
 [image: HTML and CSS – Cover]

 Jürgen Wolf

 HTML and CSS

 The Comprehensive Guide

 [image: Logo Rheinwerk Verlag]

 Imprint

 This e-book is a publication many contributed to, specifically:

 Editor Meagan White

 Acquisitions Editor Hareem Shafi

 German Edition Editor Patricia Schiewald

 Translation Winema Language Services, Inc.

 Copyeditor Julie McNamee

 Cover Design Graham Geary

 Photo Credit Shutterstock: 1670310505/© Paul Aparicio; iStockphoto: 1447894700/© olaser

 Production E-Book Graham Geary

 Typesetting E-Book SatzPro, Germany

 We hope that you liked this e-book. Please share your feedback with us and read the
 Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:

 Names: Wolf, Jürgen, 1974- author.

 Title: HTML and CSS : the comprehensive guide / by Jürgen Wolf.

 Description: 1st edition. | Bonn ; Boston : Rheinwerk Publishing, 2023. |

 Includes index.

 Identifiers: LCCN 2023003226 | ISBN 9781493224227 | ISBN 9781493224234

 (ebook)

 Subjects: LCSH: HTML (Document markup language) | Cascading style sheets. |

 Web site development.

 Classification: LCC QA76.76.H94 W64 2023 | DDC 005.7/2--dc23/eng/20230127

 LC record available at https://lccn.loc.gov/2023003226

 ISBN 978-1-4932-2422-7 (print)

 ISBN 978-1-4932-2423-4 (e-book)

 ISBN 978-1-4932-2424-1 (print and e-book)

© 2023 by Rheinwerk Publishing Inc., Boston (MA)

 1st edition 2023

 4th German edition published 2021 by Rheinwerk Verlag, Bonn, Germany

 Dear Reader,

 It’s estimated that the average American spends 6–7 hours a day online. While some
 of that time may be spent on mobile apps, internet-connected gaming, and all the other
 ways we whittle away the hours, it cannot be denied how much time we spend on web
 pages. Web development has exploded over the last two decades and shows no signs of
 slowing down anytime soon.

 Expert author Jürgen Wolf has set out to make sure that you have all the information
 you need to start building websites with HTML and CSS—and in my humble opinion, succeeded!
 This book has everything: detailed, step-by-step instructions, example code, practical
 models, a thorough grounding in the basics for beginners, and more advanced techniques
 for those who already have some experience. Not to mention, Jürgen provides downloadable
 examples and projects so that you can learn by doing.

 What did you think about HTML and CSS: The Comprehensive Guide? Your comments and suggestions are the most useful tools to help us make our books
 the best they can be. Please feel free to contact me and share any praise or criticism
 you may have.

 Thank you for purchasing a book from Rheinwerk Publishing!

 Meagan White
Editor, Rheinwerk Publishing

 meaganw@rheinwerk-publishing.com
www.rheinwerk-computing.com
Rheinwerk Publishing • Boston, MA

 Notes on Usage

 This e-book is protected by copyright. By purchasing this e-book, you have agreed to accept and adhere to the copyrights.
 You are entitled to use this e-book for personal purposes. You may print and copy
 it, too, but also only for personal use. Sharing an electronic or printed copy with
 others, however, is not permitted, neither as a whole nor in parts. Of course, making
 them available on the internet or in a company network is illegal as well.

 For detailed and legally binding usage conditions, please refer to the section Legal Notes.

 This e-book copy contains a digital watermark, a signature that indicates which person may use this copy:

 Notes on the Screen Presentation

 You are reading this e-book in a file format (EPUB or Mobi) that makes the book content
 adaptable to the display options of your reading device and to your personal needs.
 That’s a great thing; but unfortunately not every device displays the content in the
 same way and the rendering of features such as pictures and tables or hyphenation
 can lead to difficulties. This e-book was optimized for the presentation on as many
 common reading devices as possible.

 If you want to zoom in on a figure (especially in iBooks on the iPad), tap the respective
 figure once. By tapping once again, you return to the previous screen. You can find
 more recommendations on the customization of the screen layout on the Service Pages.

