i8 ranges from -128 to 127). Type errors are caught at compile time to prevent runtime bugs.

 	Mutability: Variables are immutable by default. Use mut to make a variable mutable, allowing its value to be changed.

 	Arrays: Fixed-size, stack-allocated collections. Here’s an example: let int_array: [i32; 3] = [1, 2, 3];

 	Vectors: Dynamic-size, heap-allocated collections. Here’s an example: let mut vec = Vec::new(); vec.push(1);

 	Enums: Used to define a type with possible variants. Here’s an example: enum SomeValue { StringValue(String), IntValue(i32) }

 	Result type: Used for functions that can return an error. Here’s an example: fn error_check(check: bool) -> Result<i8, &'static str> { ... }

 	Error handling: Use match, unwrap, or the ? operator to handle results and propagate errors.

 However, we are getting more exposed to lifetimes and borrow references as we move forward. Now is the time to address this by understanding variable ownership.

 Controlling variable ownership

 As we remember from the beginning of the chapter, Rust does not have a garbage collector. However, it has memory safety. It achieves this by having strict rules around variable ownership. These rules are enforced when Rust is being compiled. If you are accustomed to a dynamic language, then this can initially lead to frustration. This is known as fighting the borrow checker. Sadly, this unjustly gives Rust its steep learning curve reputation, as when you are fighting the borrow checker without knowing what is going on, it can seem like an impossible task to write even the most basic programs. However, if we take the time to learn the rules before we try and code anything too complex, the knowledge of the rules and the helpfulness of the compiler will make writing code in Rust fun and rewarding. Again, I take the time to remind you that Rust has been the most favorite language nine years in a row. This is not because it’s impossible to get anything done in it. The people who vote for Rust in these surveys understand the rules around ownership. Rust’s compiling, checking, and enforcing of these rules protect against the following errors:

 	Use-after-frees: This occurs when memory is accessed once it has been freed, which can cause crashes. It can also allow hackers to execute code via this memory address.

 	Dangling pointers: This occurs when a reference points to a memory address that no longer houses the data that the pointer was referencing. Essentially, this pointer now points to null or random data.

 	Double frees: This occurs when allocated memory is freed and then freed again. This can cause a program to crash and increases the risk of sensitive data being revealed. It also enables a hacker to execute arbitrary code.

 	Segmentation faults: This occurs when the program tries to access the memory it’s not allowed to access.

 	Buffer overrun: An example of this error is reading off the end of an array. This can cause a program to crash.

 To protect against these errors and thus achieve memory safety, Rust enforces the following rules:

 	Values are owned by the variables assigned to them.

 	As soon as the variable moves out of the scope of where it was defined, it is then deallocated from the memory.

 	Values can be referenced and altered if we adhere to the rules for copying, moving, immutable borrowing, and mutable borrowing.

 Knowing the rules is one thing, but to practically work with the rules in Rust code, we need to understand copying, moving, and borrowing in more detail.

 Copying variables

 Copying occurs when a value is copied. Once it has been copied, the new variable owns the value, while the existing variable also continues to own its value.

 [image:]
 Figure 1.4 – Variable copy path

 In Figure 1.4, we can see that the path of One is still solid, which denotes that it has not been interrupted and can be handled as if the copy did not happen. Path Two is merely a copy, and there is also no difference in the way in which it can be utilized, as if it were self-defined.

 Note that if the variable has a copy trait, then the variable will automatically be copied without us having to write any extra code, as seen in the following code:

 let one: i8 = 10;
let two: i8 = one + 5;
println!("{}", one);
println!("{}", two);

 Running the preceding code will give us the following printout:

 10
15

 In the preceding example, we appreciate that the very fact that variables one and two can be printed indicates that one has been copied for two to utilize. To test this, we can test our example with strings using the following code:

 let one = "one".to_string();
let two = one;
println!("{}", one);
println!("{}", two);

 Running this code will result in the following error:

 move occurs because `one` has type `String`, which does not implement the `Copy` trait

 Because strings do not implement the Copy trait, the code does not work, as one was moved to two.

 It is only natural to wonder why strings do not have the Copy trait. This is because the string is a pointer to a string literal. If we were to copy strings, we would have multiple unconstrained pointers to the same string literal data, which would be dangerous.

 However, the code will run if we get rid of println!("{}", one);. This brings us to the next concept that we must understand, moving.

 Moving variables

 Moving refers to when a value is moved from one variable to another. However, unlike copying, the original variable no longer owns the value.

 [image:]
 Figure 1.5 – Variable move path

 From what we can see in Figure 1.5, one can no longer be accessed once it’s moved to two. To really establish what is going on here and how strings are affected, we can set up some code designed to fail, as follows:

 let one: String = String::from("one");
let two: String = one + " two";
println!("{}", two);
println!("{}", one);

 Running the preceding code gives the following error:

 let one: String = String::from("one");
 --- move occurs because `one` has type
 `String`, which does not implement the
 `Copy` trait
let two: String = one + " two";
 ------------ `one` moved due to usage in operator
println!("{}", two);
println!("{}", one);
 ^^^ value borrowed here after move

 As we can see, the compiler has been helpful here. It shows us where the string was moved to and where the value of that string is borrowed. So we can make the code run instantly by merely removing the line println!("{}", one);. However, we want to be able to use that print function at the bottom of the preceding code block. We should not have to constrain the functionality of the code due to the rules implemented by Rust. We can solve this by using the to_owned function with the following code:

 let two: String = one.to_owned() + " two";

 The to_owned function is available because strings implement the ToOwned trait. We will cover traits later in the chapter, so carry on reading even if you do not know what this means yet. We could also have used clone on the string. We must note that to_owned is a generalized implementation of clone. However, it does not really matter which approach we use.

 Because of this, we can explore the move concept using strings. If we force our string outside of the scope with a function, we can see how this affects our move. This can be done with the following code:

 fn print(value: String) {
 println!("{}", value);
}
fn main() {
 let one = "one".to_string();
 print(one);
 println!("{}", one);
}

 If we run the preceding code, we will get an error, stating that the print function moved the one value. As a result, the println!("{}", one); line borrows one after it is moved into the print function. The key part of this message is the word borrow. To understand what is going on, we need to explore the concept of immutable borrowing.

 Immutable borrowing of variables

 An immutable borrow occurs when a variable can be referenced by another variable without having to clone or copy it. This essentially solves our problem. If the borrowed variable falls out of scope, then it is not deallocated from the memory and the original reference to the value can still be used.

 [image: Shape, rectangle Description automatically generated]
 Figure 1.6 – Immutable borrow path

 We can see in Figure 1.6 that two borrows the value from one. It must be noted that when one is borrowed from, one is locked and cannot be accessed until the borrow is finished.

 To perform a borrow operation, we apply a prefix with &. This can be demonstrated with the following code:

 fn print(value: &String) {
 println!("{}", value);
}
fn main() {
 let one = "one".to_string();
 print(&one);
 println!("{}", one);
}

 In the preceding code, we can see that our immutable borrow enables us to pass a string into the print function and still print it afterward. This can be confirmed with the following printout:

 one
one

 From what we see in our code, the immutable borrow that we performed can be demonstrated in Figure 1.7.

 [image: A diagram of a function Description automatically generated]
 Figure 1.7 – Immutable borrow in relation to the print function

 In the preceding figure, we can see that one is not available when the print function is running. We can demonstrate this with the following code:

 fn print_two(value: &String, value_two: String) {
 println!("{}", value);
 println!("{}", value_two);
}
fn main() {
 let one = "one".to_string();
 print_two(&one, one);
 println!("{}", one);
}

 If we run the preceding code, we will get the following error:

 Print_two(&one, one);
----- ---- ^^^ move out of `one` occurs here
| |
| borrow of `one` occurs here
borrow later used by call

 We can see that we cannot utilize one, even though it is utilized in the print function after &one. This is because the lifetime of &one is throughout the entire lifetime of the print function. Thus, we can conclude that Figure 1.7 is correct. However, we can run one more experiment. We can change value_one to a borrow to see what happens with the following code:

 fn print_two(value: &String, value_two: &String) {
 println!("{}", value);
 println!("{}", value_two);
}
fn main() {
 let one = "one".to_string();
 print_two(&one, &one);
 println!("{}", one);
}

 In the preceding code, we can see that we do two immutable borrows of one, and the code then runs. This highlights an important fact: we can make as many immutable borrows as we like. This is safe because both borrows cannot mutate the value; therefore, we are confident that we know what the borrow points to. However, what happens if the borrow is mutable? To understand, we must explore mutable borrows.

 Mutable borrowing of variables

 A mutable borrow is essentially the same as an immutable borrow, except that the borrow is mutable and that we cannot have more than one mutable borrow at the same time. To understand this, let’s say that we have a mutable reference, and this mutable reference updates the vector to the point where the memory gets reallocated. Therefore, the immutable reference will point to memory that is no longer allocated to the vector. This can lead to undefined behavior.

 With mutable borrows, we can change the borrowed value. To demonstrate this, we can create a print statement that will alter the borrowed value before printing it. We then print it in the main function to establish that the value has been changed with the following code:

 fn print(value: &mut i8) {
 *value += 1;
 println!("In function the value is: {}", value);
}
fn main() {
 let mut one: i8 = 5;
 print(&mut one);
 println!("In main the value is: {}", one);
}

 Running the preceding code will give us the following printout:

 In function the value is: 6
In main the value is: 6

 The preceding output proves that one is 6 even after the lifetime of the mutable reference in the print function has expired. We can see that in the print function, we update the value of one using a * operator. This is called a dereference operator. This dereference operator exposes the underlying value so that it can operate. This all seems straightforward, but is it exactly like our immutable references? If we remember, we could have multiple immutable references. We can put this to the test with the following code:

 fn print_two(value: &mut i8, value_two: &mut i8) {
 *value += 1;
 println!("In function the value is: {}", value);
 *value_two += 1;
}
fn main() {
 let mut one: i8 = 5;
 print_two(&mut one, &mut one);
 println!("In main the value is: {}", one);
}

 In the preceding code, we can see that we make two mutable references and pass them through, just like in the previous section but with immutable references. However, running it gives us the following error:

 error[E0499]: cannot borrow `one` as mutable more than once at a time

 Through this example, we can confirm that we cannot have more than one mutable reference at a time. This prevents data races and has given Rust the fearless concurrency tag.

 Controlling variable ownership cheatsheet

 	Error prevention: Rust prevents dangling pointers, double frees, segmentation faults, and buffer overruns.

 	Copying: Types with the Copy trait can be duplicated without explicit code.

 	Moving: Values are transferred and the original variable loses ownership.

 	Immutable borrowing:

 	Allows you to reference a variable without transferring ownership

 	Multiple immutable borrows are permitted, since they do not mutate the value

 	Mutable borrowing: Only one mutable borrow at a time is allowed, enabling safe value alterations.

 	Dereference operator: Used to access the value referenced by a pointer.

 With what we have covered here, we can now be productive when the compiler is combined with the borrow checker. However, we have only touched on the concepts of scope and lifetimes. The use of them has been intuitive, but like the rules around borrowing, we need to dive into scopes and then lifetimes in more detail.

 Scopes

 To understand scopes, let us go back to how we declare variables. You will have noticed that when we declare a new variable, we use let. When we do, that variable is the only one that owns the resource. Therefore, if the value is moved or reassigned, then the initial variable no longer owns the value. When a variable is moved, it is essentially moved into another scope. Variables declared in an outer scope can be referenced in an inner scope, but a variable declared in an inner scope cannot be accessed in the inner scope once the inner scope has expired. We can break down some code into scopes, as shown in the following diagram:

 [image:]
 Figure 1.8 – Basic Rust code broken into scopes

 Figure 1.8 shows us that we can create an inner scope by merely using curly brackets. Applying what we just learned about scopes to Figure 1.8, can you work out whether it would compile? If it would crash, how would it?

 If you guessed that it would result in a compiler error, then you are correct. Running the code would result in the following error:

 println!("{}", two);
 ^^^ not found in this scope

 Because one is defined in the inner scope, we will not be able to reference it in the outer scope. We can solve this problem by declaring the variable in the outer scope but assigning the value in the inner scope, with the following code:

 fn main() {
 let one = &"one";
 let two: &str;
 {
 println!("{}", one);
 two = &"two";
 }
 println!("{}", one);
 println!("{}", two);
}

 In the preceding code, we can see that we do not use let when assigning the value because we have already declared the variable in the outer scope. Running the preceding code gives us the following printout:

 one
one
two

 We also must remember that if we move a variable into a function, then the variable gets destroyed once the scope of the function finishes. We cannot access the variable after the execution of the function, even though we declared the variable before the execution of the function. This is because once the variable has been moved into the function, it is no longer in the original scope. It has been moved. And because the variable has been moved to that scope, it is then bound to its lifetime. This brings us to our next section, lifetimes.

 Running through lifetimes

 Understanding lifetimes will wrap up our exploration of borrowing rules and scopes. We can explore the effect of lifetimes with the following code:

 fn main() {
 let one: &i8;
 {
 let two: i8 = 2;
 one = &two;
 } // -----------------------> two lifetime stops here
 println!("r: {}", one);
}

 With the preceding code, we declare one before the inner scope starts. However, we assign it to have a reference of two. This two only has the lifetime of the inner scope, so the lifetime dies before we try and print it out. This is established with the following error:

 one = &two; } println!("r: {}", one);}
 ^^^^ - --- borrow later used here
 | |
 | `two` dropped here while still borrowed
 borrowed value does not live long enough

 two is dropped when the lifetime of two has finished. With this, we can state that the lifetimes of one and two are not equal.

 While it is great that this is flagged when compiling, Rust does not stop here. This concept also applies to functions. Let’s say that we build a function that references two integers, compares them, and returns the highest integer reference. The function is an isolated piece of code. In this function, we can denote the lifetimes of the two integers. This is done by using the ' prefix, which is a lifetime notation. The names of the notations can be anything you come up with, but it is conventional to use a, b, c, and so on. We can explore this by creating a simple function that takes in two integers and returns the highest one, with the following code:

 fn get_highest<'a>(first_number: &'a i8, second_number: &'a
 i8) -> &'a i8 {
 if first_number > second_number {
 first_number
 } else {
 second_number
 }
}
fn main() {
 let one: i8 = 1;
 let outcome: &i8;
 {
 let two: i8 = 2;
 let outcome: &i8 = get_highest(&one, &two);
 }
 println!("{}", outcome);
}

 As we can see, the first and second lifetimes have the same notation of a. They both must be present for the duration of the function. Note that the function returns an i8 integer with the lifetime of a. If we were to try and use lifetime notation on function parameters without a borrow, we would get some very confusing errors. In short, it is not possible to use lifetime notation without a borrow. This is because if we do not use a borrow, the value passed into the function is moved into the function. Therefore, its lifetime is the lifetime of the function. This seems straightforward; however, when we run it, we get the following error:

 println!("{}", outcome);}
 ^^^^^^^ use of possibly-uninitialized `outcome`

 The error occurs because all the lifetimes of the parameters passed into the function and the returned integer are all the same. Therefore, the compiler does not know what could be returned. As a result, two could be returned. If two is returned, then the result of the function will not live long enough to be printed. However, if one is returned, then it will. Therefore, there is a possibility of not having a value to print after the inner scope is executed. In a dynamic language, we would be able to run code that runs the risk of referencing variables that have not been initialized yet. However, with Rust, we can see that if there is a possibility of an error like this, it will not compile.

 In the short term, it might seem like Rust takes longer to code, but as the project progresses, this strictness will save a lot of time by preventing silent bugs. In conclusion of our error, there is no way of solving our problem with the exact function and main layout that we have. We would either move our printing of the outcome into the inner scope or clone the integers and pass them into the function.

 We can create one more function to explore functions with different lifetime parameters. This time, we will create a filter function. If the first number is lower than the second number, we will then return 0; otherwise, we will return the first number. This can be achieved with the following code:

 fn filter<'a, 'b>(first_number: &'a i8, second_number: &'b
 i8) -> &'a i8 {
 if first_number < second_number {
 &0
 } else {
 first_number
 }
}
fn main() {
 let one: i8 = 1;
 let outcome: &i8;
 {
 let two: i8 = 2;
 outcome = filter(&one, &two);
 }
 println!("{}", outcome);
}

 The preceding code works because we know the lifetimes are different. The first parameter has the same lifetime as the returned integer. If we were to implement filter(&two, &one) instead, we would get an error stating that the outcome does not live long enough to be printed.

 Variable scope and lifetimes cheatsheet

 	Variable ownership: Variables declared with let own their values; reassignment moves ownership.

 	Scope rules: Outer scope variables are accessible in inner scopes, but not vice versa.

 	Function scope: Variables moved into a function are destroyed once the function scope ends.

 	Lifetime mismatch: Variables must outlive the references assigned to them.

 	Function lifetimes: Lifetime annotations ensure that function parameters and return values live long enough.

 We have now covered all that we need to know for now to write productive code in Rust without the borrow checker getting in our way. We now need to move on to creating bigger building blocks for our programs, allowing us to focus on tackling the complex problems we want to solve with code. We will start this with a versatile building block of programs, structs.