 Table of Contents

 Dear Reader

 Notes on Usage

 Table of Contents

 Preface

 1 Introduction to the HTML Universe

 1.1 Is This Book Even Intended for Me?

 1.2 Different Types of Websites

 1.2.1 Web Presence

 1.2.2 Blog/Online Magazine/Portfolio

 1.2.3 E-Commerce Websites: Stores without Opening Hours

 1.2.4 Landing Page/Microsite

 1.2.5 Web Platform: Building Your Own Social Network

 1.2.6 Web Apps

 1.3 Dynamic and Static Websites

 1.3.1 Static Websites

 1.3.2 Dynamic Websites

 1.4 Languages for Designing and Developing on the Web

 1.4.1 HTML: Text-Based Hypertext Markup Language

 1.4.2 CSS: Design Language

 1.4.3 JavaScript: Client-Side Scripting Language of the Web Browser

 1.4.4 Server-Side Scripting Languages and Databases

 1.5 What Do I Need to Get Started?

 1.5.1 HTML Editor for Writing HTML Documents

 1.5.2 Web Browser for Displaying the Website

 1.5.3 Step by Step: Creating a Web Page and Viewing It in the Web Browser

 1.5.4 Checking Written HTML

 1.5.5 Good Reasons for Validating the HTML Code Anyway

 1.6 Conventions Used in This Book

 1.7 Summary

 2 Basic Structure of HTML and HTML Documents

 2.1 Syntax and Structure of HTML and HTML Documents

 2.1.1 How to Structure a Document in HTML

 2.1.2 Viewing the Tree Structure Using the Document Object Model Inspector

 2.1.3 HTML Tags and HTML Elements

 2.1.4 Nesting HTML Elements and the Hierarchical Structure

 2.1.5 Avoiding Incorrect Nesting of HTML Elements

 2.1.6 Omitting the End Tag of an HTML Element

 2.1.7 Standalone HTML Tags without End Tags

 2.1.8 Additional HTML Attributes for HTML Elements

 2.1.9 Using Comments in HTML Documents

 2.2 A Simple HTML Document Framework

 2.2.1 HTML Document Type: <!doctype>

 2.2.2 Beginning and Ending an HTML Document: <html>

 2.2.3 Head of an HTML Document: <head>

 2.2.4 Visible Part of an HTML Document: <body>

 2.3 Summary

 3 Head Data of an HTML Document

 3.1 Overview of HTML Elements for the Head

 3.2 <title>: Heading of the HTML Page

 3.3 Related Topic: Naming Convention and Referencing

 3.3.1 Valid and Good File Names for an HTML Document

 3.3.2 Valid Directory Names and Meaningful Directory Structures

 3.3.3 Writing a Reference to a Data Source

 3.4 Defining the Base URL of a Web Page Using <base>

 3.5 Referencing an External Document via <link>

 3.6 Writing Document-Wide CSS Styles Using <style>

 3.7 Including Scripts in Web Pages Using <script>

 3.8 Metadata for the Document Using <meta>

 3.8.1 The Most Commonly Used Metadata

 3.8.2 Setting the Viewport

 3.8.3 Specifying Useful Metadata for a Web Crawler

 3.8.4 Useful Metadata for Search Engines

 3.8.5 Useful Metadata for the Web Browser

 3.8.6 Using General Metadata

 3.8.7 My Recommendation: This Metadata Belongs in the Basic HTML Framework

 3.8.8 HTML Attributes for the <meta> Element

 3.9 Summary

 4 The Visible Part of an HTML Document

 4.1 HTML Elements for Structuring Pages

 4.1.1 Using <body>: The Displayable Content Section of an HTML Document

 4.1.2 Introducing the Section Elements of HTML

 4.1.3 Using Headings with the HTML Elements from <h1> to <h6>

 4.1.4 Creating a Header Using <header> and a Footer Using <footer>

 4.1.5 Marking Contact Information Using <address>

 4.2 HTML Elements for Structuring Text

 4.2.1 Adding Text Paragraphs Using <p>

 4.2.2 Forcing Line Breaks Using

 4.2.3 Adding Optional Line Breaks Using <wbr>

 4.2.4 Forcing Spaces and Preventing Wrapping Using " "

 4.2.5 Adding a Topic-Based Separation Using <hr>

 4.2.6 Adding Paragraphs or Citations Using <blockquote>

 4.2.7 Defining a General Section Using <div>

 4.2.8 Using <main>: An HTML Element for the Main Content

 4.2.9 Labeling Content Separately Using <figure> and <figcaption>

 4.2.10 Creating Unordered Lists Using and

 4.2.11 Creating Ordered Lists Using and

 4.2.12 Reversing the Numbering of an Ordered List

 4.2.13 Changing the Numbering of an Ordered List

 4.2.14 Nesting Lists within Each Other

 4.2.15 Creating a Description List Using <dl>, <dt>, and <dd>

 4.3 Using Semantic HTML

 4.3.1 HTML without a Precise Structure

 4.3.2 Generic Structuring Using <div>

 4.3.3 Semantic Structuring Using the Elements Provided in HTML

 4.3.4 What’s the Use of Those Semantic HTML Elements?

 4.4 HTML Elements for Text Markups

 4.4.1 Marking Up Abbreviations or Acronyms Using <abbr>

 4.4.2 Marking Up Text as the Source of a Working Title Using <cite>

 4.4.3 Marking Up Computer Code Representation Using <code> and <pre>

 4.4.4 Keyboard Input Using <kbd> and Program Output Using <samp>

 4.4.5 Marking Up Text as a Definition Using <dfn>

 4.4.6 Marking Up Text as a Variable Using <var>

 4.4.7 Changing the Text Direction Using <bdo> and <bdi>

 4.4.8 Emphasizing Text Using , , <i>, and

 4.4.9 Highlighting Text Using <mark>

 4.4.10 Placing Text between Quotes Using <q>

 4.4.11 Underlining or Crossing Out Text Using <u> and <s>

 4.4.12 Marking Changes of Text Using <ins> and

 4.4.13 Displaying Text as Superscript or Subscript Using <sup> and <sub>

 4.4.14 Marking Dates and Times Using <time>

 4.4.15 Marking the Small Print Using <small>

 4.4.16 Using <ruby>, <rp>, and <rt> for Annotations about Pronunciation

 4.4.17 Grouping Ranges of Individual Text Passages Using

 4.5 Related Topic: Character Encoding

 4.5.1 From Bytes to Character Encoding

 4.5.2 From ASCII to ISO-8859

 4.5.3 Beyond the Byte Boundary with Unicode

 4.6 Character Entities in HTML

 4.6.1 Structure of a Character Entity in HTML

 4.7 Summary

 5 Tables and Hyperlinks

 5.1 Structuring Data in a Table

 5.1.1 A Simple Table Structure Using <table>, <tr>, <td>, and <th>

 5.1.2 Combining Columns or Rows Using “colspan” or “rowspan”

 5.1.3 HTML Attributes for the Table Elements

 5.1.4 Structuring Tables Using <thead>, <tbody>, and <tfoot>

 5.1.5 Grouping Columns of a Table Using <colgroup> and <col>

 5.1.6 Labeling Tables Using <caption> or <figcaption>

 5.2 Electronic References (Hyperlinks) Using <a>

 5.2.1 Inserting Links to Other HTML Documents on Your Own Website

 5.2.2 Inserting Links to Other Websites

 5.2.3 Opening Links with the “target” Attribute in a New Window

 5.2.4 Email Links with “href=mailto: . . .”

 5.2.5 Setting Links to Other Types of Content

 5.2.6 Adding Download Links Using the “download” Attribute

 5.2.7 Setting Links to Specific Parts of a Web Page

 5.2.8 Creating Links to Phone Numbers

 5.2.9 HTML Attributes for the HTML Element <a>

 5.3 Summary

 6 Graphics and Multimedia

 6.1 Embedding Images Using

 6.1.1 Adding Images to an HTML Document

 6.1.2 Specifying the Height and Width of a Graphic

 6.1.3 Labeling Images Using <figure> and <figcaption>

 6.1.4 HTML Attributes for the HTML Element

 6.2 Creating Link-Sensitive Graphics (Image Maps)

 6.2.1 Use HTML Attributes for the HTML Element <area>

 6.2.2 Referencing Defined Areas of the HTML Element <area>

 6.2.3 HTML Attributes of <area>

 6.3 Loading the Appropriate Image Using <picture>

 6.3.1 HTML Attributes of <source>

 6.3.2 Multiple Image Sources with the HTML Attribute “srcset”

 6.4 Adding an Icon for the Website (Favicon)

 6.5 Using Vector Graphics in HTML Documents

 6.5.1 Adding SVG as a Graphic Reference Using

 6.5.2 Embedding SVG Directly into the Web Page Using <svg>

 6.5.3 SVG Tags for Vector Graphics

 6.5.4 Overview of Graphical SVG Elements

 6.5.5 Further Notes on Using SVG

 6.5.6 Mathematical Formulas Using MathML

 6.6 Drawing Graphics Using <canvas>

 6.7 Playing Videos Using the HTML Element <video>

 6.7.1 HTML Attributes for the HTML Element <video>

 6.7.2 Adding Subtitles to a Video Using <track>

 6.7.3 Playing Videos via YouTube

 6.8 Playing Audio Files Using the HTML Element <audio>

 6.8.1 HTML Attributes for the HTML Element <audio>

 6.9 Including Other Active Content

 6.9.1 HTML Element <embed>

 6.9.2 HTML Element <object>

 6.9.3 HTML Element <iframe>

 6.10 Summary

 7 HTML Forms and Interactive Elements

 7.1 Defining a Space for Forms

 7.2 HTML Input Fields for Forms

 7.2.1 A Single-Line Text Input Field Using <input type="text">

 7.2.2 A Password Input Field Using <input type="password">

 7.2.3 A Multiline Text Input Field Using <textarea>

 7.2.4 A Selection List or Dropdown List Using <select>

 7.2.5 Creating a Group of Radio Buttons Using <input type="radio">

 7.2.6 Adding a Text Label Using <label>

 7.2.7 Using Checkboxes via <input type="checkbox">

 7.2.8 Using Fields for File Uploads via <input type="file">

 7.2.9 Overview of Various Buttons

 7.2.10 Using a Hidden Input Field via <input type="hidden">

 7.2.11 Writing Form Fields outside of <form>...</form>

 7.2.12 Multiple Submit Buttons for Different URLs

 7.3 Special Types of Input Fields

 7.3.1 An Input Field for Colors Using <input type="color">

 7.3.2 An Input Field for a Date Using <input type="date">

 7.3.3 An Input Field for a Time Using <input type="time">

 7.3.4 Input Fields for Date and Time

 7.3.5 Input Fields for the Month and the Week

 7.3.6 An Input Field for Searches Using <input type="search">

 7.3.7 An Input Field for Email Addresses Using <input type="email">

 7.3.8 An Input Field for a URL Using <input type="url">

 7.3.9 An Input Field for Phone Numbers Using <input type="tel">

 7.3.10 An Input Field for Numbers Using <input type="number">

 7.3.11 An Input Field for Numbers of a Certain Range

 7.3.12 Outputting Values and Calculations Using <output>

 7.4 The HTML Attributes for Input Fields

 7.4.1 Setting the Input Focus Using the HTML Attribute “autofocus”

 7.4.2 (De)activating Autocompletion Using the “autocomplete” Attribute

 7.4.3 A List of Suggestions for Using the HTML Attribute “list” and <datalist>

 7.4.4 Specifying Minimum and Maximum Values and the Step Size

 7.4.5 Selecting or Entering Multiple Values Using “multiple”

 7.4.6 Regular Expressions for Input Fields Using “pattern”

 7.4.7 A Placeholder for an Input Field Using “placeholder”

 7.4.8 Defining an Input as Required Using the “required” Attribute

 7.4.9 Controlling Error Messages for Input Fields

 7.5 Other Useful Helpers for Input Fields

 7.5.1 Disabling Form Elements Using the HTML Attribute “disabled”

 7.5.2 Permitting Read-Only for Input Fields Using the “readonly” Attribute

 7.5.3 Useful Keyboard Shortcuts and Tab Sequence for Input Fields

 7.5.4 Grouping Form Elements Using <fieldset> and <legend>

 7.5.5 Progress Display via <progress>

 7.5.6 Visualizing Values Using <meter>

 7.6 Sending Form Data Using PHP

 7.6.1 Transferring the Data from the Web Browser for Further Processing

 7.6.2 The “POST” Method

 7.6.3 The “GET” Method

 7.6.4 Processing the Data Using a PHP Script

 7.7 Interactive HTML Elements

 7.7.1 Expanding/Collapsing Content Using <details> and <summary>

 7.7.2 A Dialog Box via <dialog>

 7.8 Summary

 8 Introduction to Cascading Style Sheets

 8.1 The Story of CSS

 8.2 The Basic Principle of Using CSS

 8.2.1 Structure of a CSS Rule

 8.2.2 Declaring a Selector

 8.2.3 Using Comments for CSS Code

 8.2.4 A Few Notes on Formatting CSS Code

 8.3 Integrating CSS into HTML

 8.3.1 Style Statements Directly in the HTML Tag Using the HTML Attribute “style”

 8.3.2 Style Statements in the Document Head Using the HTML Element <style>

 8.3.3 Integrating Style Statements from an External CSS File Using <link>

 8.3.4 Combining CSS Rules in the Head Section and in External CSS Files

 8.3.5 Recommendation: You Should Separate HTML and CSS

 8.3.6 Testing Alternate Stylesheets during Development

 8.3.7 Integrating Style Statements from an External CSS File Using “@import”

 8.3.8 Media-Specific Stylesheets for Specific Output Devices

 8.3.9 Media-Specific Stylesheets with CSS

 8.4 Analyzing CSS in the Web Browser

 8.5 Summary

 9 The Selectors of CSS

 9.1 The Simple Selectors of CSS

 9.1.1 Addressing HTML Elements Using the Type Selector

 9.1.2 Addressing HTML Elements Using a Specific Class or ID

 9.1.3 Universal Selector: Addressing All Elements in a Document

 9.1.4 Addressing Elements Based on Attributes Using the Attribute Selector

 9.1.5 An Attribute Selector for Attributes with a Specific Value

 9.1.6 Attribute Selector for Attributes with a Specific Partial Value

 9.1.7 CSS Pseudo-Classes: The Selectors for Specific Features

 9.1.8 The Convenient Structural Pseudo-Classes in CSS

 9.1.9 Other Useful Pseudo-Classes

 9.1.10 Pseudo-Elements: The Selectors for Nonexistent Elements

 9.2 Combinators: Concatenating the Selectors

 9.2.1 The Descendant Combinator (E1 E2)

 9.2.2 The Child Combinator (E1 > E2)

 9.2.3 The Adjacent Sibling Combinator (E1 + E2)

 9.2.4 The General Sibling Combinator (E1 ~ E2)

 9.3 Recommendation: How to Use Efficient and Simple CSS

 9.3.1 How to Write Well Performing CSS

 9.3.2 Recommendation: Keep the CSS Code as Simple as Possible

 9.4 Summary

 10 Inheritance and Cascading

 10.1 The Principle of Inheritance in CSS

 10.1.1 Be Cautious When Using Relative Properties

 10.1.2 Not Everything Gets Inherited

 10.1.3 Enforcing Inheritance Using “inherit”

 10.1.4 Restoring the Default Value of a CSS Feature (“initial”)

 10.1.5 Forcing Inheritance or Restoring a Value ("unset")

 10.1.6 Forcing Inheritance or Restoring Values for All Properties

 10.2 Understanding the Control System for Cascading

 10.2.1 The Origin of a Stylesheet

 10.2.2 Increasing the Priority of a CSS Feature Using “!important”

 10.2.3 Sorting by Importance and Origin

 10.2.4 Sorting by Weighting the Selectors (Specificity)

 10.2.5 Summary of the Cascading Rules System

 10.2.6 Analyzing the Cascading in the Browser

 10.3 Related Topic: Passing Values to CSS Features

 10.3.1 Different Units of Measurement in CSS

 10.3.2 Character Strings and Keywords as Values for CSS Features

 10.3.3 Many Ways of Using a Color in CSS

 10.3.4 Angular Dimensions in CSS

 10.3.5 Passing Values via Short Notation to a CSS Feature

 10.4 Summary

 11 The Box Model of CSS

 11.1 Classic Box Model of CSS

 11.1.1 Specifying the Content Area Using “width” and “height”

 11.1.2 Specifying the Inner Spacing Using “padding”

 11.1.3 Creating the Border Using “border”

 11.1.4 Setting Up the Outer Margin Using “margin”

 11.1.5 Collapsing Margins

 11.1.6 Determining the Total Width and Total Height of a Box

 11.2 Newer Alternate Box Model of CSS

 11.2.1 Using the “box-sizing” Box Model

 11.2.2 Using the Alternate Box Model

 11.3 Analyzing the Box Model in the Browser

 11.4 Box Model for Inline Elements

 11.5 Designing Boxes

 11.5.1 Adding and Designing a Border Using the “border” Property

 11.5.2 Setting a Background Color Using “background-color”

 11.5.3 Using Background Images

 11.5.4 Making Boxes Transparent

 11.5.5 Adding a Gradient

 11.5.6 Adding a Shadow Using the “box-shadow” Feature

 11.5.7 Adding Round Corners Using the CSS Feature “border-radius”

 11.6 Related Topic: Web Browser Prefixes (CSS Vendor Prefixes)

 11.7 Summary

 12 CSS Positioning

 12.1 Positioning via CSS Feature “position”

 12.1.1 Normal Positioning (“position: static”)

 12.1.2 Positioning Elements Using “top”, “right”, “bottom”, and “left”

 12.1.3 Relative Positioning (“position: relative”)

 12.1.4 Absolute Positioning (“position: absolute”)

 12.1.5 Fixed Positioning (“position: fixed”)

 12.1.6 Sticky Positioning (“position: sticky”)

 12.2 Controlling Stacking Using “z-index”

 12.3 Floating Boxes for Positioning via “float”

 12.3.1 Terminating the Float

 12.3.2 Combining Floats into One Entity

 12.4 Flexible Boxes of CSS

 12.4.1 Aligning the Flexbox

 12.4.2 Setting the Flexibility of the Flexbox

 12.4.3 Determining the Order of the Boxes

 12.5 Summary

 13 Creating Responsive Layouts with CSS

 13.1 Basic Theoretical Knowledge of Responsive Web Design

 13.1.1 Using Specific Media Types

 13.1.2 Media Queries for Media Features

 13.1.3 Integrating and Applying Media Queries for Media Features

 13.1.4 Basic Structure of a Media Feature Query

 13.1.5 Which Media Features Can Be Queried?

 13.1.6 Crucially Important: The Viewport for Mobile Devices

 13.1.7 Use “em” Instead of Pixels for a Layout Break in Media Queries

 13.1.8 Layout Breaks (Breakpoints)

 13.1.9 No More Math Games Thanks to "box-sizing: border-box;"

 13.1.10 What Happens to Web Browsers That Don’t Understand Media Queries?

 13.2 Let’s Create a Simple Responsive Layout

 13.2.1 Let’s Create the Basic Framework Using HTML

 13.2.2 Setting General CSS Features

 13.2.3 What Should I Use as a Basic Version without Media Queries: Mobile First?

 13.2.4 Setting the Layout Break (Breakpoint)

 13.2.5 Adding More Layout Breaks

 13.2.6 Customizing the Main Content

 13.3 Even More Flexible Elements

 13.3.1 Use Relative Font Sizes instead of Pixels

 13.3.2 Making Images Responsive

 13.3.3 Flexible Images in Maximum Possible Width

 13.3.4 Hiding Images Entirely

 13.3.5 Loading the Right Image for the Screen Width: <picture>

 13.3.6 Using Area-Covering Images

 13.4 CSS Grid Layout

 13.4.1 Creating a Grid for the Content

 13.4.2 Placing Elements in the Grid

 13.4.3 Layout Changes Made Easy

 13.4.4 Spacing between Grid Lines

 13.4.5 Checking the Grid in the Web Browser

 13.5 Changing the Behavior of HTML Elements Using “display”

 13.5.1 “display: block”, “display: inline”, and “display: inline-block”

 13.5.2 Hiding Elements Using “display:none”

 13.5.3 Further Values for “display”

 13.6 Calculations Using CSS and the “calc()” Function

 13.7 Summary

 14 Styling with CSS

 14.1 Designing Texts with CSS

 14.1.1 Selecting Fonts via “font-family”

 14.1.2 Providing Fonts via Web Fonts: “@font-face”

 14.1.3 Using Icons via Icon Fonts

 14.1.4 Setting the Font Size Using “font-size”

 14.1.5 Italic and Bold Fonts via “font-style” and “font-weight”

 14.1.6 Creating Small Caps Using “font-variant”

 14.1.7 Defining Line Spacing via “line-height”

 14.1.8 A Short Notation for Font Formatting Using “font”

 14.1.9 Specifying Letter and Word Spacing via “letter-spacing” and “word-spacing”

 14.1.10 Setting the Text Alignment Using “text-align”

 14.1.11 Setting the Vertical Alignment via “vertical-align”

 14.1.12 Indenting Text Using “text-indent”

 14.1.13 Underlining Text and Striking Text Through Using “text-decoration”

 14.1.14 Uppercase and Lowercase Text via “text-transform”

 14.1.15 Adding Shadow to Text via “text-shadow”

 14.1.16 Splitting Text into Multiple Columns Using “column-count”

 14.2 Designing Lists with CSS

 14.2.1 Customizing Bullet Points Using “list-style-type”

 14.2.2 Using Images as Bullets via “list-style-image”

 14.2.3 Positioning Bulleted Lists via “list-style-position”

 14.2.4 Short Notation “list-style” for Designing Lists

 14.2.5 Creating Navigation and Menus via Lists

 14.3 Designing Appealing Tables with CSS

 14.3.1 Creating Fixed-Width Tables

 14.3.2 General Recommendation: Designing Appealing Tables with CSS

 14.3.3 Collapsing Borders for Table Cells Using “border-collapse”

 14.3.4 Setting the Spacing between Cells via “border-spacing”

 14.3.5 Displaying Empty Table Cells Using “empty-cells”

 14.3.6 Positioning Table Captions via “caption-side”

 14.4 Adjusting Images and Graphics Using “width” and “height”

 14.5 Transforming Elements with CSS

 14.5.1 Scaling HTML Elements via “transform: scale()”

 14.5.2 Rotating HTML Elements Using “transform: rotate()”

 14.5.3 Skewing HTML Elements Using “transform: skew()”

 14.5.4 Moving HTML Elements Using “transform: translate()”

 14.5.5 Combining Different Transformations

 14.5.6 Other HTML Elements

 14.6 Creating Transitions with CSS

 14.7 Styling HTML Forms with CSS

 14.7.1 Neatly Structuring an HTML Form

 14.7.2 Aligning Form Elements with CSS

 14.7.3 Designing Form Elements with CSS

 14.8 Summary

 15 Testing and Organizing

 15.1 Web Browser Tests: What’s Possible?

 15.1.1 Validating HTML and CSS

 15.1.2 Which Browsers Are Visitors Currently Using?

 15.1.3 CSS Web Browser Test

 15.1.4 HTML5 Web Browser Test

 15.1.5 Can I Use That?

 15.1.6 Feature Query Using the “@supports” Rule

 15.2 Viewing Websites in Different Sizes

 15.3 Setting Up a Central Stylesheet

 15.3.1 Combining Everything Back into One File to Shorten the Load Time

 15.4 CSS Reset or Normalization?

 15.4.1 Built-In Style Presets of the Web Browser and CSS Reset

 15.4.2 Normalization: The Alternative to CSS Reset

 15.5 Summary

 16 The CSS Preprocessor Sass and SCSS

 16.1 Sass or SCSS Syntax

 16.2 From Sass/SCSS to CSS

 16.3 Installing and Setting Up Sass

 16.3.1 Online CSS Preprocessor without Installation

 16.3.2 Setting Up Sass Using Visual Studio Code

 16.3.3 Installing Sass for the Command Line

 16.4 Using Variables with Sass

 16.5 Nesting with Sass

 16.6 Mixins (“@mixin”, “@include”)

 16.7 Extend (“@extend”)

 16.8 Media Queries and “@content”

 16.9 Operators

 16.10 Adjusting Colors and Brightness

 16.11 Sass Control Structures

 16.12 Functions “@function”

 16.13 “@import”

 16.14 Comments

 16.15 Summary

 17 A Brief Introduction to JavaScript

 17.1 JavaScript in Web Development

 17.2 Writing and Executing JavaScript Programs

 17.2.1 Integrating a JavaScript File in an HTML File

 17.2.2 Writing JavaScript within HTML

 17.2.3 Position of JavaScript and Its Execution in the HTML Document

 17.2.4 Attributes for Manipulating the Load Behavior of JavaScript (“async”, “defer”)

 17.2.5 The <noscript> Element for No JavaScript

 17.3 JavaScript Output

 17.3.1 Standard Dialogs (and Input Dialog)

 17.3.2 Outputting to the Console

 17.3.3 Outputting to the Website

 17.3.4 Running JavaScript without a Web Browser

 17.3.5 Annotating JavaScript Code with Comments

 17.4 Using Variables in JavaScript

 17.4.1 Defining Constants

 17.4.2 Strict Mode Using “"use strict"”

 17.5 Overview of JavaScript Data Types

 17.5.1 Number Data Type (Numbers)

 17.5.2 String Data Types (Strings)

 17.5.3 Template Strings

 17.5.4 Boolean Data Type

 17.5.5 Undefined and Null Data Types

 17.5.6 Objects

 17.5.7 Converting Data Types

 17.6 Arithmetic Operators for Calculation Tasks in JavaScript

 17.7 Conditional Statements in JavaScript

 17.7.1 “true” or “false”: Boolean Truth Value

 17.7.2 Using the Various Comparison Operators in JavaScript

 17.7.3 Using the “if” Branch

 17.7.4 Using the Selection Operator

 17.7.5 Logical Operators

 17.7.6 Multiple Branching via “switch”

 17.8 Multiple Repetitions of Program Statements via Loops

 17.8.1 Increment and Decrement Operators

 17.8.2 The Header-Controlled “for” Loop

 17.8.3 The Header-Controlled “while” Loop

 17.8.4 The Footer-Controlled “do-while” Loop

 17.8.5 Ending the Statement Block Using “break”

 17.8.6 Jumping to the Start of the Loop via “continue”

 17.9 Summary

 18 Arrays, Functions, and Objects in JavaScript

 18.1 Functions in JavaScript

 18.1.1 Different Ways to Define a Function in JavaScript

 18.1.2 Calling Functions and Function Parameters

 18.1.3 Return Value of a Function

 18.1.4 The Scope of Variables in a Function

 18.1.5 Defining Functions in Short Notation (Arrow Functions)

 18.1.6 Using a Function in a Web Page

 18.2 Arrays

 18.2.1 Accessing the Individual Elements in the Array

 18.2.2 Multidimensional Arrays

 18.2.3 Adding or Removing New Elements in an Array

 18.2.4 Sorting Arrays

 18.2.5 Searching within Arrays

 18.2.6 Additional Methods for Arrays

 18.3 Strings and Regular Expressions

 18.3.1 Useful Functions for Strings

 18.3.2 Applying Regular Expressions to Strings

 18.4 Object-Oriented Programming in JavaScript

 18.4.1 What Exactly Are Objects?

 18.4.2 Creating Objects via Constructor Functions

 18.4.3 Creating Objects via the Class Syntax

 18.4.4 Accessing the Object Properties and Methods: Setters and Getters

 18.4.5 The Keyword “this”

 18.5 Other Global Objects

 18.5.1 The Top Object “Object”

 18.5.2 Objects for the Primitive Data Types: Number, String, and Boolean

 18.5.3 “Function” Object

 18.5.4 “Date” Object

 18.5.5 “Math” Object

 18.5.6 “Map” Object

 18.5.7 “Set” Object

 18.6 Summary

 19 Changing Web Pages Dynamically

 19.1 Introduction to the DOM of an HTML Document

 19.2 The “document” Object

 19.3 DOM Programming Interface

 19.4 Accessing Elements in the DOM

 19.4.1 Finding an HTML Element with a Specific “id” Attribute

 19.4.2 Finding HTML Elements with a Specific Tag Name

 19.4.3 Finding HTML Elements with a Specific “class” Attribute

 19.4.4 Finding HTML Elements with a Specific “name” Attribute

 19.4.5 Using “querySelector()” and “querySelectorAll()”

 19.4.6 Other Object and Property Collections

 19.5 Changing an HTML Element, an Attribute, or the Style

 19.5.1 Changing the Content of HTML Elements Using “innerHTML”

 19.5.2 Changing the Value of an HTML Attribute

 19.5.3 Changing the Style (CSS) of an HTML Element

 19.6 Responding to JavaScript Events

 19.7 Handling the Events Using the Event Handler

 19.7.1 Setting Up an Event Handler as an HTML Attribute in the HTML Element

 19.7.2 Setting Up Event Handlers as a Property of an Object

 19.7.3 Setting Up an Event Handler via “addEventListener()”

 19.8 Overview of Common JavaScript Events

 19.8.1 The JavaScript Events of the UI (Window Events)

 19.8.2 JavaScript Events That Can Occur in Connection with the Mouse

 19.8.3 JavaScript Events for Devices with a Touchscreen

 19.8.4 JavaScript Events That Occur in Connection with the Keyboard

 19.8.5 JavaScript Events for HTML Forms

 19.8.6 JavaScript Events for the Web APIs

 19.9 More Information about Events with the “event” Object

 19.10 Suppressing the Default Action of Events

 19.11 The Event Flow (Event Propagation)

 19.11.1 More about the Bubbling Phase

 19.11.2 Canceling Bubbling via the “stopPropagation()” Method

 19.11.3 Intervening in the Event Flow during the Capturing Phase

 19.11.4 Additional Information on the Capturing and Bubbling Phases

 19.12 Adding, Changing, and Removing HTML Elements

 19.12.1 Creating and Adding a New HTML Element and Content

 19.12.2 Targeting HTML Elements Even More Exactly in the DOM Tree

 19.12.3 Adding a New HTML Element Even More Targeted to the DOM Tree

 19.12.4 Deleting an Existing HTML Element from the DOM Tree

 19.12.5 Replacing an HTML Element in the DOM Tree with Another One

 19.12.6 Cloning a Node or Entire Fragments of the DOM Tree

 19.12.7 Different Methods to Manipulate the HTML Attributes

 19.12.8 The <template> HTML Tag

 19.13 HTML Forms and JavaScript

 19.13.1 Reading Text Input Fields with JavaScript

 19.13.2 Reading Selection Lists with JavaScript

 19.13.3 Reading Radio Buttons and Checkboxes with JavaScript

 19.13.4 Intercepting Buttons with JavaScript

 19.13.5 Controlling the Progress Indicator <progress> with JavaScript

 19.14 Summary

 20 An Introduction to Ajax

 20.1 An Introduction to Ajax Programming

 20.1.1 A Simple Ajax Example in Execution

 20.1.2 Creating the “XMLHttpRequest” Object

 20.1.3 Making a Request to the Server

 20.1.4 Sending Data

 20.1.5 Determining the Status of the “XMLHttpRequest” Object

 20.1.6 Processing the Response from the Server

 20.1.7 The Ajax Example during Execution

 20.1.8 A More Complex Ajax Example with XML and DOM

 20.1.9 The JSON Data Format with Ajax

 20.2 Summary

 The Author

 Index

 Service Pages

 Legal Notes

 Preface

 The first questions you’ll probably ask yourself about a book of this scope is whether it’s a book for you at all and what you’ll learn from it. The title already indicates that HTML and CSS are covered here. If you’ve flipped through the book a bit or skimmed the table of contents, you’ll have noticed that it contains much more than HTML and CSS. Just a few years ago, an author could leave it at simply writing a book on HTML with a little CSS. Then, with the new standard HTML version, the demands for creating websites have increased.

 The focus of the book is still on HTML and CSS. Thus, in the first seven chapters, you’ll get to know the basics of HTML. Since HTML is the basic language for website development, this book is also attractive to newcomers because it starts from scratch. Even if you’re still familiar with the old HTML school (i.e., you’ve already dealt with HTML before the time of HTML5), you should approach this book as a newcomer and definitely read through the first seven chapters to give yourself an update of your probably outdated HTML knowledge.

 Web design and the layout of websites are nowadays implemented via Cascading Style Sheets (CSS), which are described very extensively in nine chapters of this book. While the book doesn’t intend to be a replacement for pure CSS books or web design books, you’ll definitely learn many important and useful basics about web design and website layout here. If you’re interested in this and haven’t had any experience with it yet, you’ll find this book a great companion to start with.

 Because many of the innovations of the HTML standard can be addressed via JavaScript (application programming interfaces [APIs]), it’s obvious that JavaScript must also be treated as a web programming language. In this context, you should be aware that you’ll only get a brief and simple introduction to JavaScript, which is necessary to at least use and understand the Document Object Model (DOM) manipulations in practice. The scope of JavaScript alone would fill an entire book. I mention this here only to avoid raising any false hopes. In addition, if you’ve never dealt with a programming language before, JavaScript will probably be your first real programming language. But if you already do have experience with another programming language, JavaScript won’t cause you any problems.

 What’s not covered in this book are web programming languages such as PHP, Python, or Java. While PHP is used in a few examples in the book, it’s only used in passing to demonstrate specific examples to you. For web programming with PHP and MySQL, you should definitely get other literature if you want to dive deeper into it. However, a prerequisite for PHP and MySQL for programming dynamic websites is again a good knowledge of HTML and CSS, which is another good reason to read and work through this book. So, if you’re drawn to dynamic web programming, this book is an ideal first building block for that.

 Website or Web Page?

 A web page is a single page of an internet site. The website, on the other hand, is the complete internet presence. As a rule, therefore, a website usually consists of several individual web pages. I’ll explain these two terms here right at the beginning so that you understand the difference when we talk about a web page or website, because it tends to cause confusion.

 Book Resources

 All listings from the book are available for you to download from the website for this book: www.rheinwerk-computing.com/5695. Click on the Resources tab. You’ll see the downloadable files along with a brief description of the file content. Click the Download button to start the download. Depending on the size of the file (and your internet connection), it may take some time for the download to complete.

 HTML5 and the “Living Standard”

 To avoid misunderstandings about HTML as a hypertext markup language, HTML5, and HTML as a living standard, these terms will be clarified at the beginning of the book. At the beginning, I briefly referred to HTML5. After the invention of the web, there were different phases in which a standard for HTML was created. Initially, only the W3C as a body took care of the standardization of HTML, which hasn’t always been smooth with regard to the browser manufacturers. As the web was rapidly moving from a pure hypertext system to a platform for web applications, the W3C attempted to promulgate a new XML-based standard, XHTML, although browser vendors preferred to continue development based on HTML.