 Building Structs

 In modern high-level dynamic languages, objects have been the bedrock for building big applications and solving complex problems, and for good reason. Objects enable us to encapsulate data, functionality, and behavior. In Rust, we do not have objects. However, we do have structs that can hold data in fields. We can then manage the functionality of these structs and group them together with traits. This is a powerful approach, and it gives us the benefits of objects without the high coupling, as highlighted in the following figure:

 [image: Diagram Description automatically generated with medium confidence]
 Figure 1.9 – Difference between Rust structs and objects

 We will start with something basic by creating a Human struct with the following code:

 #[derive(Debug)]
struct Human<'a> {
 name: &'a str,
 age: i8,
 current_thought: &'a str
}

 In the preceding code, we can see that our string literal fields have the same lifetime as the struct itself. We have also applied the Debug trait to the Human struct, so we can print it out and see everything. We can then create the Human struct and print it out, using the following code:

 fn main() {
 let developer = Human{
 name: "Maxwell Flitton",
 age: 34,
 current_thought: "nothing"
 };
 println!("{:?}", developer);
 println!("{}", developer.name);
}

 Running the preceding code will give us the following printout:

 Human { name: "Maxwell Flitton", age: 34, current_thought: "nothing" }
Maxwell Flitton

 We can see that our fields are what we expect. However, we can change our string slice fields to strings to get rid of lifetime parameters. We may also want to add another field where we can reference another Human struct under a friend field. However, we may also have no friends. We can account for this by creating an enum that is either a friend or not and assigning it to a friend field, as seen in the following code:

 #[derive(Debug)]
enum Friend {
 HUMAN(Human),
 NIL
}
#[derive(Debug)]
struct Human {
 name: String,
 age: i8,
 current_thought: String,
 friend: Friend
}

 We can then define the Human struct initially with no friends, just to see if it works with the following code:

 let developer = Human{
 name: "Maxwell Flitton".to_string(),
 age: 32,
 current_thought: "nothing".to_string(),
 friend: Friend::NIL
 };

 However, when we run the compiler, it does not work. I would like to think this is because the compiler cannot believe that I have no friends. But alas, it has to do with the compiler not knowing how much memory to allocate for this declaration. This is shown through the following error code:

 enum Friend { HUMAN(Human), NIL}#[derive(Debug)]
^^^^^^^^^^^ ----- recursive without indirection
|
recursive type has infinite size

 Because of the enum, theoretically, the memory needed to store this variable could be infinite. One Human struct could reference another Human struct as a friend field, which could in turn reference another Human struct, resulting in a potentially infinite number of Human structs being linked together through the friend field. We can solve this problem with pointers. Instead of storing all the data of a Human struct in the friend field, we store a memory address that we know has a maximum value because it’s a standard integer. This memory address points to where another Human struct is stored in the memory. As a result, the program knows exactly how much memory to allocate when it crosses a Human struct, irrespective of whether the Human struct has a friend field or not. This can be achieved by using a Box struct, which is essentially a smart pointer for our enum, with the following code:

 #[derive(Debug)]
enum Friend {
 HUMAN(Box<Human>),
 NIL
}

 So now, our enum states whether the friend exists or not, and if so, it has a memory address if we need to extract information about this friend. We can achieve this with the following code:

 fn main() {
 let another_developer = Human{
 name: "Caroline Morton".to_string(),
 age:30,
 current_thought: "I need to code!!".to_string(),
 friend: Friend::NIL
 };
 let developer = Human{
 name: "Maxwell Flitton".to_string(),
 age: 34,
 current_thought: "nothing".to_string(),
 friend: Friend::HUMAN(Box::new(another_developer))
 };
 match &developer.friend {
 Friend::HUMAN(data) => {
 println!("{}", data.name);
 },
 Friend::NIL => {}
 }
}

 In the preceding code, we can see that we have created one Human struct, and then another Human struct with a reference to the first Human struct as a friend field. We then access the second Human struct’s friend through the friend field. Remember, we must handle both possibilities, as the friend field could be a nil value.

 While it is exciting that friends can be made, if we take a step back, we can see that there is a lot of code written for each human we create. This is not helpful if we must create a lot of humans in a program. We can reduce this by implementing some functionality for our struct. We will essentially create a constructor for the struct with extra functions, so we can add optional values if we want. We will also make the thought field optional. So a basic struct with a constructor populating only the most essential fields can be achieved with the following code:

 #[derive(Debug)]
struct Human {
 name: String,
 age: i8,
 current_thought: Option<String>,
 friend: Friend
}
impl Human {
 fn new(name: &str, age: i8) -> Human {
 return Human{
 name: name.to_string(),
 age: age,
 current_thought: None,
 friend: Friend::NIL
 }
 }
}

 Therefore, creating a new human now only takes the following line of code:

 let developer = Human::new("Maxwell Flitton", 34);

 This will have the following field values:

 	Name: "Maxwell Flitton"

 	Age: 34

 	Current Thought: None

 	Friend: NIL

 We can add more functions to the implement block for adding friends and a current thought with the following code:

 fn with_thought(mut self, thought: &str) -> Human {
 self.current_thought = Some(thought.to_string());
 return self
 }
 fn with_friend(mut self, friend: Box<Human>) -> Human {
 self.friend = Friend::HUMAN(friend);
 return self
 }

 In the preceding code, we can see that we pass in a mutable version of the struct that is calling these functions. These functions can be chained because they return the struct that called them. If we want to create a developer with a thought, we can do this with the following code:

 let developer = Human::new("Maxwell Flitton", 34).with_thought(
 "I love Rust!");

 Note that a function that does not require self as a parameter can be called with ::, while a function that does require self as a parameter can be called with a simple dot, .. If we want to create a developer with a friend, it can be done using the following code:

 let developer_friend = Human::new("Caroline Morton", 30);
let developer = Human::new("Maxwell Flitton", 34)
 .with_thought("I love Rust!")
 .with_friend(Box::new(developer_friend));
println!("{:?}", developer);

 Running the code will result in the following parameters for developer:

 Name: "Maxwell Flitton"
Age: 34
Current Thought: Some("I love Rust!")
Friend: HUMAN(Human { name: "Caroline Morton", age: 30,
 current_thought: None, friend: NIL })

 We can see that structs combined with enums and functions that have been implemented with these structs can be powerful building blocks. We can define fields and functionality with only a small amount of code if we have defined our structs well. However, writing the same functionality for multiple structs can be time-consuming and result in a lot of repeated code. If you have worked with objects before, you may have utilized inheritance for that.

 Rust goes one better. It has traits, which we will explore in the next chapter.

 Building structs cheatsheet

 	No objects: Rust uses structs instead of objects to encapsulate data and functionality.

 	Struct definition: Structs hold data in fields (e.g., struct Human { name: String, age: i8 }).

 	String literals in structs: String literals in structs require lifetime parameters.

 	Box for recursive types: Use Box to handle recursive types, preventing infinite memory allocation.

 	Printing structs: Implement the Debug trait to print struct details.

 	Constructors in structs: Implement a new function in the impl block for struct initialization.

 	Function calling: Use :: for static methods and . for instance methods. Add methods to the impl block to chain function calls (e.g., with_thought).

 	Traits for reusability: Use traits to avoid repeated code and enhance functionality across multiple structs.

 Summary

 With Rust, we have seen that there are some traps when coming from a dynamic programming language background. However, with a little bit of knowledge of referencing and basic memory management, we can avoid common pitfalls and write safe, performant code quickly that can handle errors.

 In this chapter, we also covered the concepts of borrowing and referencing in Rust. While adhering to borrowing rules requires more effort than coding in a garbage-collected language, we have a deeper understanding of how variables are placed in memory. This deeper understanding is safer as we know exactly what data we point to. For example, if we were using a language like Python and created an instance of an object when we passed it into two dictionaries (Python’s version of a hash map), then if we updated one instance, the other value in the hash map would also be updated because it is a shared reference to the same memory address. The developer, however, may never know. In Rust, the borrow-checking rules make what is going on explicit. Scopes also make it explicit when a variable is dropped from memory.

 We now know enough Rust to get started. In the next chapter, we will cover useful patterns for web programming and metaprogramming.

 Questions

 	What is the difference between a str and a String?

 	Why can’t string slices be passed into a function (string slice meaning str as opposed to &str)?

 	How do we access the data belonging to a key in a HashMap?

 	When a function results in an error, can we handle other processes, or will the error crash the program instantly?

 	Why does Rust only allow one mutable borrow at a point in time?

 	When would we need to define two different lifetimes in a function?

 	How can structs link to the same struct via one of their fields?

 	How can we add extra functionality to a struct where the functionality can also be implemented by other structs?

 Answers

 	A String is a fixed-size reference stored in the stack that points to string-type data on the heap. A str is an immutable sequence of bytes stored somewhere in memory. Because the size of the str is unknown, it can only be handled by a pointer, &str.

 	Since we do not know the size of the string slice at compile time, we cannot allocate the correct amount of memory for it. Strings, on the other hand, have a fixed-size reference stored on the stack that points to the string slice on the heap. Because we know this fixed size of the string reference, we can allocate the correct amount of memory and pass it through to a function.

 	We use the HashMap’s get function. However, we must remember that the get function merely returns an Option struct. If we are confident that there is something there or we want the program to crash if nothing is found, we can directly unwrap it. However, if we don’t want that, we can use a match statement and handle the Some and None output as we wish.

 	No, results must be unwrapped before exposing the error. A simple match statement can handle unwrapping the result and managing the error as we see fit.

 	Rust only allows one mutable borrow to prevent memory unsafety. In Goregaokar’s blog (see the Further reading section), the example of an enum is used to illustrate this. If an enum supports two different data types (String and i64), a mutable reference of the string variant of the enum is made, and then another reference is made, the mutable reference can change the data, and then the second reference would still reference the string variant of the enum. The second reference would then try to dereference the string variant of the enum, potentially causing a segmentation fault. Elaboration on this example and others is provided in the Further reading section.

 	We would need to define two different lifetimes when the result of a function relies on one of the lifetimes and the result of the function is needed outside of the scope of where it is called.

 	If a struct references itself in one of its fields, the size could be infinite, as it could continue to reference itself continuously. To prevent this, we can wrap the reference to the struct in the field in a Box struct.

 	We can define a trait that has multiple functions and this trait with these functions can be applied to multiple different structs.

 Further reading

 	Hands-On Functional Programming in Rust (2018) Andrew Johnson: Chapter 1 ,Generics and Structs

 	Mastering Rust (2019) Rahul Sharma and Vesa Kaihlavirta: Chapter 1, A Tour of the Language

 	The Problem With Single-threaded Shared Mutability (2015) by Manish Goregaokar: https://manishearth.github.io/blog/2015/05/17/the-problem-with-shared-mutability/

 	Rust Project Developers, 2024. The Rust Programming Language. [online] Available at: https://doc.rust-lang.org/book/ [Accessed 21 June 2024]

 	Latimer, N., 2020. Programming Rust. [online] Available at: https://doc.rust-lang.org/stable/rust-by-example/ [Accessed 21 June 2024].

 Get this book’s PDF copy, code bundle, and more

 Scan the QR code (or go to packtpub.com/unlock). Search for this book by name, confirm the edition, and then follow the steps on the page.

 [image: A qr code on a white background AI-generated content may be incorrect.]

 [image: A white text on a black background AI-generated content may be incorrect.]

 Note: Have your invoice handy. Purchases made directly from the Packt website don’t require an invoice.

 2

 Useful Rust Patterns for Web Programming

 Knowing the syntax and borrowing rules of Rust can get us building programs. However, unlike dynamic programming languages, Rust has a strict type system. If you do not know how to get creative with traits, you can end up creating a lot of excessive code to solve problems. In this chapter, we will cover how to enforce certain parameter checks with traits, increasing the flexibility of the parameters of functions that accept structs. We will also explore metaprogramming with macros to reduce the amount of repetitive code we have to write. These macros will also enable us to simplify and effectively communicate with other developers what our code does. We will also utilize the compiler to check the state of structs as they evolve, improving the safety of the program.

 In this chapter, we will cover the following topics:

 	Verifying with traits

 	Metaprogramming with macros

 	Mapping messages with macros

 	Configuring our functions with traits

 	Checking struct state with the compiler

 Once we have covered the main concepts in this chapter, you will be able to achieve more flexibility with your code, without having to write loads of excessive code.

 Macros and traits empower Rust to be more concise with web programming. For instance, if we implement a Serialize trait for a struct, we can slot this struct into database schemas, or directly use the same struct to extract a JSON body from a request.

 With traits and macros, we can write highly customizable web API endpoints with minimal code. We can also build our own traits for the compiler to verify restrictions that we want to impose.

 Technical requirements

 You can download the example project and code for this book by following the instructions in the Download the example code files section in the Preface of this book.

 This chapter’s code files are included in the downloadable code bundle.

 Verifying with traits

 Enums can empower structs so that they can handle multiple types. This can also be translated for any type of function or data structure. However, this can lead to a lot of repetition. Take, for instance, a User struct. Users have a core set of values, such as a username and password; however, they could also have extra functionality based on roles. With users, we must check roles before firing certain processes based on the traits that the user has implemented.

 Through the creation of a simple program that defines users and their roles, we can demonstrate how to wrap up structs with traits:

 	We define our users with the following code:
 struct AdminUser {
 username: String,
 password: String
}
struct User {
 username: String,
 password: String
}

 We can see in the preceding code that the User and AdminUser structs have the same fields. For this exercise, we just need two different structs to demonstrate the effect that traits have on them. Now that our structs are defined, we can move on to our next step, which is creating the traits.

 	The traits that we have for this example are create, edit, and delete. We will be implementing these traits in our structs, using them to assign permissions to our users. We can create these three traits with the following code:
 trait CanEdit {
 fn edit(&self) {
 println!("admin is editing");
 }
}
trait CanCreate {
 fn create(&self) {
 println!("admin is creating");
 }
}
trait CanDelete {
 fn delete(&self) {
 println!("admin is deleting");
 }
}

 We can see that the functions for the traits only take in self. We also reference admin in the trait functions. This is because the admin can have access to all these traits. If other roles implement these traits, they can overwrite the functions that they need to. We will see this in action later on.

 We cannot make any references to the fields in the functions to self as we do not know what structs will be implemented. However, as mentioned earlier, we can override functions when we implement the trait in the struct if needed.

 Getters and setters

 We could use traits to allow getting and setting of fields in our struct. This is because the fields in our structs are private, meaning that they cannot be directly accessed from outside of the struct. Setter and getter traits would take the following form:

 trait GetUsername {
 fn get_username(&self) -> &str;
}
trait SetUsername {
 fn set_username(&mut self, username: String);
}

 The setter has a mutable reference to self, so the struct is not consumed by the setter function. The mutable reference enables us to alter the state of the struct, which is what setters do.

 If we are to return self, we will need to wrap it in a Box struct, as the compiler will not know the size of the struct being returned. We also must note that the signature of the function (input parameters and return values) must be the same as the original declaration of the trait if we overwrite the function for a struct.

 Now that we have defined the traits, we can move on to the next step of implementing the traits to define roles for our user.

 	With our roles, we can make our admin have every permission and our user only the edit permission. This can be achieved with the following code:
 impl CanDelete for AdminUser {}
impl CanCreate for AdminUser {}
impl CanEdit for AdminUser {}
impl CanEdit for User {
 fn edit(&self) {
 println!("A standard user {} is editing",
 self.username);
 }
}

 From our previous step, we can remember that all the functions already worked for the admin by printing out that the admin is doing the action. Therefore, we do not have to do anything for the implementation of the traits for the admin. We can also see that we can implement multiple traits for a single struct. This adds a lot of flexibility. In our user implementation of the CanEdit trait, we have overwritten the edit function so that we can have the correct statement printed out.

 Now that we have implemented the traits, our user structs have permission in the code to enter scopes that require those traits. We can now build the functions for using these traits.

 	We could utilize the functions in the traits by directly running them in the main function on the structs that have implemented them. However, if we do this, we will not see their true power in this exercise. We may also want this standard functionality throughout our program in the future when we span multiple files.

 	The following code shows how we create functions that utilize the traits:
 fn create<T: CanCreate>(user: &T) -> () {
 user.create();
}
fn edit<T: CanEdit>(user: &T) -> () {
 user.edit();
}
fn delete<T: CanDelete>(user: &T) -> () {
 user.delete();
}

 The preceding notation is like the lifetime annotation. We use angle brackets before the input definitions to define the trait we want to accept at T. We then state that we will accept a borrowed struct that has implemented the trait as &T. This means that any struct that implements that specific trait can pass through the function; we are depending on abstractions rather than concrete implementations. Because we know what the trait can do, we can then use the functions associated with the trait defined in the parameter. However, because we do not know what struct is going to be passed through, we cannot utilize specific fields unless we also require specific getter traits that we create ourselves. Remember, we can also overwrite a trait function to utilize struct fields when we implement the trait for the struct, however. This might seem rigid, but the process enforces good, isolated, decoupled coding that is safe. For instance, let us say we remove a function from a trait or remove a trait from a struct. The compiler would refuse to compile until all the effects of this change were complete. Thus, we can see that, especially for big systems, Rust is safe and can save time by reducing the risk of silent bugs.