 As a result, Apple, Opera, and Mozilla founded a new group, Web Hypertext Application Technology Working Group (WHATWG), which was then joined by Google and Microsoft to continue working on the HTML standard independently of the W3C. When the W3C wasn’t able to enforce the change to XML, the focus returned to the further development of HTML. This gave rise to the HTML5 standard together in cooperation with the WHATWG. Yet, the harmony between W3C and WHATWG didn’t last long. While the W3C stuck to versioning, the WHATWG wanted to make it a living standard without a number.

 Again, however, the W3C has joined the WHATWG, and, as of May 28, 2019, HTML is a living standard without a version number. Accordingly, there will probably never be an HTML6. Related information on this topic is available at the following:

 	
 https://html.spec.whatwg.org: HTML living standard

 	
 https://www.w3.org: The World Wide Web Consortium (W3C)

 Target Group

 HTML and CSS are the main focus of the book as they cover about 85% of the entire scope. The remaining 15% of the book is dedicated to somewhat more complex but also essential topics such as JavaScript, DOM manipulations, and Ajax—the very topics or technologies you’re going to encounter sooner or later when creating websites and for which at least basic knowledge will be useful. If you count yourself among the following groups, this book can definitely be an asset to you:

 	
 Newcomers
Due to its didactic structure, the book will provide you with a comprehensive introduction to the world of HTML, CSS, and a little bit of JavaScript.

 	
 Returners
You already had the pleasure of working with an older HTML version (e.g., HTML 4.01) and want to refresh your old knowledge base? Then this book is also for you. In any case, you should read through the chapters on HTML, because the way of using HTML for websites has changed a tiny bit. Besides, the days of bringing HTML into play for styling, layout, and color are well and truly over as nowadays only CSS is used for those purposes. And if you still remember JavaScript as a gimmick or a language for rascal pranks, this book will prove you wrong.

 	
 Web authors, bloggers
If you’re a web author or blogger and use HTML and a little CSS for your daily work, this book will provide you with a companion to maintain your web pages on a web-based level and structure the content properly. Even if you only use ready-made content management systems (CMS), good HTML and CSS skills are an advantage.

 	
 Frontend, backend, and full stack developers and programmers
As a developer and programmer, it’s hard to avoid dealing a little with web applications, for example, to output data in the web browser as an HTML document. Of course, this depends on the programming language. If you’re purely interested in web development with PHP and databases such as MySQL, a good knowledge of HTML and CSS is almost a must.

 How Should I Read through the Book?

 The structure of the book is very didactic, and the topics build on each other, so you should be able to handle it well as a newcomer if you work through the book from cover to cover. At the same time, if you’re a returner, web author, blogger, developer, or programmer, you can always jump to the topic you want to cross-read or read up on.

 For you to better understand the examples, I recommend that you also at least test them in practice and experiment with them a little. Ideally, you should try to create the examples yourself. You can find all the examples used in the book on the bonus website for the book (www.rheinwerk-computing.com/5695) or at https://html-examples. pronix.de/.

 It takes a bit of patience and perseverance to work through a self-study book like this. And it’s not always quantity that matters, that is, reading and learning as much as possible in as little time as possible. Even though it’s uncommon today, take your time when learning the new skills, and remember that it really starts after you’ve finished reading the book. This book will give you a good foundation to build on. But after finishing it, you’ll have to gain experience in real life yourself.

 Completing the book doesn’t mean you’re done. You shouldn’t stop learning. HTML isn’t a stagnant standard but is constantly evolving, with new technologies being added all the time. Stay up to date and inform yourself regularly about innovations.

 Written for You, the Reader

 The topics around HTML are now extremely diverse and extensive, so it isn’t easy to fit the right mixture into one book. However, I think I’ve managed to combine an interesting collection of traditional and contemporary topics in the book. I’m aware that not everything can be described comprehensively in a book like this. Especially about JavaScript, one could write an entirely separate book. Likewise, there are topics that aren’t covered at all here.

 I’m also aware that such a book isn’t written for self-interest, but for you, the readers. If you miss any topics that you’d like to learn more about, I’d be very happy to hear from you. The same goes for things you didn’t like so much or where you think it could be done better. Even if you like this book, I’ll be even more pleased with your feedback because it lets me know that I’m on the right track with this work.

 Acknowledgments

 A book like this isn’t made by just one person, and I’m always impressed by how many people are involved behind the scenes and have work to do with it. While you’re often in the spotlight as an author, many other smaller and larger gearwheels are necessary to ultimately realize such a book. The larger cogs definitely include the editors who coordinate the entire process. For this edition, Hareem Shafi and Meagan White were at my side. Likewise, it was a great pleasure for me that Philip Ackermann took over the expert opinion for the book. Philip’s experience as a software developer and web designer—he’s a book author himself—put the finishing touches on the book. In addition, there’s proofreading, production, layout, cover design, typesetting, and printing—tasks that many other people have taken care of. A special thanks to Elisa, for all the inspiration that pushed me to achieve my goals.

 I’d like to thank all the people who have directly and indirectly contributed to this book.

 Now I wish you a lot of fun and success with this book!

 Jürgen Wolf

 1 Introduction to the HTML Universe
Whether you’re a beginner, developer, programmer, or blogger—as a reader you’ll have certain expectations of this book. This chapter is first of all about clarifying some formalities that concern (or are necessary for) this book and to elaborate on what you can expect before you start the actual practice.
You surely have already skimmed the table of contents of this book and may have noticed that its focus is on HTML and CSS. With HTML, you’ll learn the markup language for creating websites, whereas with CSS, you’ll learn how to design and style websites. In addition, it also covers web programming with JavaScript, which has become indispensable.
This chapter is still taking it slow, and here’s what you’ll learn:

 	
 The types of websites that exist, what technologies are used for them, and the knowledge required

 	
 The difference between dynamic and static websites

 	
 The basic languages you should know and be able to use as a web developer

 	
 What you need to create an HTML document and display it in a web browser

 	
 How to check the HTML document for errors

 1.1 Is This Book Even Intended for Me?

 This book is aimed at beginners who are simply looking to create their own website or familiarize themselves with basic web technologies at first, as well as web authors looking for a comprehensive read on the hot topics of HTML, CSS, and JavaScript.

 In addition, future developers and programmers of web applications for web templates or dynamic websites can no longer get around a sound knowledge of HTML. Even bloggers or online sellers—who often use a platform where they can enter the content in a form without any special knowledge and generate a web presentation for the viewer—can benefit from deeper knowledge to align or customize the content more neatly or, if necessary, according to their own needs.

 If you don’t yet know which group you want to belong to, you’re at least interested in web development (otherwise, you wouldn’t be holding this book in your hands). With the background knowledge around HTML, a lot of doors will open for you.

 Should I Read the Chapters in Order?

 For newcomers to this subject, I recommend working through the book from cover to cover. Where possible, the individual chapters in this book are structured to anticipate later chapters as little as possible. Of course, this can’t be completely avoided when you explain a topic.

 Returning or more experienced readers can read the chapters of the book in any order and flip to individual topics as needed. For this reason, this book can also be used as a reference work.

 1.2 Different Types of Websites

 At this point, I want to provide a brief overview of what common types of websites exist today and how they are created. Separating the website types isn’t that easy at first because they also depend on the goal and the technology approach, and some types overlap each other. Leaving aside the technology approach, the types can be roughly divided into six categories:

 	
 Web presence (homepage/corporate website)

 	
 Blog/magazine/portfolio

 	
 E-commerce website

 	
 Web platform (social media websites)

 	
 Landing page/microsite

 	
 Web app

 1.2.1 Web Presence

 A web presence can either be a private website or a web presence of companies, associations, authorities, business people, and so on. In the case of companies, cities, and nonprofit organizations, the term corporate website (also informational website) is often used. Especially in the business world of smaller companies or self-employed people, it’s good form to be present on the web with information, offers, contact options, and so on with a web address. Even in times of social networks such as Facebook, many private individuals still create and maintain their own homepage. Most of the time, you can find more details about the person and their interests there. However, at the moment, especially among younger people, the private website is going out of fashion and is being replaced by Facebook, Instagram, and Twitter. Larger companies, associations, lawyers, artists, restaurants, doctors, craftsmen, authors, and so on are often represented on Facebook in addition to a web presence. As a rule, the primary purpose of such websites is to provide information to visitors.

 Required Knowledge for a Web Presence

 To create private websites or web presences for companies, associations, and so on, a good knowledge of HTML, CSS, and JavaScript is useful if you want to create the website manually. Especially when it comes to the web presence of smaller companies or public figures such as artists, lawyers, and so on, the code should definitely be free of errors. As mentioned, this is predominantly only true if you create a static website. Corporate websites of companies in particular contain dynamic elements such as news or contact forms in addition to static content. Now, many companies and individuals use ready-made (dynamic) content management systems (CMSs) such as WordPress for their web presence. Once such a system is set up, more in-depth knowledge isn’t necessarily required because web-based software is used and formatting can be implemented in a similar way to a Microsoft Office application. However, HTML and CSS knowledge is useful and helpful here as well.

 1.2.2 Blog/Online Magazine/Portfolio

 Blog, derived from the combination of web and log, is a website with entries that are usually sorted chronologically and separated from each other. The person who runs the blog is often referred to as a blogger.

 Often, a blog is also the homepage of a web presence, where visitors can read the latest posts and up-to-date information about a particular topic, company, and so on. Likewise, moderated comments and discussions for and with visitors or sharing of posts on social media are possible. This category also includes so-called magazine websites, which usually also contain many current articles, photos, and videos, in addition to being informative and educational. What the magazine industry used to be, online magazines are now.

 Here, the terms web presence and blog are often mixed up with each other. Many companies or individuals often use a ready-made system such as WordPress or Drupal for their web presence. In addition to a blog, you can also find the usual information on these websites, such as contact options, offers, and much more. However, such blog systems aren’t suitable for every company. Thus, in more discreet professions such as those of lawyers and doctors, you’re more likely to find a simple web presence. Many smaller businesses, such as handicraft companies or private individuals, don’t have the time required to maintain a blog on a regular basis. It doesn’t look good when you visit the website of a company whose last blog entry is already a year old. This makes people wonder whether the company still exists at all.

 By the way, blog culture (or net culture) isn’t a trivial topic that can be dealt with here in a few lines. For example, blogs can still be divided into different typologies and then again into different operators (individuals, corporations, artists, etc.). The official blog of a company, for example, is referred to as a corporate blog (corporate website). Even Twitter has coined its own term with microblogging.

 However, blogs and online magazines essentially differ from web presences or corporate websites in that they not only inform visitors about the company or the individual but also regularly present new and relevant content with added value. To create a blog or magazine website, you have two options: install blog software on a server or web space, or use a ready-made hosted solution. Installing blog software such as WordPress on a server or web space is much more flexible because here you can extend the blog with many more existing modules and templates. If there’s no suitable module available, you can program one yourself.

 This category also includes portfolio websites for designers, photographers, artists, and creatives, where they can present their work visually. This often involves installing website themes with minimalist designs for blog software (e.g., WordPress). The amount of text is often significantly reduced on such websites.

 What Are PHP and MySQL?

 PHP is a scripting language whose syntax is similar to that of the C programming language and is mainly used for creating dynamic websites and web applications.

 MySQL is a relational database management system that’s mostly used for dynamic web presences on the internet in connection with the Apache web server and the PHP scripting language.

 For the installations, however, certain requirements must be met on the server or web space (e.g., access to PHP and a MySQL database), and a basic knowledge of this is an advantage if things don’t work out right away with the installation. With a hosted solution such as www.blogger.com or www.tumblr.com, you don’t have to bother much about this and can usually start blogging right away after a quick signup and template selection.

 Required Knowledge for a Blog

 Here, too, knowledge of HTML, CSS, and JavaScript is advantageous to be able to take various fine details into your own hands. CSS knowledge especially is extremely helpful because you can often change the complete web design with it. Generally, the posts of such blogs are created using web-based software. This is a web application that runs in the browser and is usually quite easy to use, like an office application for text creation. With such blog systems, you only have to worry about the content. The layout, saving, adding, and archiving of blog articles is done for you by the blog system. If you’re already a developer and familiar with PHP and MySQL, for example, or if you want to learn programming in the future to write your own modules, you’ll definitely need more in-depth knowledge of HTML, CSS, and JavaScript.

 1.2.3 E-Commerce Websites: Stores without Opening Hours

 As online shopping is becoming increasingly popular, it’s no surprise that many companies want to be represented with a web store. The advantages are quite obvious: open around the clock, less personnel costs, no costs and rent for the store and the facility, and a couple more reasons.

 In practice, ready-made software is used for a web store because it requires much less effort to update or maintain the product catalog, for example. Even more importantly this web store software has already been tried and tested many times and is therefore much more secure, which is particularly important when it comes to the payment process.

 Thanks to ready-made web shop software, such an online store can be set up quite quickly by anyone. However, there’s a long list of legal requirements here that you must follow strictly for the store to be legally valid. This starts with the obligation to publish legal data, general terms and conditions (GTC) must be present, the cancellation policy mustn’t be missing, correct information on delivery time and prices and much more. If you’re a layman setting up an online store, you might still want to consider a lawyer for advice.

 Depending on the functionality of the web shop, software can be quite expensive (e.g., for an online store). In this context, you need to assess what’s worthwhile for you. The solutions range from complete solutions offered by hosting providers to professional web store software for installation on a server or web space. Here, prices vary from free to five-figure amounts. Often, specialized software such as Shopify, Magento, or WooCommerce is used for this purpose.

 Required Knowledge for a Web Store

 The web store is usually operated via an access-protected user interface (UI; usually via the web browser), which is similar to a CMS for a blog. For this reason, the same applies here as for a blog: knowledge of HTML and CSS isn’t absolutely necessary, but it’s an advantage if you want to present the product in a better way.

 If, on the other hand, you want to create an e-commerce website yourself, then in addition to HTML, CSS and JavaScript, working knowledge of a server-side language such as PHP or Ruby on Rails is necessary. The handling of databases must also be mastered here.

 It isn’t suitable and doesn’t make sense for everyone to set up and open their own web store right away. This depends on what you want to sell and the size of the business. For those who only want to sell a handful of products and are new to the e-commerce world, it may be sufficient to offer their products at www.ebay.com, for example. You should keep in mind that once the web store has been set up and a lot of money has been invested, you first need visitors to your online store. However, a visitor alone is far from being a buyer.

 1.2.4 Landing Page/Microsite

 A landing page usually consists of only one web page, which is aimed at a specific goal of having visitors perform a specific action (call to action). This would be, for example, starting a test phase for a product, buying a product, or simply contacting us. The goal of such a landing page is to present visitors with all the elements of a product on one page so that they become potential customers. Furthermore, such pages are highly optimized for search engines in order to reach targeted audiences via social media campaigns or search engine advertising.

 Often the term microsite is also used as a synonym for a landing page, but that isn’t quite correct, as a microsite is rather an informational website, which consists of a few pages and deals exclusively with a specific topic. This concept is frequently used by companies to specifically promote a single product on a separate domain, rather than placing the product within an extensive corporate website.

 Required Knowledge for a Landing Page/Microsite

 You can theoretically create a landing page/microsite using HTML and CSS. But here, too, there are web construction kits, special plug-ins, and themes for a CMS available that do all the work for you. However, JavaScript technologies such as React or Angular also represent viable solutions for developing a landing page/microsite.

 1.2.5 Web Platform: Building Your Own Social Network

 Web platform can be used generically for the other types of websites. I use it here for websites that registered users not only can read but also to which they can add their own content online via a web browser. The functionality is often provided by a CMS. Typical social networking platforms such as Facebook, Myspace, and so on or wiki software (e.g., as used by https://en.wikipedia.org) are also included. Particularly in the commercial sector, such platforms can achieve much better customer-oriented support and, in smaller to larger companies, also a fruitful exchange of experience and knowledge beyond departmental boundaries.

 The basic idea of such a web platform is usually that the content is enhanced with texts, images, graphics, and more through the collaborative work of registered users to provide a collection of useful information. Even if the content is created by other users, a moderator is indispensable for managing and reviewing the content.

 Required Knowledge for Web Platforms

 The same applies here as before for the web store and the blog. In addition, the required knowledge depends on whether you’re a user or a moderator of such a web platform. With HTML knowledge, you can better structure the content to your own liking and design it using CSS. However, that depends on the platform you use. Some platforms allow the use of HTML elements only under certain conditions. If you plan to develop your own web platform, the knowledge of HTML alone is no longer sufficient. Then more extensive knowledge of development in a server-side web programming language such as PHP, Ruby, Python, or JavaScript technologies (now also possible server-side) such as React or Angular is required.

 1.2.6 Web Apps

 Web apps are basically ordinary web applications that resemble desktop applications. These are internet applications with many interaction options, such as you would find in an ordinary desktop application. Such applications don’t necessarily have to run in a web browser. The benefits of such applications over classic web applications include improved usage and, with appropriate technology, faster performance.

 Required Knowledge for Rich Internet Applications

 In the past, external technologies in the form of third-party plug-ins, such as Flash Player, Java Virtual Machine (JVM), Silverlight, AIR, and Flex, were the preferred solutions for creating such web apps. Meanwhile, web apps can also be created using classic web technologies such as HTML, CSS, JavaScript, and Ajax without any plug-ins. Ready-made HTML/JavaScript-based frameworks and libraries, such as Angular, React, Ext JS, and Google Web Toolkit, are available for this purpose.

 1.3 Dynamic and Static Websites

 In the preceding section, we often referred to the terms content management systems (CMSs) and blog systems. Well-known representatives of such systems include WordPress, Joomla!, Drupal, Contao, and TYPO3. Once such systems have been installed on a server or web space, hardly any further knowledge is required in principle, but, as always, it’s still pretty useful. CMSs are run on the server side, are programmed with modern web programming languages (mostly PHP, Ruby, and Python), and often also require a server-side database (e.g., MySQL or PostgreSQL). This assumes that appropriate resources (PHP, Ruby, Python, and/or MySQL) are available on the server and may be used. Such CMSs create dynamic websites. For this purpose, the difference between static and dynamic websites should first be explained.

 1.3.1 Static Websites

 In a static website, all content (e.g., text and image information) is stored unchangeably in individual files on the web server. The content of such a file is created using HTML. When you make changes to static websites, the file in question usually needs to be changed manually on the local machine and then uploaded back to the web server. The use of static websites is therefore likely to be worthwhile for smaller web presences where changes are needed relatively infrequently.

 Potential advantages of static websites include the following:

 	
 The cost of web hosting is cheaper because no special features such as databases or scripting languages are needed. Note, however, that the professional features no longer cost a fortune with the larger web hosts.

 	
 Page load and load time may be faster because the page can be returned immediately from the web server in response to the request.

 	
 Developing static websites can be easier and less expensive. However, this depends on the scope of the project and your skills.

 Possible disadvantages of static websites include the following:

 	
 A good knowledge of HTML is required to update the website. If you plan to create a web presence for someone using static web pages, you should be aware that you’ll have to make the changes yourself most of the time.

 	
 The initial creation of many individual files for the static website can become very time-consuming.

 	
 Changing the design of the website can be quite expensive. In the worst-case scenario, you need to change every single file. Ideally, however, the web design of a static website is based on CSS, so only this CSS file would need to be changed.

 In Figure 1.1, you can see a simplified representation of how a static web page is returned. Here, the web browser first sends a request for a web page to the web server that hosts the website. The web server finds this page and sends it back to the web browser as a response. If this web page isn’t found on the web server, it returns an error message (usually with error code 404) stating that the resource couldn’t be found on the server.