 Now that we have defined the functions, we can use them in the main function.

 	We can test to see if all the traits work with the following code:
 fn main() {
 let admin = AdminUser{
 username: "admin".to_string(),
 password: "password".to_string()
 };
 let user = User{
 username: "user".to_string(),
 password: "password".to_string()
 };
 create(&admin);
 edit(&admin);
 edit(&user);
 delete(&admin);
}

 We can see that the functions that accept traits are used just like any other function.

 Running the entire program will give us the following printout:

 admin is creating
admin is editing
A standard user is editing
admin is deleting

 In our output, we can see that the overriding of the edit function for the User struct works. We can also specify multiple trait bounds. For instance, we could have the following function definition:

 fn cache<T: CanCreate + CanDelete>(user: &T) -> () {
 . . .
}

 Here, we are saying that the user must have the permission to create and delete entries.

 This leads me to my opinion that traits are more powerful than object inheritance. To qualify this, let us think about building a game. In one function, we deal damage from one player to another. In a traditional class-based programming language, we could build a class that is a player character. This class has the methods take and deal damage. We then build out different types of characters, such as Orc, Elf, Human, etc., that all inherit this class. This all seems reasonable, and we start coding away. However, what about buildings? Buildings could theoretically take damage, but they are not player characters. Also, buildings by themselves cannot really cause damage. We are now stuck rewriting our structure or writing new functions that accommodate buildings and having from if else if conditional logic on what function to call.

 However, if we have a function where one parameter must have the deal damage trait implemented, and the other parameter must have the take damage trait implemented, our participants of this function can come and go with little friction. In my experience, developers who complain about Rust being a rigid language are not utilizing traits. I have found Rust to be more flexible than many object-oriented languages because of traits.

 We have now learned enough about traits to be productive with web development. From here, traits get even more powerful, and we will be using them for some key parts of our web programming. For instance, several Rust web frameworks have traits that execute before the request is processed by the view/API endpoint. Implementing structs with these traits automatically loads the view function with the result of the trait function. This can be database connections, extraction of tokens from headers, or anything else we wish to work with.

 Throughout the book, we will utilize traits to enable dependency injection into our API endpoints. This means we can mock things such as database connections or swap them out with just a few lines of code. With the strict compiler checks, we can make aggressive changes to our data access layers, deployment methods, and networking protocols, and sleep well at night. With Rust, I’ve been able to pivot approaches to my web apps at a quicker and safer pace than any dynamic programming language I have worked with.

 While traits can define a common interface so that different structs can interact with our code, this can lead to repetitive code. This is where metaprogramming with macros comes in to reduce repetitive code.

 Metaprogramming with macros

 Metaprogramming can generally be described as a way in which a program can manipulate itself based on certain instructions.

 Considering the strong typing Rust has, one of the simplest ways in which we can meta-program is by using generics. A classic example of demonstrating generics is through coordinates, as follows:

 struct Coordinate <T> {
 x: T,
 y: T
}
fn main() {
 let one = Coordinate{x: 50, y: 50};
 let two = Coordinate{x: 500, y: 500};
 let three = Coordinate{x: 5.6, y: 5.6};
}

 In the preceding snippet, the Coordinate struct is defined with a single generic parameter, T. This T is a placeholder that can represent any type. When we create an instance of Coordinate, Rust’s compiler replaces T with specific types. In our example:

 	one uses T as i32

 	three uses T as f62

 This flexibility allows the Coordinate struct to handle different types of numbers without needing implementations for each type.

 We can increase the flexibility of our Coordinate struct by adding more generic parameters with the following code:

 struct Coordinate <T, X> {
 x: T,
 y: X
}
fn main() {
 let one = Coordinate{x: 50, y: 500};
 let two = Coordinate{x: 5.6, y: 500};
 let three = Coordinate{x: 5.6, y: 50};
}

 What is happening in the preceding code with generics is that the compiler is looking for all instances where the struct is used, creating structs with the types used when the compilation is running.

 Enhancing generics with traits

 Generics do not just stop at allowing different data types into a struct or function. We can also set trait requirements for generics as seen ahead:

 struct DbCacheHandle <T: CanCreate, X: CanDelete> {
 create_handle: T,
 delete_handle: X
}

 Here we can see that we can house delete and create handles in a struct. This would enable us to implement database caching handles for a range of different caching approaches and database backends. It is flexible and safe!

 Now that we have covered generics, we can move on to the main mechanism of metaprogramming, macros.

 Macros enable us to write code that writes code at compilation time.

 To compare this approach with other languages, Lisp, C, and C++ also have macros, while in Python, metaprogramming is achieved with the decorator and meta classes. C# has source generators.

 In our Rust code, we have already been using macros in our print functions. The ! notation at the end of the function denotes that this is a macro that’s being called.

 Defining our own macros is a blend of defining a function with reference to outside code with metaprogramming. This means that we write reusable code that generates code. To demonstrate this, we will define a macro that capitalizes a string with the following code:

 macro_rules! capitalize {
 ($a: expr) => {
 let mut v: Vec<char> = $a.chars().collect();
 v[0] = v[0].to_uppercase().nth(0).unwrap();
 $a = v.into_iter().collect();
 }
}
fn main() {
 let mut x = String::from("test");
 capitalize!(x);
 println!("{}", x);
}

 Instead of using the term fn, we use the macro_rules! definition. We then say that $a is the expression passed into the macro. We get the expression, convert it into a vector of chars, then make the first char uppercase, and then convert it back to a string. Note that we don’t return anything in the capitalize macro, and when we call the macro, we don’t assign a variable to it. However, when we print the x variable at the end, we can see that it is capitalized. This does not behave like an ordinary function. We also must note that we didn’t define a type. Instead, we just said it was an expression; the macro still does checks via traits. Passing an integer into the macro creates the following error:

 | capitalize!(32);
| ---------------- in this macro invocation
|
= help: the trait `std::iter::FromIterator<char>` is not implemented for `{integer}`

 These checks happen due to the macro instructing the compiler to write the Rust code. Once the compiler has written the Rust code from the macro instructions, the generated code goes through the same checks that the rest of the Rust code goes through. We refer to the generated code of the macro as the expansion of the macro.

 To see how our macros expand, we can install the expand tool with the following command:

 cargo install cargo-expand

 We can then perform the cargo expand command on our project. We will see that the following main function:

 fn main() {
 let mut x = String::from("test");
 capitalize!(x);
 println!("{}", x);
}

 gets expanded to the following code:

 fn main() {
 let mut x = String::from("test");
 let mut v: Vec<char> = x.chars().collect();
 v[0] = v[0].to_uppercase().nth(0).unwrap();
 x = v.into_iter().collect();
 {
 ::std::io::_print(format_args!("{0}\n", x));
 };
}

 Here, we can see that our capitalize macro has been replaced with the code that we wrote in the macro, and that our println! macro has also been expanded.

 Lifetimes, blocks, literals, paths, metaprogramming, and more can also be passed instead of an expression. In web development, a lot of the macros are already defined in third-party packages. Because of this, we do not need to write macros ourselves to get a web app up and running. Instead, we will mainly be using derive macros out of the box. However, writing our own macros can be powerful in web programming, for example, when it comes to networking, where I have used my own macros to match messages sent over a socket to the correct function. We will explore this in the next section.

 Mapping messages with macros

 Throughout the book, we will be using a web framework to match HTTP requests to the right function to be handled. However, there are times when you want to accept a message over a TCP connection and match the handling function based on the message received. (It does not have to be via TCP; I have found this type of macro to be useful for module interfaces or receiving messages via a channel.) In this section, we will implement a simple macro that will reduce the amount of code we need to write when mapping a struct to a function.

 We map our messages using macros by carrying out the following steps:

 	Defining our contracts and contract handler

 	Defining functions to handle contracts

 	Building a register contract macro

 	Using our macro in a program

 We will start with step 1.

 Defining our contracts and contract handler

 To map messages, we initially must define the data contracts that we will be mapping to our functions. We do this with the following code:

 #[derive(Debug)]
pub struct ContractOne {
 input_data: String,
 output_data: Option<Result<String, String>>
}
#[derive(Debug)]
pub struct ContractTwo {
 input_data: String,
 output_data: Option<Result<String, String>>
}

 With these data contracts, we have an input field and an output field, which is populated when the handling function has finished handling the data contract. Sometimes, if there is a possibility that there might be an error, we can have our output_data field as an Option<Result<T>>. This means that we can send the contract back over the network, and the client can unpack the output_data field, which will have been populated with an error if an error has occurred, and have a choice on how to handle the error.