 [image: Request from the Web Browser and Return of a Static Web Page Stored on a Web Server]

 Figure 1.1
 Request from the Web Browser and Return of a Static Web Page Stored on a Web Server

 1.3.2 Dynamic Websites

 For dynamic websites, a CMS usually generates the web pages. This usually involves keeping the content, such as text and images, separate from the technical elements, such as the layout or scripts. When a visitor visits the website, the content and technical elements on the web server are read from a database and dynamically assembled into a web page before being returned to the visitor.

 In any case, such a CMS must be installed and reside in a web server environment where, depending on the CMS, different scripting languages (e.g., PHP or Python) and mostly databases (e.g., MySQL or PostgreSQL) must be present before you can install/use the CMS.

 Potential advantages of dynamic websites include the following:

 	
 Updating and adding new content can be done much faster via a web-based UI. As a rule, you no longer have to bother about data storage (where and how).

 	
 Design modifications and design changes can be made in one central location. Often there are many ready-made templates available. Design changes affect all existing web pages at the same time.

 	
 Such systems can be maintained without HTML and other programming skills and can even be managed by several people. New functionalities can be added at any time thanks to many existing modules/plug-ins (e.g., search feature, sitemap, online store, and forum).

 Possible disadvantages of a dynamic website include the following:

 	
 Web hosting incurs higher costs due to the need for special features such as scripting languages and databases. However, the costs are no longer significantly higher than for a static website, which they still were a few years ago.

 	
 If you need to create your own or special modules or plug-ins, knowledge of programming with scripting languages becomes necessary. This could make the development take a little longer and be more expensive.

 Figure 1.2 shows a very simplified representation of how a web page is dynamically generated. A web browser makes a request for a web page to a web server by entering a web address. The web server searches for and finds the page and then passes it to the application server. The application server searches the found page for commands and completes the web page. Additionally, statements for a database query can be included here. In this case, such a query to the database (more precisely, the database driver) is started. The database driver then returns the requested record (also called recordset) to the application server, where this data is inserted into the web page. The dynamic web page thus created on the web server gets sent to the web browser as a response.

 [image: Simplified Representation of How a Web Page Is Assembled and Returned after a Web Browser Request on the Web Server]

 Figure 1.2
 Simplified Representation of How a Web Page Is Assembled and Returned after a Web Browser Request on the Web Server

 Web Server, Application Server, Database

 Admittedly, I’ve thrown around a lot of terms here, so they should be explained briefly. While you won’t have much to do with dynamic websites in this book, it can still be helpful to know these terms a little better.

 	
 Web server
This is a computer on which web server software (and usually nothing else) is installed. Such a web server is typically used to make documents available locally, on an intranet, or over the internet, as well as to transmit them to clients such as a web browser. The most important web servers are probably the Apache HTTP Server and Microsoft Internet Information Services (IIS). By the way, the location of the web server can be anywhere in the world.

 	
 Application server
An application server provides an environment for client-server applications and a web server. For example, in a web application, the web browser represents the client part of the application. The application server provides certain services (e.g., access to databases and authentication).

 	
 Database
A database is used to store a large amount of data as efficiently as possible and make it available on demand. Usually, a database consists of a database management system and the data itself. The management system of a database takes care of the structured storage and accesses to the data. Database systems provide their own database language for managing and querying the data. There are many different database systems, with MySQL and PostgreSQL currently having the largest market shares on the web.

 1.4 Languages for Designing and Developing on the Web

 Now that we’ve covered the different types of websites, this section gives you an overview of the languages you need to know as a web developer and will learn about in this book:

 	
 HTML
You’ll use this language to create the content of a website.

 	
 CSS
You’ll use this language to create the layout of the website.

 	
 JavaScript
You’ll use this language to program the behavior of the website.

 1.4.1 HTML: Text-Based Hypertext Markup Language

 HTML is a purely text-based markup language for the structured representation of text, graphics, and hyperlinks in HTML documents. HTML documents can be displayed by any web browser and are therefore also considered the basis for the internet. Because HTML is a purely text-based language (plain text format), HTML documents can be edited and saved with any text editor. In addition to the data displayed in the web browser, an HTML document can contain other meta information. Occasionally you hear that websites are programmed with “HTML commands.” However, it’s wrong to speak of HTML as a programming language because in a programming language, certain tasks are solved by a sequence of commands. HTML doesn’t have any commands or statements, but instead uses markers (also referred to as tags). These markers are used to structure the individual sections of an HTML document. Even though there will still be talk of “programming HTML,” you should try to remain technically correct here because HTML isn’t programmed, but written.

 Meta Information

 Meta information (or metadata) is data that’s not usually displayed but contains information about the characteristics of the data (in this case, the HTML document), such as the language or author of the document.

 1.4.2 CSS: Design Language

 Although over the years elements were added to HTML that dealt with the visual design of a document, fortunately the decision was made to separate structuring and layout by defining them with CSS. Thus, in common practice, HTML is used only for the logical structuring of web pages.

 [image: Usually, HTML Code for Semantic Structuring Is in One File, and the CSS Code for Styling and Laying Out Is in Another]

 Figure 1.3
 Usually, HTML Code for Semantic Structuring Is in One File, and the CSS Code for Styling and Laying Out Is in Another

 It’s of course possible to display HTML in the browser without CSS specifications. For example, if you use heading text in the h1 element (e.g., <h1>heading</h1>), this text is displayed larger than the rest of the text in the HTML document between <h1> and </h1>. If you use HTML elements for tables, they are visibly structured as a table. Texts can also be displayed in bold or italics in HTML. The way in which these HTML elements (without CSS) are ultimately displayed in the web browser is determined by the web browser provider. The HTML specification only contains recommendations on what such a default setting might look like in the browser. HTML is only used to semantically structure an HTML document with the HTML elements and should be used exclusively for this purpose in practice. CSS is used for layout and styling.

 By separating HTML and CSS, content and layout are separated from each other. In practice, the HTML code (for structuring) is usually in one file, and the CSS code (for formatting and styling) in another. If you apply this separation consistently to all web pages, you can change the complete layout of all web pages with just one CSS file. The HTML files don’t need to be changed. For this reason, you ideally control the visual presentation and styling of the HTML elements via CSS. CSS can be edited with a plain text editor just like HTML.

 1.4.3 JavaScript: Client-Side Scripting Language of the Web Browser

 Client-side scripting languages are referred to as web-based scripts that are executed on the local computer, usually by the web browser. In common practice, JavaScript is the most significant client-side scripting language. JavaScript allows you to extend the limited capabilities of HTML with user interactions, for example, to evaluate, dynamically modify, and create content. Nowadays, no modern website can do without JavaScript.

 Unfortunately, JavaScript has been abused for all sorts of mischief in the past, so the reputation of this programming language hasn’t necessarily been the best. In addition, there was a browser dispute between Netscape and Internet Explorer, in which Microsoft wanted to push through its own JavaScript language, JScript.

 By now, the tide has turned in favor of JavaScript on one hand due to the World Wide Web Consortium (W3C) with the introduction of a Document Object Model (DOM), which was gradually adopted by web browser manufacturers, and on the other hand to the many JavaScript frameworks. Much of the innovation in standard HTML has nothing to do with ordinary HTML elements, but rather with JavaScript APIs.

 Even if you get to know JavaScript in this book primarily as a way to extend HTML and CSS, you can already find this language outside of web browsers for mobile applications and desktop applications or on servers or microcontrollers.

 1.4.4 Server-Side Scripting Languages and Databases

 Server-side scripting languages aren’t directly covered in this book, but should be mentioned briefly anyway because only with server-side scripting languages can web pages be generated dynamically. I’ve already briefly explained dynamic websites in Section 1.3.2. Well-known and common server-side scripting languages are PHP, Python, and Ruby. These scripting languages can be used to implement blogs, forums, form mails, guestbooks, and wikis, for example. Most larger websites today are equipped with server-side techniques and often use a database connection to MySQL or PostgreSQL as well.

 Many larger blogs or CMSs such as WordPress, Drupal, TYPO3, Contao, and Joomla! are based on such server-side scripting languages with database connectivity. Most of the time, these systems are based on PHP as the scripting language and MySQL as the database.

 It can be quite helpful if you have basic knowledge of a scripting language such as PHP to be able to create form mails, guest books, and surveys for smaller web presences, for example. Dealing with databases such as MySQL is also quite useful. Once you’re familiar with HTML, CSS, and JavaScript after reading this book, nothing can stop you from moving on to a scripting language such as PHP and a database such as MySQL to dive even deeper into web development.

 1.5 What Do I Need to Get Started?

 Beginners often wonder what is needed to create web pages and learn HTML. Basically, you wouldn’t need anything at all because everything is on board your operating system by default. Strictly speaking, you only need a plain text editor to create web pages and a web browser to display them.

 1.5.1 HTML Editor for Writing HTML Documents

 As a text editor, you could theoretically use the editor installed on the system. For Microsoft Windows, this is Microsoft Editor (original name: Notepad). The TextEdit editor on the Mac also gets along splendidly with HTML. For Linux systems, the default editor depends on the distribution used. Often gedit is used here, which is also best suited for creating HTML pages.

 In practice, hardly any ambitious web developer uses the operating system’s standard editors; instead, they use real HTML editors (or at least universal text editors). The advantage of such special HTML editors is that you have syntax highlighting and many other helpful features at hand for creating web pages. There are a lot of free and commercial HTML editors on the market. Office word-processing programs such as Microsoft Word are less well suited, if at all, for creating pure HTML code because they often add unnecessary ballast to the HTML source code (when the files are saved in HTML format).

 If you haven’t decided on a particular editor yet or maybe don’t quite know what you want to use, here are my brief recommendations, all of which are available for Windows, Linux, and macOS (free of charge):

 	
 Visual Studio Code (https://code.visualstudio.com)
The editor comes from Microsoft and has become the standard tool for many web developers. It’s also my editor of choice and makes a developer’s life much easier with countless extensions and language support.

 	
 Adobe Brackets (https://brackets.io)
Brackets was designed by Adobe as a community project purely for web application development.

 	
 Sublime Text (https://sublimetext.com)
Before there were countless editors on the market, Sublime Text was often the preferred editor for web developers. However, Sublime Text isn’t free of charge, even though you can test this editor without any time limit.

 [image: Visual Studio Code from Microsoft Is the Editor I Prefer to Use in My Daily Work]

 Figure 1.4
 Visual Studio Code from Microsoft Is the Editor I Prefer to Use in My Daily Work

 WYSIWYG Editor

 What You See Is What You Get (WYSIWYG) editors are also available. With these editors, you can format and “click together” a web page virtually like with an office program for word processing. The WYSIWYG editor generates ready-to-use HTML code in the form of a file. The best-known representatives are Dreamweaver from Adobe or Google Web Designer (https://webdesigner.withgoogle.com). Such editors are certainly helpful if you want to work quickly or if you have more experience, but they are less suitable for learning HTML at first, even if these programs also have a text editor available. However, these environments require some training time and good web development skills before you can effectively design websites with them.

 1.5.2 Web Browser for Displaying the Website

 To view the HTML document created in the HTML editor of your choice, you need a web browser. As a website developer, you shouldn’t settle for just one web browser, but use as many as possible for testing, as there are many small differences between different web browsers and their respective versions. It’s also advisable to view a website on different devices. When you view modern websites on devices with different screen sizes, such as a desktop computer, a laptop, a tablet, and a smartphone, you’ll notice that they often display differently. This is because such websites ideally adapt to the environment in which they are displayed. This adaptability is called responsive web design. The adjustment doesn’t happen automatically, but it’s the responsibility of the web designer. I’ll go into greater detail about this separately in this book.

 [image: The Same Website Is Tested Here on “https://ui.dev/amiresponsive” for Different Devices]

 Figure 1.5
 The Same Website Is Tested Here on “https://ui.dev/amiresponsive” for Different Devices

 The main web browsers are currently Google Chrome, Mozilla’s Firefox, Apple’s Safari, and Microsoft’s Edge, with Google Chrome currently having the largest market share. There are also many other browsers, such as Vivaldi, Opera, and Brave, but they only have a small market share. The manufacturers often supply their own browsers for mobile devices as well. For example, the Samsung internet browser is particularly strong on Samsung devices.

 The heart of any browser is the HTML renderer (often called the browser engine), which converts (renders) the source code coming from the web server into a visible web page. The HTML renderers current at printing time are listed in Table 1.1.

 	
 Renderer

 	
 Browser

 	
 Quantum

 	
 Firefox

 	
 WebKit

 	
 Safari and all web browsers on iOS

 	
 Blink

 	
 Chrome, Edge, Samsung Internet, Vivaldi, Opera, Brave, and so on

 Table 1.1
 Different Web Browsers and the HTML Rendering Engine They Use

 The fact that many browser vendors use Blink, provided by Google, as their HTML renderer makes things a little easier for you when it comes to testing: You can assume that a web page that looks good in one browser with Blink as the renderer will usually look good in the others. The same is true for Apple’s WebKit.

 1.5.3 Step by Step: Creating a Web Page and Viewing It in the Web Browser

 To get you prepared for the rest of the book, I’ll now show you in four steps how to create a single web page using an editor (of your choice) and view it in your web browser.

 	
 Open a text or HTML editor (Section 1.5.1), and create a new empty text document. Mostly this should be accessible via the menu path File • New File.

 	
 Type the HTML code into the editor. For demonstration purposes, the following basic structure is used for this example (don’t worry about the meaning of the individual lines yet):

 <!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <h1>A headline</h1>
 <p>Here is an ordinary body text.</p>
 </body>
</html>

 Listing 1.1
 /examples/chapter001/index.html

 [image: Here I’ve Written the HTML Code in Microsoft’s Visual Studio Code Editor on Windows]

 Figure 1.6
 Here I’ve Written the HTML Code in Microsoft’s Visual Studio Code Editor on Windows

 	
 Save the HTML code. Ideally, you want to create a separate directory for this purpose. Most editors provide the File • Save or File • Save As command. There are two things to consider here, namely the file extension and the encoding of the file: you must save this web page with the .htm or .html file extension and make sure that the file is really saved as a plain text file, that is, without any vendor-specific formatting. Concerning the encoding, UTF-8 is always a good choice (but you can also use ANSI at first). With most editors, you don’t have to worry about this and often find the file extension available for selection.

 Using the “.htm” or “.html” File Extension

 The web browser doesn’t care whether you use page.htm or page.html as the file extension. The fact that there are two names at all has historical reasons that go back to the DOS world, where file could only be named according to the 8+3 rule, that is, eight characters for the file name and three characters for the file extension. As already mentioned, it’s entirely up to you which file extension you use. However, I recommend that you commit to one version and always use it in the future. I’ve chosen to use the .html extension in this book.

 Depending on the system, the HTML document with the extension .html or .htm is displayed in the file browser with a corresponding icon of the installed default web browser.

 	
 Double-click the file to view it in the web browser.

 [image: The Saved HTML Document index.html in Google Chrome on Windows]

 Figure 1.7
 The Saved HTML Document index.html in Google Chrome on Windows

 1.5.4 Checking Written HTML

 To check whether the HTML code is correct and to learn from mistakes, it’s worth validating the HTML code or the web page. The easiest way to do this is to use the online tool from the W3C, which you can find at http://validator.w3.org.

 Validation with Editors and IDEs

 In many HTML editors or integrated development environments (IDEs), functions for validating HTML are often already available or can be integrated subsequently as an extension. For example, Visual Studio Code provides the extension HTMLHint for this purpose.

 On this website, you can validate an existing web page (Validate by URI), upload an existing HTML document (Validate by File Upload) and have it validated, or simply copy and paste an HTML code (Validate by Direct Input) and then validate it.

 Because you’ll probably still be testing simple HTML documents on the local computer in the beginning, uploading or simply copying and pasting is a good option. In the example, the latter will be briefly demonstrated (see Figure 1.8). For this reason, you should select Validate by Direct Input (or http://validator.w3.org/#validate_by_input), copy the HTML code you entered in the editor to the clipboard, and paste it into the text box under Enter the Markup to validate.

 [image: HTML Code for Validation Has Been Inserted Here]

 Figure 1.8
 HTML Code for Validation Has Been Inserted Here

 When you click the Check button afterwards, the validation will be performed. If the HTML code was error-free, you’ll get a green bar indicating that the HTML document was OK, which is shown in Figure 1.9.

 [image: HTML Code Has Passed the Test and Is Valid]

 Figure 1.9
 HTML Code Has Passed the Test and Is Valid

 If the check was invalid, the error(s) will be listed with a message and marked in the HTML code, as you can see in Figure 1.10. You can read the warnings and error messages if you scroll down a little. Feel free to experiment with your HTML code and intentionally include some typos or simply remove a line in the code. As a beginner, you probably won’t be able to do much with the error messages at this point.

 [image: This Check Resulted in Errors, as You Can See from the Error Message Output]

 Figure 1.10
 This Check Resulted in Errors, as You Can See from the Error Message Output

 By the way, an error output doesn’t mean that the web page can’t be displayed. Web browsers are relatively fault-tolerant and also have their own rules. Nevertheless, in the worst-case scenario, the web page may not be displayed properly in a particular web browser or—even worse—not at all.

 Validation Tip

 Enter some web addresses of larger websites under Validate by URI. It will probably surprise you that there are hardly any websites with 100% valid code. Some larger websites may well display between 100 and 400 errors. This will surely make you wonder what’s the point of writing HTML-compliant code if not even the creators of large websites adhere to it. I’ll briefly describe this in the next section.

 1.5.5 Good Reasons for Validating the HTML Code Anyway

 Validating a web page or HTML code has many advantages as follows:

 	
 Display in any browser
Probably the weightiest argument is the display of the website in any web browser. Errors in the HTML source code can cause the web page not to be displayed or not to be displayed correctly in some browsers. While web browsers are fairly fault-tolerant, especially on mobile devices, less powerful error-correction routines are included in the web browser being used.

 	
 Search engines
The search engines look for text and keywords. What good is the most beautiful website if the search engine can do nothing with the document and the site is therefore not found on the web?

 	
 Accessible websites
People with a physical limitation such as a severe visual impairment are dependent on special preparations of the web offer that go beyond the usual presentation. Faulty web pages with poor or incorrect text markup can cause the read-aloud software, for example, to function incorrectly or incompletely. This is a shortcoming, by the way, of some CMSs, as they often generate code that’s less accessible to people with disabilities.

 	
 Validation
Validation is enormously important, especially for beginners, to avoid starting with the wrong things right away. Precisely because HTML is so fault-tolerant, it’s easy to be tempted to write messy code. A validation provides initial feedback to beginners.

 	
 Quality assurance
In addition, proper code ensures quality assurance, which means that the website will still work in future browser versions, when they may not be as fault-tolerant.

 	
 Professionalism
Proper code also shows that you’re a professional developer who cares about delivering decent work.

 There are certainly other reasons for paying attention to clean HTML code. As you’ll get to know HTML (and CSS) in this book, you should always keep HTML validation somewhat in mind. Even if you’re a budding developer and programmer planning to develop your own web applications or even your own CMS in the future, clean HTML code should always remain your focus. The unfortunate fact is that dynamically created web pages often contain less clean code. The same is true for WYSIWYG editors. Again, the code isn’t always validated as clean HTML, but with HTML validation, you can always rework the code manually (if you know how to do that).

 More Tools for Validation

 You don’t have to go to http://validator.w3.org every time to validate your HTML code or web page. In this regard, too, there are suitable extensions for every web browser available that can be installed later. For other browsers, you can find favelets at http://validator.w3.org/favelets.html. Some HTML editors also provide a basic validation of the code. Favelets are small snippets of JavaScript embedded in a bookmark URL that allow bookmarks in browsers to perform various advanced tasks.

 1.6 Conventions Used in This Book

 The following conventions apply to the examples used in this book: If you find the ellipsis points (...) there, then the code has been shortened for space reasons. The complete and unabridged example, on the other hand, can be found on the website for the book (www.rheinwerk-computing.com/5695/) and at https://html-examples.pronix.de. The listing caption corresponds to the exact path within the ZIP file. Parts in the listing that have been highlighted in bold are particularly relevant in the example.

 ...
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 ...
 </body>
</html>

 Listing 1.2
 /path_to_example/sample_name.html

 1.7 Summary

 In this chapter, you learned about different types of websites and what’s behind terms such as web presence, blog, web store, landing page, and web platform. You now know what dynamic and static websites are. In addition, you’ve read that HTML, CSS, and JavaScript should be the basic languages of a web developer and that you’ll get to know all three in this book. Last but not least, you learned how to create, save, and display an HTML document in a web browser, as well as how to check the HTML code for errors.

 2 Basic Structure of HTML and HTML Documents
This chapter introduces you to the basic syntax and structure of HTML as a language, as well as the individual components that make up a classic HTML document.
You’ll also learn how an HTML document is generally structured. At this point, it’s not yet important that you understand the examples and the individual HTML elements. At the end of the chapter, you’ll know what HTML tags and HTML elements are and into which sections an HTML document is basically divided, which is sufficient for the time being.
You’ll learn about the following important aspects in this chapter:

 	
 How to implement a structure using HTML

 	
 What HTML tags and HTML elements are

 	
 How to correctly nest HTML elements

 	
 What HTML attributes (properties of HTML tags) are

 	
 How to use comments in an HTML document

 	
 How an HTML document is structured

 	
 How to set the document type to <!doctype>

 2.1 Syntax and Structure of HTML and HTML Documents

 This section describes the basic grammar of HTML and the basic structure of HTML documents. You certainly can use HTML without knowing the grammar, but if you really want to learn and use valid HTML, you should know and follow the rules.

 2.1.1 How to Structure a Document in HTML

 HTML is structured in the same way as you know it from other media or applications. When you look at this book, a newspaper, or even a document in a word processor (e.g., Word), you’ll always find some kind of structure. In this book, for example, each chapter contains a heading followed by text with paragraphs and occasionally some pictures. Here and there, you’ll also come across some tables. In some sections, subheadings are used at different hierarchical levels. In the same way, an HTML document is structured via HTML elements.

 For demonstration purposes, let’s take a look at an HTML document with a simple HTML page structure, which will then be explained:

 <!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <h1>The main heading</h1>
 <p>Here is an ordinary paragraph text.</p>
 <h2>A subheading</h2>
 <p>Another paragraph with text.</p>
 </body>
</html>

 Listing 2.1
 /examples/chapter002/2_1_1/index.html

 When you load this HTML document into your web browser, you should see a display similar to Figure 2.1.

 [image: A Structured HTML Document in the Web Browser (Google Chrome)]

 Figure 2.1
 A Structured HTML Document in the Web Browser (Google Chrome)

 Figure 2.2 shows the basic elements of the page structure of an HTML document and their meaning. The main focus is on the HTML code and its elements for structured presentation. You’ll learn more about the actual basic framework and the individual HTML elements in detail in the course of the next chapters.

 [image: Basic Page Structure of an HTML Document]

 Figure 2.2
 Basic Page Structure of an HTML Document

 Everything you see here between <html> and </html> is the HTML code for the HTML document. For this reason, the html element is often referred to as the root element of an HTML file. There can be only one such root element in an HTML file. This element also summarizes the header data between <head> and </head>. The part visible in the web browser is written between <body> and </body>. In this example, you’ll find a first-order heading between <h1> and </h1>, followed by plain paragraph text between <p> and </p>. This is followed by another second-order heading between <h2> and </h2>, followed by another paragraph text between <p> and </p>.

 Figure 2.2 also shows you that the individual elements are nested as in a rectangular container, and the HTML document is structured with the HTML elements. Strictly speaking, in this figure, the area between <html> and </html> should be drawn a bit wider (outside the display area) because it also contains elements that aren’t displayed in the web browser.

 If you think web pages are assembled from rectangular elements, you’re right. Web pages consist of rectangular boxes that are arranged in the browser below each other, next to each other, and inside each other. In Figure 2.3, I made these rectangular boxes visible using CSS. Later in the book, you’ll learn how to design such boxes with CSS.

 [image: The Rectangular Boxes That Make Up a Web Page Have Been Made Visible]

 Figure 2.3
 The Rectangular Boxes That Make Up a Web Page Have Been Made Visible

 2.1.2 Viewing the Tree Structure Using the Document Object Model Inspector

 The HTML code of an HTML document consists of pure text. Only a web browser creates a model from this HTML document in the form of a tree structure of objects such as HTML elements, attributes, and text. This model is referred to as the Document Object Model (DOM). Each object in this DOM tree is referred to as a node and can be manipulated via a public interface using JavaScript.

 If you want to view or examine this tree structure of HTML elements in your web browser, you can do so with a DOM inspector. All major browser manufacturers provide such web developer tools along with the web browser.

 In Figure 2.4, you can see the DOM inspector of the Google Chrome web browser in use. When you look at an example with such a tool, you can clearly see the nested tree structure of HTML. The hierarchical DOM view was called using the DOM Inspector of the Google Chrome web browser (via More Tools • Developer Tools).

 [image: Hierarchical DOM View]

 Figure 2.4
 Hierarchical DOM View

 2.1.3 HTML Tags and HTML Elements

 In the previous section, you saw how different HTML elements such as <h1>...</h1>, <h2>...</h2>, and <p>...</p> were used to describe the page structure. A complete HTML element usually consists of an opening HTML tag, a closing HTML tag, and everything in between. For example, the following line represents a complete HTML element:

 <tagname>Text within the HTML element</tagname>

 Instead of tagname, real HTML keywords describing different parts of a web page are used for this purpose. For example, you can represent a first-order heading using the following line:

 <h1>HTML element as heading</h1>

 An HTML element is usually the completely displayable element such as a heading, paragraph text, or an entire hyperlink. The HTML elements, in turn, are marked by HTML tags.

 The HTML tags (also called HTML markup tags) are keywords surrounded by angle brackets, such as <p>. Most HTML tags come as a pair, such as <p> and </p>. The first tag of the pair is the start tag, and the second one is the end tag. In practice, these tags are also called opening tag (= start tag) and closing tag (= end tag). Both tags have the same tag name, except that the closing tag is terminated by a forward slash (e.g., </p>).

 [image: A Complete HTML Element with Its Individual Components (Start Tag, Element Content, and End Tag)]

 Figure 2.5
 A Complete HTML Element with Its Individual Components (Start Tag, Element Content, and End Tag)

 2.1.4 Nesting HTML Elements and the Hierarchical Structure

 Most HTML elements can be nested and contain other HTML elements. Such nesting creates a hierarchical structure. The following example demonstrates such a simple nesting of HTML elements:

 <!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <p>This is an ordinary paragraph text.</p>
 </body>
</html>

 Listing 2.2
 /examples/chapter002/2_1_4/index.html

 Here, another HTML element has been nested within the paragraph text between <p> and </p>. The b element makes sure that the text is displayed in bold font (b = bold). In the example, the HTML element from to is actually the child element of the HTML element from <p> to </p>. Strictly speaking, the HTML element from <p> to </p> is again just a child element of the HTML element from <body> to </body>. This creates a fairly structured markup. Complex HTML documents therefore often contain deep nesting.

 When you take a look at the DOM inspector in Figure 2.6, you’ll see the structured markup from the parent <html> element, through the child <body> element, and the child-child <p> element, to the innermost HTML element, the child-child element.

 [image: A DOM Inspector Lists the Hierarchical Structure Very Clearly]

 Figure 2.6
 A DOM Inspector Lists the Hierarchical Structure Very Clearly

 2.1.5 Avoiding Incorrect Nesting of HTML Elements

 It’s important to always ensure that a child element is completely contained within the parent element. This means that you have to write an end tag of a child element within the parent element, that is, before the end tag of the parent element. In this context, you should take a look at the following erroneous example:

 ...
<body>
 <p>This is a common paragraph text.</p>
</body>
...

 When you validate this HTML code, three error messages get returned at once, as you can see in Figure 2.7. First, it’s noted that an end tag </p> was used, although it still contains open elements (here, only). Then the start tag is also noted as not having been closed. Finally, the end tag is described as invalid at the end because no start tag was found in the corresponding scope here.

 [image: Incorrect Nesting Is Immediately Detected by Means of Validation]

 Figure 2.7
 Incorrect Nesting Is Immediately Detected by Means of Validation

 You can fix the error by writing the end tag into the section, which in this case is between <p> and </p>, because the start tag is also in it. You must always close the innermost elements first and only then the outer ones. The correct notation of the preceding example looks as follows:

 ...
<body>
 <p>This is a common paragraph text.</p>
</body>
...

 2.1.6 Omitting the End Tag of an HTML Element

 In HTML, there are some optional tags—that is, HTML tags—that you could omit. For example, under certain conditions, you can omit the end tag, as shown in the following code snippet:

 ...
 <body>
 <p>This is an ordinary paragraph text.
 <p>This is another paragraph text.
 </body>
...

 Here, the closing end tags </p> have been omitted, which works and is permitted in most web browsers. In addition, it’s possible to omit the <html> start tag and </html> end tag or even <body> and </body> under certain conditions. Missing tags are inserted in the right places by the web browser when the DOM tree gets generated. When you use the DOM inspector and look at an HTML element with a missing end tag and the same one without a missing end tag, you’ll notice that the web browser always ends up generating the same HTML code from the document.

 However, omitting tags requires that you know and follow the rules defined for doing so. For example, it isn’t possible to omit an end tag just like that for all HTML elements. Many HTML elements produce an unexpected result or error when the end tag is missing. You can, for instance, omit the end tag for p, ul, or li elements, but not for div elements. These somewhat inconsistent requirements make it harder rather than being helpful, especially for beginners. For this reason, theoretically and practically, you can write the example /examples/chapter002/2_1_4/index.html without the html and body tags as follows, and still the web browser would create the same DOM tree from it as shown earlier in Figure 2.6.

 <!doctype html>
<meta charset="UTF-8">
<title>Window Title</title>
<p>This is a common paragraph text.</p>

 Listing 2.3
 /examples/chapter002/2_1_6/index.html

 More Information Online

 For an overview of the circumstances under which you can omit specific tags, see https://html.spec.whatwg.org/multipage/syntax.html#optional-tags.

 2.1.7 Standalone HTML Tags without End Tags

 Some HTML elements are standalone tags (or void tags) that have no content and therefore don’t require an end tag. An example of such a tag without contents is
, which causes a line break:

 <p>A line break
The next line</p>

 However, the HTML element
 shouldn’t be misused to increase the spacing between two lines. For this purpose, we can use either CSS (e.g., with the margin feature) or the p element.

 Case Sensitivity of HTML Tags

 In HTML, you can capitalize and lowercase the names of the tags as they aren’t case-sensitive: <h1> and <H1> mean the same thing. We use lowercase throughout this book.

 2.1.8 Additional HTML Attributes for HTML Elements

 The HTML elements can contain additional attributes (sometimes also referred to as properties) that you can use to specify additional information about an element. You can use attributes only for the start tags and the standalone tags. The attribute details are specified in an attribute name-value manner such as name="value". Let’s take a look at some simple examples:

 ...
<body>
 <p lang="en">
 Please click here.
 </p>
 <p>

 </p>
</body>
...

 Listing 2.4
 /examples/chapter002/2_1_8/index.html

 You can use the lang="en" attribute to specify the language used in the p element. lang stands for language and en for English. The a element allows you to define a hyperlink to another page. Without the href attribute, the HTML element wouldn’t make any sense at all here as it specifies the URL of the page (here, http://rheinwerk-computing.com/) to which the link should go when the user clicks on the text written between <a> and . The same applies to the standalone img element, where you specify the URL to an image (here, cover.png) via the src attribute. In addition, for an img element, you must specify the alt attribute for an alternative text (here: Book cover).

 The img element shows that you can use more than one attribute for HTML elements. The order in which you note the attributes in the HTML element is arbitrary. For example, for the img element, you could specify the alt attribute first and then the src attribute. When you use multiple attributes, there must be at least one space between an attribute name-value pair. It’s recommended to write the values of attributes between quotation marks, for example, "value". Most of the time, double quotes are used for this, although single quotes (e.g., 'value') are also permitted. The reason for this recommendation is the downward compatibility.

 [image: HTML Elements Can Contain Additional Attributes]

 Figure 2.8
 HTML Elements Can Contain Additional Attributes

 It’s probably unnecessary to mention that certain attributes can only be used for certain elements. For example, you can’t use the href attribute in a p element. Nevertheless, there are also global attributes in HTML, such as lang, which you can use in almost all HTML elements.

 2.1.9 Using Comments in HTML Documents

 If you want to comment on an HTML code at any place, you can introduce such a comment via the <!-- string and conclude it with the --> string. Everything you write between <!-- and --> will be suppressed by the web browser and won’t be displayed. Here’s a simple example with comments:

 ...
<body>
 <!-- Find a meaningful header -->
 <h1>Header</h1>
 <!--
 Think about what fits
 into the paragraph for this heading.
 -->
 <p>A lot of text</p>
 <!-- <p>A second paragraph with text</p> -->
</body>
...

 The lines in bold are comments, which are suppressed and won’t be displayed by the web browser. As you can see, this also applies to HTML elements such as the p element in the example. Here, the complete p element has been commented out so that it gets ignored by the web browser for rendering.

 Warning: Comments Can Be Viewed in the Source Code

 Comments are quite useful to add annotations at certain places in the HTML code or information about the creation date or other credits. However, even if the comments aren’t displayed in the web browser, they remain in the source code. This means you should always think twice about what kind of comments you write because every visitor can see the source code.

 2.2 A Simple HTML Document Framework

 The basic framework of an HTML document roughly consists of three parts, as you can see in Figure 2.9:

 	1

	
 The HTML document type specifies the HTML version used.

 	2

	
 The header area usually contains the nondisplayable information about the document.

 	3

	
 The document body contains the displayable content for the web browser.

 [image: The Subdivision of an HTML Document]

 Figure 2.9
 The Subdivision of an HTML Document

 2.2.1 HTML Document Type: <!doctype>

 The <!doctype> declaration must be the first specification in an HTML document, before the <html> tag. The <!doctype> isn’t an HTML tag, but an instruction for the web browser about the HTML version in which the web page was created.

 In the old HTML 4.01 or XHTML 1.0, this <!doctype> declaration still required a document type definition (DTD) based on standard generalized markup language (SGML). This DTD specified the rules for the markup language so that web browsers could correctly render the content according to the DTD.

 The current HTML is no longer based on SGML, and thus no <!doctype> declaration would be needed at all, so you can write the following here:

 <!doctype html>

 This line is used by the web browsers that require the presence of a <!doctype> declaration. That version is understood by all web browsers, even those that don’t know the current HTML at all. As a result, this <!doctype html> is only used to ensure downward compatibility with older web browsers. By the way, the <!doctype> declaration isn’t case-sensitive, and you could also use <!DOCTYPE html>.

 2.2.2 Beginning and Ending an HTML Document: <html>

 After <!doctype html> follows the root element, html, which informs the web browser that the page has been written in HTML code. The root element encloses all other elements between the <html> start tag and the </html> end tag—you could also say the html element is the container for all other HTML elements.

 Even if you don’t need to, in practice, you can declare the attribute of the website’s language right away (e.g., lang="en" for English). Users who use a screen reader will be grateful to you.

 Specifying the Language

 The specification of the language via the HTML attribute lang is a global attribute and specifies the content language of the element. Thus, the attribute isn’t limited to html and can be used in almost all HTML elements. The speech markup helps screen readers use the correct speech output and helps search engines match the content. The web browser can use this specification to correctly display typical special characters of a language, for example. Such speech codes can consist of two parts. In addition to the primary language code, you can specify an optional subcode. For example, via lang="en-UK", you can use the UK version of English.

 As direct child elements of the html element, only the elements head and body are allowed.

 [image: Below <html>, You’ll Find <head> and <body>]

 Figure 2.10
 Below <html>, You’ll Find <head> and <body>

 2.2.3 Head of an HTML Document: <head>

 The head area between <head> and </head> defines various things that, with the exception of the title element, aren’t used directly for display in the web browser. In that area, you can specify information that gets evaluated by the web browser and search engines. This can involve the insertion of scripts, instructions for the web browser on where to find a stylesheet, and various kinds of metadata with information about the HTML document itself. I’ll go into more detail about the individual elements that can be used in the head area between <head> and </head> of an HTML document in Chapter 3.

 2.2.4 Visible Part of an HTML Document: <body>

 The displayable document body is specified in HTML between <body> and </body>. Everything in between those two tags—such as text, hyperlinks, images, and tables—gets displayed in the web browser. Thus, unlike the head element, the body element is the displayable area of an HTML document.

 2.3 Summary

 This chapter was of a more theoretical nature, but it’s imperative that you know about the basic structure of HTML and an HTML document. Following are the most important aspects of this chapter that you should definitely understand:

 	
 HTML tags and HTML elements

 	
 HTML attributes

 	
 Correct nesting of HTML elements

 	
 Document type <!doctype html>

 	
 Head area and displayable area basic sections of an HTML document

 3 Head Data of an HTML Document
The head data between <head> and </head> contains important information and data about an HTML document that’s used by web browsers or search engines. In this chapter, you’ll get to know the HTML elements for the head data of an HTML document in more detail.
In the head of the HTML document between <head> and </head>, you can insert various HTML elements that enable you to control the content and the display of a web page. You can also establish the relationships between the web browser and other pages or documents here. The content you write in the head element doesn’t get displayed by the web browser, except for the title element. An overview of the different HTML elements, which you can write in the head section between <head> and </head>, is followed by the description of the individual HTML elements.
This chapter may not be spectacular and exciting, but even the nonvisible parts in the head of an HTML document are part of the essential basics of HTML. If you’re in a rush, I recommend that you at least take a look at the sections on the <meta> elements (Section 3.8.1, specifically the character encoding) and <title> (Section 3.2). For the time being, these two headers are the most important elements for the next chapters. For all other HTML elements for head data, you can always look them up here if needed.

 3.1 Overview of HTML Elements for the Head

 You must write the head element with the head data of an HTML document directly after the opening <html> tag and before the document body with the body element. You can use the elements from Table 3.1 or Figure 3.1 between <head> and </head> (the order doesn’t matter). Of the elements listed in Table 3.1, you must specify at least the title element.

 	
 HTML Element

 	
 Meaning

 	
 <title>...</title>

 	
 Contains the title of the HTML document.

 	
 <base>

 	
 Sets base URLs/targets for all relative URLs in a web page.

 	
 <link>

 	
 Sets logical links of the HTML document to other files to be included.

 	
 <style>

 	
 Sets the local stylesheet rules for the HTML document.

 	
 <script>

 	
 Integrates the client-side scripts. The script element isn’t restricted to the HTML document header and may also appear (multiple times) in the document body.

 	
 <meta>

 	
 Sets the metadata such as keywords, descriptions, or the character set for the HTML document.