 We now need to send one of these contracts over a channel, into a function, or over a network. However, we want the option of sending any contract we want. We can do this by wrapping the contracts in an enum like the following code:

 #[derive(Debug)]
pub enum ContractHandler {
 ContractOne(ContractOne),
 ContractTwo(ContractTwo),
}

 Our handler can now be sent over a network and can be one of two contracts. At this stage, we could manually write the logic to handle our contracts with a simple match statement, but this manual approach does not scale. Here, we move on to our next step of defining our contract functions before we can build a macro to handle these contracts at scale.

 Defining functions to handle contracts

 Now that we have our contracts wrapped in an enum that can be sent, we must focus on the handling of these contracts with functions. We have the following functions to handle our contracts:

 fn handle_contract_one(mut contract: ContractOne) -> ContractOne {
 println!("{}", contract.input_data);
 contract.output_data = Some(Ok("Output Data".to_string()));
 contract
}
fn handle_contract_two(mut contract: ContractTwo) -> ContractTwo {
 println!("{}", contract.input_data);
 contract.output_data = Some(Ok("Output Data".to_string()));
 contract
}

 These functions are not exciting, but they do simulate a process where the contract is accepted, updated, and then returned.

 Building a register contract macro

 With our contracts and our handle functions in place, we can now focus on our macro that maps the contract to the handle function.

 Our macro has the following signature:

 #[macro_export]
macro_rules! register_contract_routes {
 (
 $handler_enum:ident,
 $fn_name:ident,
 $($contract:ident => $handler_fn:path),*) => {
 . . .
 };
}

 The signature is a little daunting, so we will focus on the hardest expression. Once we understand that, everything else will fall into place. To understand the line $($contract:indent => $handler_fn:path,*), we must break it down:

 	$(and),*: These delimiters indicate a repetition pattern. The $(starts the repetition, and),* means none or multiple expressions are separated by commas. This allows the macro to accept multiple contract => handler_fn pairs.

 	$contract:ident: $contract is a metavariable. In macros, metavariables are placeholders that will be matched and substituted with actual code or identifiers when the macro is expanded. :ident specifies that $contract should match an identifier. An identifier in Rust is a name used for variables, functions, structs, etc.

 	=>: This is a literal token that must appear exactly as is in the macro input. It separates the contract from the handler function path. Here, we are introducing a new syntax that Rust can handle. Because Rust has a strict compiler, we can fearlessly create our own syntax on the fly.

 	$handler_fn:path: $handler_fn is another metavariable. :path specifies that $handler_fn should match a path. In Rust, a path can be a simple identifier (such as a function name) or a more complex qualified path (such as module::submodule::function).

 Putting it all together, this line defines a macro rule that matches zero or more pairs of contract => handler_fn, allowing us to easily map contracts to their respective handler functions within the generated function.

 For the other two inputs, $handler_enum:indent is the enum that houses the different data contracts, and $fn_name:indent is the name of the function we want generated for handling all the mapping, as we may want multiple different mappers. We do not want name clashes.

 Inside our macro, we define our function, and loop through all our data contract and function mappings with the following code. Do not worry if you do not visualize the output; the generated code of this macro is provided after we call the macro:

 pub fn $fn_name(received_msg: $handler_enum) -> $handler_enum {
 match received_msg {
 $(
 $handler_enum::$contract(inner) => {
 let executed_contract = $handler_fn(
 inner
);
 return $handler_enum::$contract(
 executed_contract
)
 }
)*
 }
}

 The $(...)* is the loop. We can see that we unwrap the data contract in the match statement, pass the unwrapped contract into the mapped function, and then wrap the response of that mapped function into our enum again and return it. This means that we do not have to write the match arm for every variant of the enum.

 Using our macro in a program

 We can now call our macro with our handler enum, contracts, and functions with the following code:

 register_contract_routes!(
 ContractHandler,
 handle_contract,
 ContractOne => handle_contract_one,
 ContractTwo => handle_contract_two
);

 Here, we can see that it is much clearer as to what is going on. It is also scalable and repeatable. Our code is also maintainable. If we want to update the way in which the handle function is called, we only must do that update once in the macro as opposed to repeating ourselves around the codebase.

 The output of our macro looks like this:

 pub fn handle_contract(received_msg: ContractHandler)
 -> ContractHandler {
 match received_msg {
 ContractHandler::ContractOne(inner) => {
 let executed_contract = handle_contract_one(
 inner
);
 return ContractHandler::ContractOne(
 executed_contract
);
 }
 ContractHandler::ContractTwo(inner) => {
 let executed_contract = handle_contract_two(
 inner
);
 return ContractHandler::ContractTwo(
 executed_contract
);
 }
 }
}

 Here, we can see that we match the incoming message, and then pass it into the mapped function, getting the result contract with the result and returning it.

 Finally, we can refine a contract, wrap it in the handle enum, and call our mapping function with the following code:

 fn main() {
 let contract_one = ContractOne {
 input_data: "Contract One".to_string(),
 output_data: None
 };
 let outcome = handle_contract(
 ContractHandler::ContractOne(contract_one)
);
 println!("{:?}", outcome);
}

 Running this program will give us the following printout:

 Contract One
ContractOne(ContractOne {
 input_data: "Contract One",
 output_data: Some(Ok("Output Data"))
})

 And there we have it; we have effectively mapped our data contracts to functions using a macro! But let us not stop here. We can combine macros and traits to enable the flexible configuration of our functions that we are mapping to.

 Configuring our functions with traits

 In a Rust web program, we generally have a series of layers and APIs. These layers usually consist of a frontend, backend, and data access layer. With these layers, we can have multiple different frameworks and engines. Throughout the book, we will be building out our web application so we can swap these frameworks and engines out.

 These frameworks should have minimal footprint on your code, with clear separation between the interfaces. With web frameworks, you still must run a server using the web framework. We can swap out different engines, frameworks, and crates by using traits with no reference to self.

 To demonstrate how this works, we are going to add another endpoint and data contract that gets a user by name from the database. Our database could be any database. We do not want our code to commit to having a particular data storage engine to run; this would not be flexible. To make an interaction with a database flexible, we implement a trait that has a signature for the data transaction. We can then implement that trait for a range of different databases. We will explore this concept by implementing a trait for getting users. We start by defining the trait signature.

 Defining the trait signature

 We can start by defining our user struct with the following code:

 #[derive(Debug)]
pub struct User {
 name: String,
 age: u32
}

 We then define a trait that lays out the signature of getting users with the following code:

 trait GetUsers {
 fn get_users() -> Vec<User>;
 fn get_user_by_name(name: &str) -> Option<User> {
 let users = Self::get_users();
 for user in users {
 if user.name == name {
 return Some(user);
 }
 }
 None
 }
}

 This is not an optimal implementation, as in normal database queries, we would perform the filter in the database and return the filtered data. However, for our example, this is easier to implement. We must note that the reference to Self in the get_user_by_name function is capitalized, meaning that we are referring to the struct implementing the trait, as opposed to an instance of that struct. Therefore, we do not need to create an instance of our struct to call the get_user_by_name function. We can now use our trait for a database handle.

 Implementing our trait for the database handle

 We can then implement our trait for a database engine as in the following example code:

 pub struct PostgresDB;
impl GetUsers for PostgresDB {
 fn get_users() -> Vec<User> {
 vec![
 User {
 name: "John".to_string(),
 age: 30
 },
 User {
 name: "Jane".to_string(),
 age: 25
 },
]
 }
}

 In a working application, we would be making a connection to a database and passing in a query. However, databases take a while to set up, and this chapter is about useful patterns. Don’t worry, throughout the book, we will build out a working data access layer that initially uses files, and then migrates over to a fully working Postgres database running in Docker.

 Now that our database handle works, we must define a contract that carries the input and output data needed for the database operation. This data contract takes the following definition:

 #[derive(Debug)]
pub struct GetUserContract {
 pub name: String,
 pub user: Option<User>
}

 We now have everything to define our function handle with the following code:

 fn handle_get_user_by_name<T: GetUsers>(contract: GetUserContract)
 -> GetUserContract {
 let user = T::get_user_by_name(&contract.name);
 GetUserContract {
 name: contract.name,
 user: user
 }
}

 Here, we can see that the generic type T has the GetUsers trait bound. We do not make any reference to T in the parameters of the function; therefore, we do not need to pass in any instances of anything that has implemented the GetUserContract trait. We can now put it all together by calling our macro utilizing our trait.