 Table 3.1
 Elements That Can Be Used in the HTML Document Head between <head> and </head>

 [image: In the Head Element between the <head> and </head> Tags, You Can Use the <title>, <base>, <link>, <style>, <script>, and <meta> Elements]

 Figure 3.1
 In the Head Element between the <head> and </head> Tags, You Can Use the <title>, <base>, <link>, <style>, <script>, and <meta> Elements

 3.2 <title>: Heading of the HTML Page

 In every HTML document, you should use a title that gets displayed in the header of the web browser. You can write such a title between the <title> and </title> tags within the head element. If no title is used, what appears here depends on the web browser. Often, you’ll then find a title such as Untitled Document or Untitled, for example. You can use only one title element in total for an HTML document.

 In Figure 3.2, you can see the title element used in the following example being rendered:

 <!doctype html>
<html lang="en">
 <head>
 <title>—The Heading of the HTML Page</title>
 <meta charset="UTF-8">
 </head>
...

 Listing 3.1
 /examples/chapter003/3_2/index.html

 [image: The Title Is Usually Displayed in the Header Bar and/or Tab of the Web Browser]

 Figure 3.2
 The Title Is Usually Displayed in the Header Bar and/or Tab of the Web Browser

 Invalid HTML

 If you omit the title element, an error message displays when you check the validity of the HTML code (e.g., at http://validator.w3.org). This means a title element must exist in every HTML document for it to be valid HTML. In addition, no other HTML elements are allowed in between <title> and </title>.

 Besides the display in the header bar or tabs of the web browser, there are two much more important reasons to use the title element: first, this title is used as a name suggestion by the web browser when setting bookmarks (favorites), and second—and even more importantly—the title has a high significance with the search engines on the web. As you can see in Figure 3.3, the title is often the first thing your visitors see when your website is listed in a search engine. You can create such a search result yourself for testing purposes with a SERP snippet generator (e.g., www.serpsimulator.com). It often occurs that the title is also a clickable link to your website. In addition, the title is important for the hit list and for the rank of the page in the hit index of the search engine.

 [image: For Search Engines, the Importance of the <title> Element Shouldn’t Be Ignored]

 Figure 3.3
 For Search Engines, the Importance of the <title> Element Shouldn’t Be Ignored

 Titles for Search Engines

 The topic of search engine optimization (SEO) can’t be described in a few paragraphs and encompasses many subareas. It isn’t possible either to make a general statement about when exactly something is “optimal.” Even the SEO experts often disagree on this. Nevertheless, it’s safe to say that the title is very important in search engines. It’s often recommended to use one or two keywords, followed by a slogan and perhaps the web address (e.g., Keyword 1, Keyword 2—A short heading—www.domain.com). In practice, for example, the following title would make sense: Smartphones, Cell Phones—buy cheap smartphones—www.domain.com. In addition, the title shouldn’t be too long, otherwise it will be truncated when listed in the search engine. The common recommendation ranges between 60 and 70 characters.

 3.3 Related Topic: Naming Convention and Referencing

 At this point, it’s necessary to go into the naming conventions for files, directories, and directory structures when referencing other content because you’ll make use of them repeatedly in the following sections and throughout this book. Mind you, this isn’t yet about the HTML elements or HTML tags you can use to link a web page, but only about how to write such a link to the target. If you’re already familiar with terms such as full URL or absolute or relative path, you can skip this section or just skim through it.

 3.3.1 Valid and Good File Names for an HTML Document

 The use of file names for web pages has become quite flexible. Nevertheless, here are some guidelines and recommendations you can follow: Use only lowercase letters a–z, digits 0–9, hyphens, and underscores if possible. The dot is usually used only to separate the file extension. Whether you use uppercase letters in the file name is a matter of taste, but you should keep in mind that some systems are case sensitive while others aren’t.

 Good Names for the Search Engine

 The file names can also be used to place keywords in them for the search engines. Instead of using the relatively meaningless domain.com/page01.html, you should choose a better name such as domain.com/smartphones.html. If there are several keywords in a file name, you should separate them with a hyphen. The underscore as a separator, on the other hand, is usually not evaluated by search engines as a word separator. Instead of domain.com/smartphonesandcellphones.html, where the keywords aren’t recognized, it’s better to use domain.com/smartphones-and-cellphones.html.

 3.3.2 Valid Directory Names and Meaningful Directory Structures

 The same thing I just wrote for file names applies to the use of directory names. In addition to a meaningful directory name, a meaningful directory structure is also important. Again, you may have the advantage that this structure with good directory names will have a positive effect on your page ranking with the search engines. For example, the following is a useful directory structure:

 /smartphones
/smartphones/apple
/smartphones/android
/apps/apple
/apps/android
...

 Thanks to a directory structure based on different topics and coupled with a good file name, you could, for example, call an HTML document named buy-ramsung-xyz.html as follows:

 domain.com/smartphones/android/buy-ramsung-xyz.html

 On the other hand, you should refrain from using directory names that don’t carry much meaning for visitors or search engines, such as the following:

 /html
/html/pages
/contents/
/contents/pages
...

 3.3.3 Writing a Reference to a Data Source

 Without the functionality to reference other content, the internet wouldn’t be what it is today. In addition to classic hyperlinks to other content, such referencing is also used for many other things, including images, external scripts, CSS files, or video resources. For this reason, this section describes several ways to create a reference to other content.

 Simple Structure of Addresses on the Internet (URL)

 There’s no comprehensive treatise at this point, but you should at least know the basic form of an address on the internet, also referred to as a Uniform Resource Locator (URL). Only thanks to this URL is it possible to use an address on the internet in a readable format and to access directories and documents. A classic URL looks like this: http://www.domain.com/path/file.html.

 If you decompose this address, you’ll get the individual components listed in Table 3.2.

 	
 Protocol

 	
 Host Name

 	
 Path

 	
 File

 	
 http://

 	
 www.domain.com

 	
 path

 	
 file.html

 Table 3.2
 Rough Structure of an Internet Address

 You can use the protocol (or scheme) to specify how the resource should be used. http:// is the protocol for hypertext documents (HTTP). Other well-known representatives are https:// for a secured data transfer, ftp:// for a file transfer (FTP), or file:// for the access to local files. With www.domain.com, you have a host name that’s converted to an IP address via the Domain Name System (DNS). It’s followed by the path specification, whose components are separated from each other by a /. Finally, the file name (here, file.html) of the document you want to call is often specified as well.

 The www of www.domain.com is part of the host name and conveniently chosen to give an indication of the host’s intended use, for example, as a WWW or FTP server. However, this isn’t a prerequisite. The name of a WWW server doesn’t necessarily have to start with www. You can select the service running on the server with the protocol and port on which the service is listening, for example, port 80 for WWW or port 21 for FTP.

 In this example, with the host name www.domain.com, it’s a WWW domain name for a network server, where the ISO country code com is the top-level domain. The top-level domain is sorted either thematically (e.g., com, org, net) or geographically by country (e.g., de, at, ch). domain is the second-level domain and the actual name of the server. Here, further subdomains (or sublevels) are possible, which lie below another one in the hierarchy. example.domain.com would thus be a subdomain of domain.com, for example.

 Homepage: "index.html"

 If you enter an internet address such as http://www.domain.com/ in the address field of the web browser, you’ll still get a web page displayed in the browser even though you haven’t explicitly specified a path or file name there. This is because the web servers return a default page, depending on the setting. Many web servers return at least index.htm, index.html, or default.html if there’s a corresponding file in the root directory. This usually works with any other directory as well. For example, if you enter http://www.domain.com/travel/ in the browser’s address bar and there’s an index.html file in the /travel directory, that file will be returned. However, as already mentioned, it depends on the settings of the web server what can be returned or done and how this happens. Some web hosts also allow you to define your own rules for this in .htaccess. The .htaccess file is a configuration file that can be used to make various settings and specifications about things such as access control, exclusion of addresses, error messages, password protection, and alternative content, among other things.

 Using a Reference with Full URL to the Data Source

 When something is referenced with a full URL, we’re talking about the fully spelled out web address. You can use a full URL such as http://www.domain.com/travel/index.html or http://www.domain.com/pictures/foto.jpg if the data is located on a different machine (host name/domain) than the HTML document. You already learned how a complete URL looks in detail in the previous section.

 A Reference as an Absolute Path Specification Relative to the Base URL

 If you reference something with an absolute path, the desired data is on the same computer as the HTML document. If a web page is accessible via http://www.domain.com/travel/index.html, /travel/index.html represents the absolute path specification relative to the URL http://www.domain.com. Thus, you can use this path specification for your web pages if the data is located within your domain (or subdomain).

 Root Directory

 The root directory / (the highest directory to reach) of a domain such as http://www.domain.com is often set as the document start directory by the web server when the domain is configured. For example, if you connect to an FTP client and want to upload your web pages, this root directory can also be inside a directory named www, htdocs, web, and so on. Nevertheless, the root directory for http://www.domain.com is usually still / and not /www, /htdocs, or /web. However, this again depends on the configuration implemented by your web hosting provider, whom you should contact in case of doubt.

 Specifying a Reference with a Relative Path to the Data Source

 You can use a relative path specification if you use the current address as the reference address. For example, if you’re at the full URL http://www.domain.com/travel/index.html, and there’s an image named photo.jpg in the /travel directory, you can reference this file with a relative path specification such as photo.jpg or ./photo.jpg. Alternatively, you could use the absolute path specification with /travel/photo.jpg or the absolute URL with http://www.domain.com/travel/photo.jpg. The use of the absolute URL is uncommon in such cases.

 If photo.jpg or ./photo.jpg is specified as a relative path, it’s assumed that the file is located in the same directory. If you want to reference a file in a directory one level above, you can use ... For example, if you want to access photo.jpg in the /travel directory from the full URL http://www.domain.com/travel/california/index.html as a relative path, you could do so by using ../photo.jpg. This way, you reference the directory above the current directory.

 3.4 Defining the Base URL of a Web Page Using <base>

 The base element allows you to define a base URL or destination for all files referenced in the HTML document. By defining such a base URL, you can use a relative or absolute address to the file in the document as if this file were located on the same host or computer as the HTML document.

 It sounds more complicated than it actually is. For this reason, let’s take a look at the following simple example that demonstrates the base element in practice:

 <!doctype html>
<html lang="en">
 <head>
 <title>Defining a Base URL</title>
 <base href="https://static.sap-press.com/img/"
 target="_blank">
 <meta charset="UTF-8">
 </head>
 <body>

 </body>
</html>

 Listing 3.2
 /examples/chapter003/3_4/index.html

 By specifying href="https://static.sap-press.com/img/", the web browser will replace all URLs that weren’t fully referenced with https:// with the base URL https://static. sap-press.com/img/. In this example, the image source of src (here with rheinwerk-sappress-logo-header.svg) is therefore supplemented by https://static.sap-press.com/img/rheinwerk-sappress-logo-header.svg in the line that contains the img element, so that the Rheinwerk Publishing logo gets displayed in the web browser, which you can see in Figure 3.4.

 [image: Thanks to the Base URL Defined in <base> in the “href” Attribute, the Image File That’s Not Fully Referenced Is Supplemented by the Base URL of the Browser and Displayed]

 Figure 3.4
 Thanks to the Base URL Defined in <base> in the “href” Attribute, the Image File That’s Not Fully Referenced Is Supplemented by the Base URL of the Browser and Displayed

 Internet Connection Required for Local Testing

 For the example shown in Figure 3.4 to work on the local computer, you need a connection to the internet because when the file (here, rheinwerk-sappress-logo-header.svg) is called, an attempt is always made to fetch the file from the base URL (here, https://static.sap-press.com/img/). Thus, when you use the base element, it isn’t possible to test a website offline on a local computer. If there’s no connection to the internet in the example just shown, only the alternative text of the alt attribute gets displayed in the img element (here, "Logo").

 The target attribute, on the other hand, enables you to specify the target where each reference should be opened and displayed. The _blank value allows you to make sure in this example that a new window or tab is addressed. In our example, this has no effect because only one image is displayed. For other possible values for the target attribute, see Table 3.3.

 There can be only one base element in an HTML document, and it must be written between <head> and </head>. If you define multiple base elements nevertheless, the web browser will usually use only the first href and the first target attribute. All the others will be ignored. However, the HTML validity check would return an error if more than one base element was used. Furthermore, you must define the href, the target attribute, or both in the base element.

 In old HTML 4.01, the attribute value of target was a name or keyword for a frame. In current HTML, it’s now the keyword for a browsing context, which can be a browser window, a browser tab, or even an inline frame (iframe).

 	
 Attribute

 	
 Description

 	
 href

 	
 Defines the base URL. This URL is used by the web browser as the base address for relative or absolute path specifications in the document and is supplemented with this base URL.

 	
 target

 	
 Specifies the target window in which the link target should be displayed. Possible values and their meaning are as follows:

 	
 _self: Opens the reference in the current window. This is the default setting if target hasn’t been used.

 	
 _blank: Opens the reference in a new window or tab.

 	
 _parent: Opens the reference in the parent window. The parent window is the window from which the current window was opened. If there’s no parent window, this option behaves like _self.

 	
 _top: Loads the reference of the file in the window that’s highest in the hierarchy. If there’s no higher parent window at all, this option behaves like _self.

 Table 3.3
 Attributes for the <base> Element

 Frames and Framesets

 A frame is a section of an HTML page into which another HTML page can be included. The combination of multiple frames used to be referred to as a frameset. Framesets with the old HTML element <frameset>...</frameset> are no longer supported in the current HTML and are obsolete. Alternatives include inline frames with the iframe element, CSS, or other server-side techniques.

 3.5 Referencing an External Document via <link>

 The link element is a standalone tag for the head of the HTML document between <head> and </head>, which you can use to create a relationship between the current document and an external document. In practice, the link element is often used to include an external CSS file in the current document. The <link> tag can be used more than once in the head element to include multiple resources in the current document. The type or purpose of the relationship depends on the value of the rel attribute used (see Table 3.4 for the attributes of the link element).

 Even though the tag here is <link>, this standalone element has nothing in common with the familiar hypertext links, which are underlined and allow the user to navigate to other websites by clicking on this underlined text.

 The following example shows you how you can include an external CSS file in the HTML document by using the link element.

 <!doctype html>
<html lang="en">
 <head>
 <title>Logical linking via link</title>
 <link rel="stylesheet" type="text/css" href="style.css">
 <meta charset="UTF-8">
 </head>
 <body>
 <p>A simple paragraph text!</p>
 </body>
</html>

 Listing 3.3
 /examples/chapter003/3_5/index.html

 You can specify the relationship between the document and the external document via the HTML attribute rel. Possible values for this attribute are listed in Table 3.4. In the example, the document is linked to an external stylesheet file. When using this tag, you should also make sure to specify the MIME type, which I’ve done here with the type attribute and the text/css value. However, the most important attribute that you must always use along with the link element is the href attribute, which specifies the URL of the linked resource. By specifying style.css, I assumed the stylesheet file is in the same directory as the HTML document.

 [image: Thanks to the Logical Link to the External CSS File, the <p> Element Was Formatted Here in This Example]

 Figure 3.5
 Thanks to the Logical Link to the External CSS File, the <p> Element Was Formatted Here in This Example

 Specifying a Base URL via the <base> Element

 If you want to set the resources from another URL using the base element, you still need to put <base> before <link> in the head area between <head> and </head>. Example:

 ...
<head>
 <title>Logical linking via link</title>
 <base href="https://css.sap-press.com/">
 <link rel="stylesheet" type="text/css" href="rheinwerk.css">
 <meta charset="UTF-8">
</head>
...

 Here in <base>, https://css.sap-press.com/ was defined as the base URL for the references, so the reference to the CSS file https://css.sap-press.com/rheinwerk.css is added and used in <link>. If the base element were located behind the link element, the rheinwerk.css file would again be expected in the same directory as the current document, which may well be intentional. For this reason, you should pay attention to where you define the base element because only those references that are located after this element are extended with the base URL.

 Regarding the rel attribute and its possible values, note that some of these values are only of limited use in practice because how (and whether) a logical link is displayed by the web browser isn’t specified. Especially for links with the link types next, prev, first, last, author, help, search, sidebar, and license, it’s therefore more advisable (for the time being) to insert a corresponding button or text for this yourself to create a hyperlink (see Chapter 5, Section 5.2). The global title attribute enables you to define a caption here that will be displayed if a web browser should support one of these links, that is, the just-mentioned rel values such as next, prev, first, and so on.

 	
 Attribute

 	
 Meaning

 	
 href

 	
 Specifies the URL to the resource to be linked. This attribute must be used.

 	
 hreflang

 	
 Defines the language of the resource to be linked.

 	
 media

 	
 Specifies for which medium/device the target resource in href has been optimized. For example, this attribute is popular with stylesheets to define multiple styles for different media types.

 	
 rel

 	
 Sets the relationship or relatedness (the type of link) between the current document and the external resource in href. Possible values are as follows:

 	
 alternate: Links to an alternative presentation form of the current page. It’s used, for example, to link an RSS or Atom feed to a page. Other similar values are feed and feed alternate.

 	
 author: Links to another page with information about the author of the current document. You can also use another resource such as a mailto: link to an email address of the author.

 	
 archives: links to a previous version of certain documents, such as in a blog archive.

 	
 help: Links to a help document.

 	
 icon: Allows you to assign a favicon to the web page, which will be displayed as a mini graphic in the bookmarks or in the tabs of the browsers. In this context, there are two Apple-specific values for the iPhone or iPad available, apple-touch-icon and apple-touch-startup-icon, which I’ll also explain in Chapter 5, Section 5.2.

 	
 rel

 	

 	
 license: Links the current page to a page that contains the usage rights for the contents of the current page.

 	
 next, prev: Creates a link from the current page to the next (next) or previous page (prev).

 	
 prefetch: Links an external web page, which probably could be called next by the user, to the current page. This could cause the browser to already load this page into a cache even though the user is still viewing the current page. When the user then opens this page, it can load faster from the cache.

 	
 pingback: Specifies the website of a pingback server, which is very useful especially for blogs to handle pingbacks for the current document.

 	
 search: Links the current document to another document where a search across the whole website is possible.

 	
 stylesheet: Probably the most often used and common value for rel, as it links an external CSS file to the current document.

 	
 tag: A simple tag as a linked resource that applies to the current document.

 	
 size

 	
 Specifies the size(s) for the resource to be linked. Makes sense only if the attribute is rel="icon". Example: size="16x16" (one size), size="16x16 32x32" (two sizes), or size="any" (any size).

 	
 type

 	
 Specifies the MIME type for the document to link to (e.g., text/css for a CSS file).

 Table 3.4
 HTML Attributes for the <link> HTML Element

 If you take a closer look at the rel values in Table 3.4, you might notice that there are two different types of values here: (1) the attribute values for pure hypertext links, and (2) values for links to external resources. rel values to external resources are icon, pingback, prefetch, and stylesheet. All other values are pure hypertext links.

 Confusion with the "rel" Attribute Values

 Besides the rel attribute values shown here, you’ll probably come across other values on the internet. It’s quite hard to keep track of this as well as of what works and what doesn’t work on which web browsers. But I’m sure there’ll be some movement in this regard in the future. However, you should note that many of those values you find on the web are merely suggestions. Going into this topic in greater depth is beyond the scope of this chapter; however, you can find a good overview and recommendations at http://microformats.org/wiki/existing-rel-values. The W3C website also provides a useful overview at www.w3.org/TR/html5/links.html#sec-link-types.

 3.6 Writing Document-Wide CSS Styles Using <style>

 You can use the style element to include style information (usually CSS) within the HTML document. Between <style> and </style>, you define how the web browser should display the HTML elements. Each HTML document can contain multiple style elements. Furthermore, since HTML 5, it’s valid to use this element within the HTML document body between <body> and </body>.

 Referring to the HTML document /examples/chapter003/3_5/index.html from Section 3.5, instead of using the link element, you could use the style element to write the stylesheet information directly in the HTML document as follows:

 <!doctype html>
<html lang="en">
 <head>
 <style type="text/css">

 p {
 width:220px;
 padding:10px;
 border:5px solid blue;
 margin:0px;
 background-color:#e0ffff;
 text-align:center;
 }

 </style>
 <title>The style element in use</title>
 <meta charset="UTF-8">
 </head>
 <body>
 <p>A simple paragraph text!</p>
 </body>
</html>

 Listing 3.4
 /examples/chapter003/3_6/index.html

 As a result, you’ll obtain the same image as the one in Figure 3.5. Basically, in this example, only the code from the external CSS file style.css was embedded into the HTML document header within the style element. The p element is again formatted with CSS statements in the example. You don’t need to bother about these CSS statements between <style> and </style> at this stage, as I’ll describe CSS in detail later in this book.

 Table 3.5 provides an overview of the HTML attributes for the style element.

 	
 Attribute

 	
 Meaning

 	
 media

 	
 Specifies for which medium/device the target resource in href has been optimized. This attribute is often used with stylesheets to define multiple styles for different media types.

 	
 type

 	
 Specifies the MIME type for the stylesheet (here, mostly with text/css for CSS file).

 Table 3.5
 Attributes for the <style> Element

 3.7 Including Scripts in Web Pages Using <script>

 You can use the script element to embed or reference scripts (e.g., JavaScript) in an HTML document. You can either write the script directly between <script> and </script>, or reference an external script via the src attribute, the meaning of which is described in Table 3.6. However, if you want to reference an external script using the src attribute, the space between the <script> start tag and the </script> end tag must be left empty. Unlike the other elements presented here for the head data of an HTML document, you can use the script element both in the head section and (multiple times) in the document body.

 Here’s a simple example of the script element, where a simple JavaScript dialog box with the message A JavaScript! is displayed on the screen. You can see the example being run in Figure 3.6.

 <!doctype html>
<html lang="en">
 <head>
 <title>Using the script element</title>
 <script type="text/javascript">
 <!--
 window.onload=alert("A JavaScript!")
 // -->
 </script>
 <meta charset="UTF-8">
 </head>
 <body>
 <p>The first paragraph text!</p>
 </body>
</html>

 Listing 3.5
 /examples/chapter003/3_7/index.html

 [image: JavaScript (Here, a Simple Dialog Box) Is Executed before the Web Page Gets Displayed]

 Figure 3.6
 JavaScript (Here, a Simple Dialog Box) Is Executed before the Web Page Gets Displayed

 JavaScript Disabled

 If the user has JavaScript disabled in the browser or the web browser doesn’t support JavaScript at all, you have the option to generate alternative output using <noscript>. Anything you write between <noscript> and </noscript> will be used as an alternative if the browser can’t run scripts. Although hardly anyone deactivates JavaScript today and almost every smartphone is perfectly capable of JavaScript, new media are constantly being added that offer browsing the internet, but where only modest and limited browser functionality is available. For example, the latest generations of TVs often have internet features and a web browser built in, but most of the time JavaScript doesn’t work.

 Let me also describe the use of the script element to reference an external JavaScript with the src attribute at this point:

 ...
 <head>
 <title>Using the script element</title>
 <script type="text/javascript" src="script.js"></script>
...
 </head>
...

 Listing 3.6
 /examples/chapter003/3_7/index2.html

 This example is based on the assumption that a JavaScript named script.js is located in the same directory as the HTML document. The script here is usually executed immediately before the web browser continues with the web page. For such external scripts, you can affect the execution time via the async and defer attributes. Both attributes will be described in greater detail in Table 3.6.

 While it’s a bit too early for details in JavaScript, it’s still worth mentioning here that a script code in the head section of an HTML page can increase the loading time because the rest of the page is blocked until the JavaScript has been executed. For this reason, it usually makes more sense to use the script code at the end of the HTML file, most conveniently before the closing <body> tag.

 Table 3.6 provides an overview of the HTML attributes for the script element.

 	
 Attribute

 	
 Meaning

 	
 async

 	
 If you use async, the script gets executed asynchronously with the HTML document. The script is executed while the HTML document is parsed. This attribute can be used only for external scripts.

 	
 charset

 	
 This attribute sets the character encoding for the external script.

 	
 defer

 	
 If you use this attribute, the website gets parsed first and then the script is executed. This attribute can be used only for external scripts.

 	
 src

 	
 This attribute specifies the URL to the external script.

 	
 type

 	
 This attribute enables you to specify the MIME type for the stylesheet (here, mostly with text/javascript or text/ecmascript).

 Table 3.6
 Attributes for the <script> Element

 3.8 Metadata for the Document Using <meta>

 The meta element allows you to write additional information or data about the HTML document in the head section between <head> and </head>. These can be instructions for the web browser, the web server, or a web crawler (also spider, searchbot, bot, or search robot). Even though the use of those meta elements is optional, they often get specified. It’s quite difficult, especially for beginners, to keep track of the many existing HTML attributes and the possible attribute values you can use with the meta element. Many of these additional details aren’t standardized at all.

 Web Crawler

 A web crawler is an application that searches the internet and analyzes entire websites. There are different types of web crawlers on the go that collect different types of information. Search engines also use a web crawler to analyze websites. Basically, the principle is quite similar to web browsing, where hyperlinks take you from one web page to other URLs. A web crawler stores these URLs and visits these pages one by one. The websites are evaluated via indexing to make searching for the relevant data possible.

 3.8.1 The Most Commonly Used Metadata

 A meta element is usually composed of at least two attributes. Either the attributes consist of a name/content combination or an http-equiv/content combination. In addition, a special version exists for character encoding.

 “name/content” Combinations: Freely Definable Metadata

 The meta element containing the HTML attribute name can basically contain any information in the HTML attribute content. Theoretically, you could assign any value to the contents of name yourself. Nevertheless, some default metadata for the name attribute value has been defined in HTML. However, these name/content combinations aren’t intended for personal information, but should only contain information about the HTML document. A simple example might look as follows:

 ...
 <head>
 <title>Freely definable metadata</title>
 <meta name="author" content="John Doe">
 <meta name="keywords" content="metadata, meta, html">
 <meta charset="UTF-8">
 </head>
...

 Here, you can see two typical name/content combinations. The first example defines the author of the web page, while the second pair defines keywords for the search engines. You could use any number of other meta elements here.

 “http-equiv/content” Combinations: HTTP Equivalents

 The specifications with http-equiv (also called the pragma directive) were intended for the web server to communicate. The web server should read this information and then take the read information into account when responding to the client (web browser) and use it in the HTTP response header. However, web servers don’t actually parse HTML documents, so again it’s up to the browser how this information gets processed. Let’s look at a simple example:

 <!doctype html>
<html lang="en">
 <head>
 <title>HTTP equivalents</title>
 <meta http-equiv="refresh" content="5">
 <meta charset="UTF-8">
 </head>
 <body>
 <p>Page gets refreshed every 5 seconds.</p>
 </body>
</html>

 Listing 3.7
 /examples/chapter003/3_8_1/index.html

 The refresh value for the http-equiv attribute and the value 5 for the content attribute allow you to make the web browser refresh the web page every five seconds.

 Setting the Character Encoding for the HTML Document

 In addition to the name/content and http-equiv/content pairs, there’s a third option that allows you to specify the character encoding (more easily). Generally, you should use this information when creating a web page that’s written in a language other than English. This is the line with the meta element that you use in every example of the book:

 <meta charset="UTF-8">

 This will ensure that special characters such as German umlauts and some other special characters are also displayed correctly, thanks to the UTF-8 character set standard. Besides the internet, modern operating systems also use UTF-8, and unless you have a reason to use a different character set, you should always work with UTF-8.

 3.8.2 Setting the Viewport

 Let’s jump ahead to the viewport now, as a correct setting will prevent a responsive website from being displayed in a small view on the mobile device. The viewport is the area of the browser window where the web content gets displayed. Without any special precautions, web pages on a smartphone’s mobile browser would be scaled down until they fit completely on the screen. This allows visitors to keep an overview and zoom into the page.

 If you want to create modern websites today, then taking into account the different device sizes and a responsive web design is part of the development process. When creating responsive web pages, you must prevent this automatic downsizing. You can do this via a meta element like the following:

 <meta name="viewport" content="width=device-width">

 It tells the browser to use the actual width of the device rather than an imaginary width. You can see the result of this line in a responsive web page in Figure 3.7, where the automatic resizing function was implemented on the left-hand side and the viewport with the meta tag was used on the right.

 [image: A Responsive Website: (Left) without a Meta Viewport and (Right) with a Meta Viewport]

 Figure 3.7
 A Responsive Website: (Left) without a Meta Viewport and (Right) with a Meta Viewport

 I’ll describe the viewport and responsive web design separately in Chapter 13. Without explaining it in more detail here, the following meta element has become accepted for it in the meantime:

 <meta name="viewport"
 content="width=device-width, initial-scale=1.0, shrink-to-fit=no">

 By using initial-scale=1.0, you can make sure that the browser displays the page with the normal zoom level, and with shrink-to-fit=no, you instruct the Safari browser on the iPad not to shrink even in split view.

 3.8.3 Specifying Useful Metadata for a Web Crawler

 This section provides a brief description of some metadata for search engine robots (web crawlers). However, you must be aware that this information is only a recommendation for the web crawlers. Whether the search bots adhere to it is out of your hands. At least these attribute values were partly (co)designed by Google, Yahoo, and Microsoft, so these publishers will probably stick to them. If you want to include information for the web crawler as metadata, you must assign the robots value to the name attribute. In the content attribute, you write (or suggest) what the web crawler has to do when it visits the web page, for example:

 <meta name="robots" content="index,follow">

 This allows the search robot to include the web page in the search engine index and to follow the hyperlinks on the page. However, you can usually omit this information because this is the usual behavior of a web crawler.

 If you don’t want the page to be indexed or the hyperlinks to be followed, you can use the attribute values noindex and/or nofollow in content:

 <meta name="robots" content="noindex">

 Here, you indicate that your website shouldn’t be included in the search engine index (noindex), so that the page can’t be found via a search engine. If you want the page to be included in the search engine index, but don’t want the hyperlinks to be followed, you merely need to use the attribute value nofollow in content.

 3.8.4 Useful Metadata for Search Engines

 Especially for search engines, two name values are important, namely keywords and description. However, the keywords value has lost importance because it was misused in the past to feed search engines with many misleading keywords (keyword stuffing) to be listed as close to the top as possible in the search. In the meantime, the search engines are again indexing the content of a website in a more targeted manner and tend to leave the keywords unnoticed (or less noticed). If you still want to specify keywords, you must separate the individual keywords in content separated by commas, as the following example shows:

 <meta name="keywords" content="html, meta, keywords">

 Here, for example, html, meta, and keywords were used as keywords for the website.

 What’s more interesting, however, is the description text of the website. Although this text will probably not be considered directly in the search results, the description is, in addition to the title, the first thing a user sees listed in the search engine as information from your website. You should keep the description as short and precise as possible and use a maximum of 150 to 250 characters (depending on the search engine). A text that’s too long will be shortened.

 Here’s an example of such a description:

 ...
 <head>
 <title>Description text for search engines</title>
 <meta charset="UTF-8">
 <meta name="description"
 content="A description should be as
 short and precise as possible. Here
 you should summarize in 2-3 sentences
 what this page is about. Characters
 exceeding the limit will be shortened.">
 </head>
 <body>
 ...
 </body>
...

 In Google, for example, this description text is usually listed as shown in Figure 3.8.

 [image: Along with the <title> Element, the Description Text Is Often One of the First Features to Appear in a Search Engine]

 Figure 3.8
 Along with the <title> Element, the Description Text Is Often One of the First Features to Appear in a Search Engine

 If you don’t specify a description with a meta element, this text will get generated from the parts of the page content. However, it isn’t possible to predict exactly what this description will look like and what kind of text will be used for it. For this reason, you should definitely take the description into your own hands instead of leaving it up to the algorithm of a search engine.

 The First Impression Is Important

 Although it isn’t as important as it was in the early days of the internet, metadata still plays a significant role in search engine coverage. You should therefore always pay attention to the title element and the description (name="description") because these elements are often the first things that website visitors get in return from search engines when the page is listed in a search.

 3.8.5 Useful Metadata for the Web Browser

 If you want to refresh the content of a web page after a certain time or redirect it to another URL, you can use the http-equiv attribute with the refresh value for this purpose. The content attribute enables you to set the time by when the update or redirection should take place.

 You can force a refresh of the web page as follows:

 <meta http-equiv="refresh" content="30">

 This would refresh the currently loaded web page every 30 seconds.

 The redirection to another website can be set up in a similar manner:

 <meta http-equiv="refresh"
 content="5; URL=http://domain.com/">

 This causes the browser to switch to the domain.com URL after five seconds. You could also use zero seconds here, but this way, you can at least let the user know in the HTML document body why they are being redirected and where.

 Stop Using the Automatic Redirection Feature

 Automatic redirection can be helpful if the address of the web project has changed. However, some browsers ignore this redirection depending on their settings. In addition, you should also note that the search engines ignore this redirection. In this context, it’s often better to define a hyperlink with information in the HTML document body to the new URL with an explanatory note. In addition, when you use the time 0, it could be difficult for the visitor of the page to use the back button of the browser because this would throw them forward again and again. Alternatively, a redirection can also be created on the server. For example, if you have access to the configuration file .htaccess (for Apache web server) or web.config (for IIS), you can configure redirecting there. Automatic redirection has been classified as deprecated by the W3C anyway, which is why you should refrain from using it for future web projects. But because redirects are still commonly used, I included the topic here.

 As mentioned previously, you can also use the old character encoding specification:

 <meta http-equiv="content-type"
 content="text/html; charset=utf-8" />

 This specification corresponds to the more recent specification introduced in HTML:

 <meta charset="UTF-8">

 The additional use of the old specification has the advantage that it will also be understood by older browsers that don’t know <meta charset="UTF-8">.

 3.8.6 Using General Metadata

 In addition, there’s a considerable amount of general metadata, such as the author of the HTML document or the date and time the document was edited. This is helpful, for example, when several people work on one HTML project. You can specify all this information as a name/content combination. Let’s look at some examples:

 <meta name="author" content="John Doe">
<meta name="date" content=" 2021-01-15T12:00:00+01:00">

 Here, the author of the web page (author) and the date of the last change (date) were indicated. If you want to provide personal information for the readers about the current HTML document, you shouldn’t do that via metadata, but directly in the HTML document in a readable manner. The metadata is only useful when someone looks at the source code of the document or when it’s read by a software. There’s also other general metadata such as generator, which provides information on the software that was used to create the website. Additionally, you can use application-name to make special specifications if the web page belongs to a specific web platform or if a specific web application is running in the web page.

 Further Research on the Internet

 An overview of the standard metadata can be found on the following website: www. whatwg.org/specs/web-apps/current-work/multipage/semantics.html#standard-metadata-names. Proposed or future metadata, if any, can be found on this website: http://wiki.whatwg.org/wiki/MetaExtensions.

 3.8.7 My Recommendation: This Metadata Belongs in the Basic HTML Framework

 As you’ve now been introduced to a number of different types of metadata, you’ll probably wonder which type of metadata will be useful for your own website. This is ultimately up to you, but personally I always use at least the character encoding for UTF-8, a page description, and the viewport in the head element:

 ...
<head>
 <title>German umlauts</title>
...
 <meta charset="UTF-8" />
 <meta name="description" content="A description should preferably be as
 short and precise as possible. Here
 you should summarize in 2-3 sentences
 what this page is about. Characters
 exceeding the limit will be shortened."/>
 <meta name="viewport"
 content="width=device-width,initial-scale=1.0, shrink-to-fit=no" />
</head>
...

 Examples of the Book Remain Shortened

 In the examples for the book, I mostly used only the character encoding to keep the source code clearer. The viewport is useful if you create a responsive website, which is what you usually want. The page description is important when you publish the website and want search engines to use the text as a short summary of the contents.

 3.8.8 HTML Attributes for the <meta> Element

 Table 3.7 provides an overview of the HTML attributes for the meta element.

 	
 Attribute

 	
 Meaning

 	
 content

 	
 Passes the value associated with the attribute of http-equiv or name.

 	
 charset

 	
 Sets the character encoding for the HTML document.

 	
 http-equiv

 	
 Used for the HTTP response header. For example, you can use it to refresh a web page after a certain time or redirect it to another URL. Possible values:

 	
 	

 	
 content-language

 	
 content-type

 	

 	
 default-style

 	
 refresh

 	
 name

 	
 Defines a name for the metadata. Some default values are as follows:

 	
 	

 	
 application-name

 	
 author

 	
 description

 	

 	
 generator

 	
 keywords

 Table 3.7
 Attributes for the <meta> Element

 3.9 Summary

 This chapter introduced all the elements you can write in the head of the HTML document between <head> and </head>. To proceed to the next chapter, it isn’t absolutely necessary to memorize all these elements. You can return to some HTML elements at any time if necessary. Following are the two most important elements in this chapter:

 	
 title
Just for a valid HTML, you need the title element in the head between <head> and </head> of the HTML document. The title element gets displayed in the header bar or tabs of the web browser. It’s also used as a suggested name when setting a bookmark and is also listed by search engines as a clickable reference. These arguments should suffice to convince you of the importance of using the title element. For the sake of completeness, it’s then also recommended to use the page description with <meta name="description">.

 	
 <meta charset="UTF-8">
You can use the meta element to store additional details or data about the HTML document, such as instructions for the web browser, web server, or search engines. While you can use a lot of different specifications here, probably the most important one is the character encoding with <meta charset="UTF-8">. Without this information you might run into problems with special characters.

 Other elements you’ve learned about in this chapter include the following:

 	
 The base element lets you specify a base URL for all files referenced in the HTML document. By writing such a base URL, you can access a relative or absolute address to the file in the HTML document as if they were on the same computer.

 	
 The link element is often used to establish a relationship between the current HTML document and an external document. In practice, it’s frequently used, for example, to include a CSS file in the HTML document.

 	
 The style element is used to include style information (usually CSS) within the HTML document.

 	
 You can use the script element to embed or reference scripts such as JavaScript in the document.

 4 The Visible Part of an HTML Document
This chapter describes the displayable elements of HTML that you can use between <body> and </body>. For designing or laying out websites, you should use CSS instead. Before you learn how to make a website more beautiful, you need to have the basic knowledge of how to create a single web page using HTML and mark it up with the appropriate elements.
Even if you’ve already created web pages in HTML 4.01 (or even earlier) and are already familiar with the handling of HTML elements, it’s worth working through this chapter because semantic elements have been added with the current HTML and many existing elements have been given a different semantic meaning.
Here’s what you’ll learn in this chapter:

 	
 Splitting an HTML document into separate and meaningful sections with new HTML elements such as <section>, <article>, <aside>, or <nav>

 	
 Using headings in a certain order and implementing a header and/or footer with the new <header> and <footer> elements

 	
 Splitting and grouping text content with HTML elements

 	
 Semantic tagging of text such as single letters, words, or parts of sentences with HTML elements

 	
 Using and displaying unordered and ordered lists via and

 4.1 HTML Elements for Structuring Pages

 In this chapter, you’ll learn about the various HTML elements that you can use to divide a web page into useful sections. If you’ve used HTML 4.01 so far, you’ll find many new elements here, as the current HTML also introduces a new content model to combat the rampant use of div elements with class attributes.