 Calling our macro with our trait

 We then add our contract to our handler with the following code:

 #[derive(Debug)]
pub enum ContractHandler {
 ContractOne(ContractOne),
 ContractTwo(ContractTwo),
 GetUserContract(GetUserContract)
}

 And our macro call now looks like the following:

 register_contract_routes!(
 ContractHandler,
 handle_contract,
 ContractOne => handle_contract_one,
 ContractTwo => handle_contract_two,
 GetUserContract => handle_get_user_by_name::<PostgresDB>
);

 Here, we can see that we have slotted our Postgres handler into the mapping. We can test to see whether this works with the following code:

 fn main() {
 . . .
 let get_user_contract = GetUserContract {
 name: "John".to_string(),
 user: None
 };
 let outcome = handle_contract(
 ContractHandler::GetUserContract(
 get_user_contract
)
);
 println!("{:?}", outcome);
}

 Running our code again will give us the following printout:

 Contract One
ContractOne(ContractOne {
 input_data: "Contract One",
 output_data: Some(Ok("Output Data"))
})
GetUserContract(
 GetUserContract {
 name: "John", user: Some(User {
 name: "John", age: 30
 })
 }
)

 This gives us a lot of power. We can slot any struct into that handle function if the struct has implemented the GetUsers trait. This struct could be an HTTP request to another server, a file handle, an in-memory store, or another database. We will exploit this approach again throughout the book, as over multiple chapters, we will build out a data access layer that can support multiple different storage engines.

 No matter what you are building or what language you are building it in, clear boundaries between your code and external dependencies such as databases, HTTP calls, and other I/O operations are a must. There is no benefit in embedding I/O operations into your code. For instance, at the time of writing this book, I am working for the Rust database, SurrealDB. It currently supports its own key-value store, RocksDB, memory, WASM, and TiKv. It would make our lives a lot harder if we did not have clear interfaces between these storage engines.

 Clean interfaces are nice to work with and powerful. However, with the type checking of Rust, someone (not me) could argue that excessive interfaces could result in a lot of different structs. This is where the type state pattern comes in, where we get to check the struct state with the compiler.

 Checking struct state with the compiler

 There are times when the state of a struct and certain processes are just not appropriate anymore. A nice, clear example would be a database transaction. While a database transaction is in progress, certain processes are appropriate, such as adding another operation to the transaction. You may also want to commit your transaction or roll it back. However, once we have committed our transaction, we cannot roll it back or add another operation to the transaction; we need another transaction for this. Considering this, I would want my compiler to check and ensure that I am not passing in a transaction into certain functions once the transaction is no longer in progress. The compiler will not only give me instant feedback, but it will also be safer, as it could be that only certain edge cases could cause a bug, increasing the chance of the bug slipping through tests. We can start by defining a state with our struct.

 Defining the state of a struct

 To get this compiler checking, I need a state in my struct. I then need that state to change once certain processes have triggered. We can capture the different states of the transaction with the following code:

OEBPS/Images/B22086_01_04.png
One Two

OEBPS/Images/B22086_01_08.png
fn main() {

! outer scope
v
1 printlnt("{}", one); inner scope
H let two = "two"; P
s
pmm———— '
tprintlnt(|
! '

outer scope

rprintin!(

OEBPS/Images/B22086_Preface_QR.png

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Get in touch

 		Free benefits with your book

 		How to Unlock

 		A Quick Introduction to Rust

 		Technical requirements

 		What is Rust?

 		Why is Rust revolutionary?

 		Reviewing data types and variables in Rust

 		Using strings in Rust

 		Using integers and floats

 		8-byte integers

 		16-byte integers

 		Introducing floats

 		Storing data in arrays

 		Storing data in vectors

 		Mapping data with enums

 		Mapping data with HashMaps

 		Handling results and errors

 		Controlling variable ownership

 		Copying variables

 		Moving variables

 		Immutable borrowing of variables

 		Mutable borrowing of variables

 		Scopes

 		Running through lifetimes

 		Building Structs

 		Summary

 		Questions

 		Answers

 		Further reading

 		Get this book’s PDF copy, code bundle, and more

 		Useful Rust Patterns for Web Programming

 		Technical requirements

 		Verifying with traits

 		Metaprogramming with macros

 		Mapping messages with macros

 		Defining our contracts and contract handler

 		Defining functions to handle contracts

 		Building a register contract macro

 		Using our macro in a program

 		Configuring our functions with traits

 		Defining the trait signature

 		Implementing our trait for the database handle

 		Calling our macro with our trait

 		Checking struct state with the compiler

 		Defining the state of a struct

 		Changing the state of a struct

 		Summary

 		Questions

 		Answers

 		Designing Your Web Application in Rust

 		Technical requirements

 		Managing a software project with Cargo

 		Basic Rust compilation

 		Building with Cargo

 		Shipping crates with Cargo

 		Documenting with Cargo

 		Interacting with Cargo

 		Structuring code through nanoservices

 		Building to-do structs

 		Configuring our file structure

 		Defining the task status

 		Building our to-do structs

 		Managing structs with an API

 		Storing tasks with our data access layer

 		Defining our module layout

 		Building our JSON file handle

 		Building storage API functions

 		Creating a task using our DAL

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Async Rust

 		Technical requirements

 		Understanding threads and processes

 		Understanding async and await with Rust

 		Implementing our own async task queue

 		Building a task-spawning function

 		Building an async sleep future

 		Running our async sleep future

 		Exploring high-level concepts of tokio

 		Implementing an HTTP server in Hyper

 		Setting up the Hyper server environment

 		Building the Hyper request handle function

 		Building the main function for running the Hyper server

 		Implementing HTTP2 for our Hyper server

 		Summary

 		Questions

 		Answers

 		Handling HTTP Requests

 		Technical requirements

 		Launching a basic web server

 		Defining our file layout

 		Writing our server code

 		Running our server

 		Connecting the core to the server

 		Defining our core file layout

 		Coding our networking layer

 		Refactoring our to-do items

 		Serving our to-do items

 		Defining the JSON body

 		Defining the get all API

 		Connecting get_all to our server

 		Handling errors in API endpoints

 		Defining our glue module

 		Building our custom error

 		Mapping our custom error

 		Integrating our glue module into our dal

 		Integrating our glue module into our core layer

 		Integrating our glue module into our networking layer

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Processing HTTP Requests

 		Technical requirements

 		Passing parameters via the URL

 		Passing data via POST body

 		Defining the core create function

 		Wrapping our core in the networking layer

 		Configuring our create network route

 		Testing our endpoint with cURL

 		Deleting resources using the DELETE method

 		Defining our delete JSON file method

 		Adding delete to our networking layer

 		Defining the delete route

 		Refactoring our JSON file code

 		Automating running our server

 		Updating resources using a PATCH method

 		Extracting data from HTTP request headers

 		Defining our header token modules

 		Implementing an Actix header extraction trait

 		Extracting headers from requests in the Actix networking layer

 		Summary

 		Questions

 		Answers

 		Displaying Content in the Browser

 		Technical requirements

 		Building out a development setup

 		Connecting our development environment and application

 		Running our frontend server

 		Serving the frontend from Rust

 		Defining our frontend embedding dependencies

 		Embedding the HTML file

 		Embedding the React application

 		Serving the embedded frontend

 		Connecting backend API endpoints to the frontend

 		Defining our interfaces

 		Defining our API utils

 		Defining our GET API call

 		Integrating our get API call in our main app

 		Building out the rest of the API calls

 		Creating React components

 		Building a create item form

 		Injecting our form component into our app

 		Testing our create item form

 		Rendering multiple React components

 		Inserting styles with CSS

 		Serving our CSS

 		Defining page borders with CSS for different screen sizes

 		Styling React components with CSS

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Injecting Rust in the Frontend with WebAssembly

 		Technical requirements

 		What is WASM?

 		Setting up our WASM build

 		Defining our WASM module

 		Loading WASM in the frontend

 		Inspecting a WASM interface

 		Integrating WASM loading into our React component

 		Passing our WASM output to subcomponents

 		Loading WASM on the local machine

 		Building a WASM kernel

 		Building a WASM library

 		Building a WASM client

 		Summary

 		Questions

 		Answers

 		Data Persistence with PostgreSQL

 		Technical requirements

 		Building our PostgreSQL database

 		Why we should use a proper database

 		Why use Docker?

 		How to use Docker

 		Running a database in Docker

 		Exploring routing and ports in Docker

 		Running Docker in the background with Bash scripts

 		Adding SQLX to the data access layer

 		Defining our database transactions

 		Connecting our transactions to the core

 		Connecting our transactions to the server

 		Creating our database migrations

 		Refactoring our frontend

 		Summary

 		Questions

 		Answers

 		Appendix

 		Get this book’s PDF copy, code bundle, and more

 		Managing User Sessions

 		Technical requirements

 		Building our auth server

 		Building our data access layer

 		Building our auth core module

 		Networking layer

 		Defining our user data model

 		Storing passwords

 		Verifying passwords

 		Creating users

 		Defining our create user database transactions

 		Defining our core create API endpoint

 		Defining our networking create API endpoint

 		Refactoring our JWT

 		Restructuring our JWT for a unique ID

 		Creating a get key function for encoding

 		Creating an encode function to encode user credentials

 		Creating a decode function to extract user credentials

 		Building our login API

 		Getting users via email in the data access layer

 		Creating our core login API

 		Mounting our core login function to our server

 		Interacting with our auth server

 		Adding authentication to our frontend

 		Building a login API call

 		Adding tokens to our API calls

 		Building a login form component

 		Connecting the login form to the app

 		Summary

 		Questions

 		Answers

 		Appendix

 		Communicating Between Servers

 		Technical requirements

 		Getting users from auth with the unique ID

 		Adding get by unique ID to dal

 		Adding get by unique ID to core

 		Adding get by unique ID to networking

 		Making auth accessible to other servers

 		Tethering users to to-do items

 		Linking our to-do items to users in the database

 		Adding user IDs to data access transactions

 		Adding user IDs to core functions

 		Adding user IDs to networking functions

 		Testing our server-to-server communication with Bash

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Caching Auth Sessions

 		Technical requirements

 		What is caching?

 		Setting up Redis

 		Building our Redis module

 		Defining the user session

 		Building the login process

 		Building the logout process

 		Building the update process

 		Building our Redis client

 		Building the login/logout client

 		Building the update client

 		Connecting our cache to our servers

 		Building our cache kernel

 		Calling the kernel from our to-do server

 		Calling the kernel from our auth server

 		Summary

 		Questions

 		Answers

 		Observability Through Logging

 		Technical requirements

 		What are RESTful services?

 		Building frontend code on command

 		What is logging?

 		Logging via the terminal

 		Defining a logger

 		Creating a logging middleware

 		Integrating our logger into our servers

 		Logging via a database

 		What is an actor?

 		Building our logging actor

 		Update logging functions

 		Configuring our logging database

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Unit Testing

 		Technical requirements

 		The importance of unit testing

 		Writing our first unit test

 		Testing our core

 		Unit testing our networking layer

 		Defining our test module

 		Mocking our database handle

 		Mocking our user cache handle

 		Defining our mock service

 		Writing tests

 		Unit testing our data access layer

 		Defining a teardown SQL command

 		Creating a DAL unit test

 		Refactoring our testing script

 		Summary

 		Questions

 		Answers

 		End-to-End Testing

 		Technical requirements

 		The importance of end-to-end testing

 		Building our to-do HTTP kernel

 		Building our create item HTTP kernel

 		Building our delete item HTTP kernel

 		Building our atomic end-to-end tests

 		Writing the end-to-end test

 		Running our atomic end-to-end test

 		Testing workflows with end-to-end tests

 		Configuring existing code to accommodate the workflow tests

 		Building a kernel API call for creating a user

 		Building a kernel API call for logging in

 		Creating a workflow test workspace

 		Creating a delete workflow test

 		Updating our test runner bash script

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Deploying Our Application on AWS

 		Technical requirements

 		Setting up our build environment

 		Setting up an AWS SSH key for an Amazon EC2 instance

 		Setting up our AWS account

 		Setting up our Terraform build

 		Building a server build pipeline

 		Packaging our system with Docker

 		Building the base Docker image for all servers

 		Defining the build config for our monolith

 		Defining the build config for our microservices

 		Distributing our system with Docker

 		Deploying our system with Docker

 		Writing a Terraform script for our server and database

 		Writing a Docker Compose system for our server

 		Writing a deployment script for our system

 		Summary

 		Questions

 		Answers

 		Configuring HTTPS with NGINX on AWS

 		Technical requirements

 		What is HTTPS?

 		Implementing HTTPS locally with Docker Compose

 		Installing SSL

 		Attaching a URL to our deployed application on AWS

 		Attaching an Elastic IP to our server

 		Registering a domain name

 		Enforcing HTTPS on our application on AWS

 		Getting certificates for our URL

 		Prepping our EC2 instances

 		Creating a load balancer for our traffic

 		Creating security groups to lock down and secure traffic

 		Updating our deployment script

 		Attaching our URL to the load balancer

 		Summary

 		Questions

 		Answers

 		Further reading

 		Get this book’s PDF copy, code bundle, and more

 		Practicalities of Using Microservices and Nanoservices

 		Technical requirements

 		When to use nanoservices, microservices, and monoliths

 		The negative effects of microservices

 		Container orchestration

 		Flying blind

 		Network calls are expensive

 		The positive effects of microservices

 		Rolling out releases

 		Isolation of code

 		Flexibility to experiment

 		Managing private repositories with dockpack

 		Integrating Rust nanoservices with other languages using C interfaces

 		Creating our to-do Rust library

 		Creating our C interface

 		Interfacing with our Rust nanoservice with Python

 		Summary

 		Low-Level Networking

 		Technical requirements

 		Building a TCP server

 		Building a kernel for key-value messages

 		Building a TCP server

 		Building a TCP client

 		Implementing HTTP on top of TCP

 		Defining a basic server

 		Defining an HTTP client from scratch

 		Implementing HTTPS on top of TCP

 		Exploring WebSockets

 		Summary

 		Questions

 		Answers

 		Get this book’s PDF copy, code bundle, and more

 		Distributed Computing

 		Technical requirements

 		Introduction to queuing

 		Defining the layout of the queuing system

 		Client

 		Compute unit and kernel

 		Server and worker

 		Other configurations

 		Building our kernel

 		Building our compute unit

 		Building our worker

 		Building our server

 		Building our client

 		Running our queuing system

 		Summary

 		Questions

 		Answers

 		Unlock Your Exclusive Benefits

 		Unlock this Book’s Free Benefits in 3 Easy Steps

 		Step 1

 		Step 2

 		Step 3

 		Need Help

 		Other Books You May Enjoy

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/blockquote-top.png

OEBPS/Images/B22086_01_05.png
one

two

OEBPS/Images/tip.png

OEBPS/Images/Unlock_QR.png

OEBPS/Images/Unlock.png
£ ;Y
" UNLOCK NOW |

OEBPS/Images/B22086_01_09.png
Object-Oriented Rust

Structs

‘ Data ’ { Data ’ Enums and

(Behavior] (Behavior] Traits

OEBPS/Images/B22086_Preface_Normal_Packt_Books.png
</>

Complete Code Bundle

Download the full source code for this
book's examples and projects.

[

7-Day Packt Library Access

Get 7-day unlimited access to 8,000+ books
and videos. No credit card required.

Available for irst-fime Packt+trial users only.

¢

EPUB

DRM-Free PDF Version

Download DRM-free PDF and ePub copies
of this book.

Next-Gen Reader Access

Read this book on Packt Reader with
progress sync, dark mode and note-taking.

OEBPS/Images/info.png

OEBPS/Images/B22086_01_01.png
Benchmark Result

20 threads with 1000 concurrent request for 60 seconds, using https://github.com/wg/wrK.

Flask
Total Requests 11,222
Req/sec 186.74
Total Read 6.84MB
Transfer/sec 116.53KB
Request Timeout 10,496

Falcon
14,802
24632
10.46MB
178.21KB
1955

Actix-web
95,333
1586.27
105.95MB
1.76MB
3729

Rocket
1,02,441
1704.35
162.43MB
1.24MB
4184

Nest)s
30,913
514.38

8.82MB
150.21KB
4676

As expected Rust frameworks are way faster than others. But at my surprise Flask did pretty bad. Nest)s also
looks promising. We could potentially speed up more by using Fastify instead of Express.

OEBPS/Images/B22086_Preface_UN.png
r
_UNLOCK NOW]

OEBPS/Images/B22086_01_06.png
2
o

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/QR_Code57721574812825687.png

OEBPS/Images/Image2324.png
<packmn

OEBPS/Images/Cover.png
EXPERT INSIGHT THIRD EDITION

"~ Rust

Web Programming

A hands-on guide to Rust for modern web development,
with microservices and nanoservices

Maxwell Flitton <packt>

OEBPS/Images/B22086_01_07.png
print function starts

one two

print function finishes

OEBPS/Images/B22086_01_03.png
Stack Memory

® |6 | 3

i String

y Heap Memory
o n e

str

OEBPS/Images/B22086_01_02.png
@ play.rust-lang.org
m oesuG | stsiE -
- fn main() {

printlnt ("hello world");
}

Execution

Compiling playground v0.0.1 (/playground)
Finished dev [unoptimized + debuginfo] target(s) in 1.07s
Running target/debug/playground"

hello world