 	
 HTML Element

 	
 Meaning

 	
 <body>

 	
 Displayable content section of the HTML document

 	
 <section>

 	
 Subdivision of the HTML document into different sections

 	
 <article>

 	
 Subdivision of content into a self-contained topic-specific block

 	
 <aside>

 	
 Marginal information of a content such as a sidebar or for additional information about an article

 	
 <nav>

 	
 Element used to mark up navigation(s) such as a sitemap or the main navigation of the website

 	
 <h1>, <h2>, <h3>,
<h4>, <h5>, <h6>

 	
 Headings of the first through sixth order

 	
 <header>

 	
 Header of a content

 	
 <footer>

 	
 Footer of a content

 	
 <address>

 	
 Contact information for the author of the content

 Table 4.1
 Quick Overview of the Section Elements Covered Here

 4.1.1 Using <body>: The Displayable Content Section of an HTML Document

 Everything you write between the opening <body> tag and the closing </body> tag is referred to as the HTML document body. Between <body> and </body>, you can write all HTML elements, such as text, hypertext links, images, tables, and lists, to define the structure of the web page. All elements written between <body> and </body> are rendered by the web browser and displayed accordingly.

 <!doctype html>
<html lang="en">
 <head>
 <title>Title of the document</title>
 <meta charset="UTF-8">
 </head>
 <body>
 This is the content of the document, which is to be
 rendered and displayed by the web browser.
 </body>
</html>

 4.1.2 Introducing the Section Elements of HTML

 The following sections introduce the section elements of HTML, that is, <section>, <article>, <aside>, and <nav>. If you’re perhaps just getting into HTML, using section elements is still a bit confusing or disappointing at first because they change almost nothing visually. Primarily, these elements only serve to divide the content into semantic (i.e., meaningful) areas.

 Even if these new elements don’t seem to make sense to you yet, just remember that they aren’t of interest to the normal user of the website, but are mainly used to give meaning to the content, which is particularly useful for the developer, the search engines, and the screen readers.

 Dividing Content into Topic-Based Sections Using <section>

 The <section> element allows you to divide the content of a document into topic-based sections. This is helpful, for example, if you want to divide a document into individual chapters or even subchapters—just like this book was divided into individual sections. Even on an ordinary homepage, you can use this element to create individual content and sense sections, such as a section with the description about the owner of the website, another section with news, and one with contact information. Here’s a simple example, the result of which you can see in Figure 4.1:

 ...
 <body>
 <section>
 <h1>Chapter 1</h1>
 <p>The first chapter</p>
 </section>
 <section>
 <h1>Chapter 2</h1>
 <p>The second chapter</p>
 <section>
 <h2>Chapter 2.1</h2>
 <p>A subchapter of Ch. 2</p>
 </section>
 </section>
 </body>
...

 Listing 4.1
 /examples/chapter004/4_1_3/index.html

 In this example, the <section> element has been used to divide the document into meaningful sections—in this case, Chapter 1 and Chapter 2—with each chapter consisting of a heading <h1> and paragraph text <p>. Furthermore, it’s possible to nest <section> elements, as shown within the <section> element of Chapter 2, Section 2.1.

 [image: Between <section> and </section>, You Can Divide the Content of a Document into Meaningful and Logical Units]

 Figure 4.1
 Between <section> and </section>, You Can Divide the Content of a Document into Meaningful and Logical Units

 Dividing Content into a Self-Contained Block Using <article>

 You should use the article element to summarize a piece of content in a self-contained topic-specific block. The article element is in itself quite similar to the <section> element, which you use to divide the content into meaningful sections. However, it’s recommended that you use the article element for a standalone composition, which would be ideal for individual news items, blog or forum entries, or comments on a blog post or news, for example.

 Here’s an example of an HTML code snippet that shows you what such a blog entry with the article element could look like. The result is shown in Figure 4.2.

 ...
 <body>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
 <header>
 <h2>New HTML elements on the horizon</h2>
 </header>
 <p>Published on <time>2023-05-05</time></p>
 <p>As already suspected ...</p>
 <footer>
 View comments ...
 </footer>
 </article>
 </body>
...

 Listing 4.2
 /examples/chapter004/4_1_4/index.html

 [image: The Example Shows a Meaningful and Logical <article> Composition of a Blog Entry]

 Figure 4.2
 The Example Shows a Meaningful and Logical <article> Composition of a Blog Entry

 Everything between <article> and </article> is the composition of a self-contained block consisting of a heading, a timestamp, the actual content section, and a footer. It’s up to you to decide which HTML elements you want to use to create such a composition with <article>, but the example shown here already makes sense semantically.

 What to Use: <article> or <section>?

 You’re probably wondering which of the two elements you should use for a semantic separation of content because the two are somewhat similar in some respects. Nevertheless, the HTML specification also makes a differentiation here and recommends using <article> if certain semantics are to be used multiple times, as is the case with a news or blog entry. Thus, <article> is a self-contained block—a composition of repeatedly used content following the same pattern—whereas <section> is suitable for a separation into content sections, which should contribute to a better overview of the entire document.

 Adding Content with Additional Information Using <aside>

 With <aside>, you can usually supplement or expand content with additional information. Strictly speaking, you can use the aside element for two different semantic things: a sidebar or an additional piece of information (e.g., a citation) to a content item, for example, within an article element.

 Referring to the /examples/chapter004/4_1_4/index.html example from Section 4.1.2.2, for example, you would use <aside> for a separate logical section in the document:

 ...
 <body>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
...
 </article>
 <aside>
 <h3>Partner websites</h3>

 Blog XY
 Magazine X
 Website Z

 </aside>
 </body>
...

 Listing 4.3
 /examples/chapter004/4_1_5/index.html

 [image: The <aside> Element Is Used as a Separate Logical Section in the HTML Document]

 Figure 4.3
 The <aside> Element Is Used as a Separate Logical Section in the HTML Document

 Note

 The # character in HTML is a reference to a jump mark in the same document, but it has no meaning yet in this example and was used instead of a real destination address.

 In addition to the option just shown, using <aside> as a sidebar would also be suitable as additional information in the form of a quote or within an article element. In the example that contains the blog entry, it would be suitable within the article element for an entry with further links to the blog entry.

 [image: The <aside> Element (Colored Here) Was Noted as Additional Information inside an <article> Element]

 Figure 4.4
 The <aside> Element (Colored Here) Was Noted as Additional Information inside an <article> Element

 Let’s take a look at the following code snippet in this regard:

 ...
 <body>
...
 <article>
 <header>
 <h1>New HTML elements on the horizon</h1>
 </header>
 <p>Published on <time>2023-05-05</time></p>
 <p>As already suspected ...</p>
 <aside>
 <h3>Further links</h3>

 Website A
 Website B
 Website C

 </aside>
 <footer>
 View comments...
 </footer>
 </article>
 <aside>
...
 </aside>
 </body>
...

 Listing 4.4
 /examples/chapter004/4_1_5/index2.html

 Declaring Content as a Page Navigation Bar Using <nav>

 As you might guess from its name, the nav element enables you to divide navigation elements into blocks. We’re not talking about web link collections here, but about a list of links for a sitemap or the main navigation of your own website. Like the aside element, you can use the nav element for its own section or within another HTML element to combine a group of links into a block.

 To use the blog entry again as an example, the nav element would be suitable for summarizing the main navigation or the list of related links from similar articles within the same web page. In any case, you should use the nav element for entire blocks of links. The following code snippet demonstrates the nav element in a small theoretical blog:

 ...
 <body>
 <nav>
 Blog |
 Links |
 About me |
 Legal Notes
 </nav>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
...
 <aside>
 <h3>Similar articles</h3>
 <nav>

 HTML6 will not exist.
 W3C and WHATWG agree
 What comes after the Living Standard?

 </nav>
 </aside>
...
 </article>
 <aside>
 <h3>Sitemap</h3>
 <nav>

 Blog

 HTML
 CSS

 Links
 About me

 Bio
 Portfolio

 Legal Notes

 </nav>
 </aside>
 </body>
...

 Listing 4.5
 /examples/chapter004/4_1_6/index.html

 [image: The <nav> Element (Colored Here) Can Be Used to Divide a Separate (Navigation) Section or to Group Blocks of Links within Other HTML Elements]

 Figure 4.5
 The <nav> Element (Colored Here) Can Be Used to Divide a Separate (Navigation) Section or to Group Blocks of Links within Other HTML Elements

 In the first example, <nav> was used to define a main navigation as a separate section of the HTML document. In the second example, the nav element was used to link a block of links to similar articles on the same web page. In the last example, a sitemap of the web page was summarized via the nav element.

 In addition, the last two examples were grouped within <aside> and </aside>. In them, bulleted lists (ul and li elements) were used within the nav element.

 Using <nav> Only for Main Navigation?

 The specification suggests using the nav element specifically for the main navigation. That doesn’t include external additional links or affiliate links to external websites. Likewise, it’s not recommended to put legal stuff such as copyright, contact information, and legal notes in the nav section; instead, use the footer section for that purpose (see Section 4.1.4).

 In the /examples/chapter004/4_1_6/index.html example, this means you only have two main navigation points with Blog and Links within the nav element and would write About me and Legal Notes outside of it (e.g., in the footer). I don’t see any point in separating this because there’s no difference between the first two links (Blog and Links) and the other two links (About me and Legal Notes) as both are linked to different websites, and both belong to the internal website in this case. So, it’s up to you to what extent you want to follow these recommendations. In any case, you should refrain from using the nav element for external links to third-party websites and, if possible, use it only selectively and sensibly on your own website.

 4.1.3 Using Headings with the HTML Elements from <h1> to <h6>

 The HTML element for headings of a certain order is <h1> to <h6>. The number (1 to 6) represents the heading level. Thus, everything you write between <h1> and </h1> is used as a top-level heading, everything between <h2> and </h2> belongs to a second-level heading, and so on down to the lowest level with <h6> and </h6> as a sixth-level heading.

 The HTML elements <h1> through <h6> should not be misused to emphasize a text, but rather to define the content structure of a document. Consider the following HTML structure:

 ...
 <h1>Heading 1</h1>
 <h2>Heading 1.1</h2>
 <h3>Heading 1.1.1</h3>
 <h2>Heading 1.2</h2>
 <h2>Heading 1.3</h2>
 <h3>Heading 1.3.1</h3>
 <h1>Heading 2</h1>
...

 Based on this sequence of headings, the following content structure (or document outline) will be mapped:

 1. Heading 1
 1.1. Heading 1.1
 1.1.1. Heading 1.1.1
 1.2. Heading 1.2
 1.3. Heading 1.3
 1.3.1. Heading 1.3.1
2. Heading 2

 [image: This Is What the Web Browser Will Make of It]

 Figure 4.6
 This Is What the Web Browser Will Make of It

 What Happens to the Headings in the Section Elements?

 You’re probably wondering what happens to the content structure of headings when you use the section elements from Section 4.1.2. That question is well justified. If you use the <section>, <article>, <aside>, or <nav> section elements, the content structure of the headings will also be affected. Within each new section element, the heading level count starts from the beginning, but always at a lower hierarchy level. The following HTML code illustrates this:

 ...
 <body>
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <section>
 <h1>News on HTML</h1>
 <article>
 <h1>A preview of the new HTML elements</h1>
 <p>It looks like ...</p>
 </article>
 </section>
 <section>
 <h1>News on CSS</h1>
 <article>
 <h1>New Styles at Last</h1>
 <p>After a long time of development ...</p>
 </article>
 </section>
 </body>
...

 Listing 4.6
 /examples/chapter004/4_1_7/index.html

 Here, five <h1> headings of the first order were used. If you look at the HTML code, you can see several sections. Next to the top section with <body>, you can find two additional <section> elements, each of which contains an <article> element in which headings of the first order have also been defined.

 This is a blog that’s been divided into two content sections with <section> containing the topics HTML and CSS. Within these sections, you can find the news articles included within <article>.

 [image: All Headings with <h1> Are Adjusted and Output Corresponds to the Section due to the Section Elements of HTML That Are Based on the Outline Algorithm]

 Figure 4.7
 All Headings with <h1> Are Adjusted and Output Corresponds to the Section due to the Section Elements of HTML That Are Based on the Outline Algorithm

 Due to the use of the new HTML elements <article> and <section>, the following content structure (or document outline) results:

 1. My Blog
 1. News on HTML
 1. A preview of the new HTML elements
 2. News on CSS
 1. New Styles at Last

 Document Outline for Advanced Users

 The term outline or document outline refers to the structure of the document, which can be generated and represented by the headings, among other things—as in the case of the table of contents of this book, for example. The document outline can be quite useful. For example, the web browser might offer you a table of contents, letting you jump from one heading to another. Search engines can also use such a table of contents to create better page previews or even improve search results. Screen reader users probably have the biggest advantage here because they can be guided through deeply nested hierarchies and sections.

 In Figure 4.8, you can see the JavaScript HTML5 outliner (h5o) to test the document outline during execution. Here, the document outline is displayed in the upper-right corner, and you can jump to the individual headings via hypertext links.

 [image: JavaScript h5o from Google during Execution]

 Figure 4.8
 JavaScript h5o from Google during Execution

 Section elements such as <section>, <article>, <aside>, and <nav> allow you to refine the document outline even more, as you’ve seen in the example, /examples/chapter004/4_1_7/index.html.

 Even if not all web browsers support document outlines directly, it won’t do any harm to pay attention to a proper outline of the HTML document because basically that’s no extra work. Screen reader users will thank you for it, and search engine robots may reward you for it because a good document outline can improve a page index, which in turn could mean a higher ranking in search results. Besides, a neatly structured web page is easier to read than an unstructured one.

 Keeping Track of the Document Outline

 When the website becomes more extensive and the document contains many headings and perhaps different sections, it often isn’t easy to keep track of whether the document outline still makes sense and is neatly structured with regard to its contents. Outlining tools that output the headline structure of the web page in the existing structure can assist you here. For example, Google offers the JavaScript h5o, mentioned in the previous section, at https://h5o.github.io. Alternatively, you can find an online service at http://gsnedders.html5.org/outliner/. Meanwhile, the validation checker at https://validator.w3.org/nu/#textarea also provides an outline option for HTML documents.

 4.1.4 Creating a Header Using <header> and a Footer Using <footer>

 The <header> and <footer> are two additional semantic HTML elements that you can use for implementing a header and footer in an HTML document. Like section elements, these elements initially have no visual effect on the HTML document apart from a line break. Again, these are initially just elements that you can use to give a piece of content a better and cleaner structure. The styling here is usually done via CSS. However, unlike section elements such as <section>, <article>, <aside>, or <nav>, these two elements don’t affect the hierarchical structuring (or document outline) of the document.

 You should use the header element for introductory elements such as a page heading, the name of the web page, or a navigation bar of the HTML document. There may well be other HTML elements between <header> and </header>. However, you mustn’t nest any other header elements in it. Although it seems obvious, <header> doesn’t necessarily have to be in the header, and you can use it more than once in the document.

 Invalid Positions of <header>

 A <header> tag mustn’t be used inside a footer, address, or another header element.

 The counterpart to the header element for the header section is the footer element for the footer or also the footer section, which also doesn’t necessarily have to be the last element in the document. Useful content for the footer of a website is often legal information, legal notes, or terms and conditions, but you can also use a sitemap or a special navigation bar here. You can’t use any other <footer> tag within a footer

 Here’s an example that demonstrates the header and footer elements in a meaningful structure:

 ...
 <body>
 <header>
 <hr /><small>Blog Version 1.0</small>
 <h1>My Blog</h1>
 <p>A simple blog...</p><hr />
 </header>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>It looks like ...</p>
 </article>
 <footer>
 <hr />Legal |
 Legal Notes |
 T&Cs |
 About me<hr />
 </footer>
 </body>
...

 Listing 4.7
 /examples/chapter004/4_1_8/index.html

 [image: The Header and Footer with the <header> and <footer> Elements (Shown in Gray for Clarity)]

 Figure 4.9
 The Header and Footer with the <header> and <footer> Elements (Shown in Gray for Clarity)

 Between <header> and </header>, you can find a summary of the entire information for the header section of a web page. In the example, this is the version of the blog, the headline, and a short description of the website. This is followed by the articles of the blog. Finally, the footer between <footer> and </footer> contains forwarding hyperlinks with legal information and so on.

 4.1.5 Marking Contact Information Using <address>

 You should use the address element only for contact information about the author of the HTML document or article. If the address element is used within the body element, it should only contain the contact information for the owner or author of the entire document or article. If the address element is positioned inside an article element, the contact information for the author of the document should be written there. Usually, the web browser displays this text in italics with a new line before and after the address element.

 The best location for this contact information for the author, an organization, or the person responsible for the document or article is usually likely to be at the end of the article or at the end of the document (e.g., between <footer> and </footer>).

 Here’s an example in which the address element was used for contact information about the author of an article at the end inside the footer element. You can see the example at execution in Figure 4.10.

 [image: Contact Information for the Author of the Article Has Been Placed at the End of the Article between <footer> and </footer> Using the <address> Element]

 Figure 4.10
 Contact Information for the Author of the Article Has Been Placed at the End of the Article between <footer> and </footer> Using the <address> Element

 ...
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>It looks like ...</p>
 <footer>
 <address>The article was created by:

 J. Doe

 1234 Sample Street

 Sample Town, 12345

 www.webaddress.com
 </address>
 </footer>
 </article>
...

 Listing 4.8
 /examples/chapter004/4_1_9/index.html

 4.2 HTML Elements for Structuring Text

 This section describes the HTML elements for grouping or structuring plain text content, such as paragraph text or a line break. This has nothing to do with dividing an HTML document into individual sections or areas. You’ve previously learned how to do that in Section 4.1.

 	
 HTML Element

 	
 Meaning

 	
 <p>

 	
 Text paragraph

 	

 	
 Forcing a line break

 	
 <wbr>

 	
 Optional line break within a word

 	
 <hr>

 	
 Topic-based separation at the paragraph level

 	
 <blockquote>

 	
 Citation as a text paragraph

 	
 <div>

 	
 Defining a general section

 	
 <main>

 	
 Used for the main content area of a web page

 	
 <figure>

 	
 Grouping or summarizing content for separate description

 	
 <figcaption>

 	
 Labeling content grouped via the figure element

 	

 	
 Unordered bulleted list

 	

 	
 Ordered list (mostly numbered)

 	

 	
 List element in a ul or ol list

 	
 <dl>

 	
 Creating a description list using dt and dd

 	
 <dt>

 	
 Expression to be described before the dd element

 	
 <dd>

 	
 Description that follows the dt element

 Table 4.2
 Brief Overview of the Elements Covered Here for Grouping and Dividing Content

 4.2.1 Adding Text Paragraphs Using <p>

 The p element (p = paragraph) is the classic element for text paragraphs in a longer continuous text. Anything you write here between the opening <p> and the closing </p> is treated as a text paragraph. Within such a text paragraph you can use images, videos, audio clips, or other text markup in addition to multiline body text. However, you can’t use other group elements, headings(<h1> to <h6>), or section elements within <p> and </p>.

 The following example demonstrates two slightly longer paragraph texts with the p element in use:

 ...
 <body>
 ...
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>.
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit. Aenean commodo ligula eget dolor. Aenean massa.
 Cum sociis natoque penatibus et magnis dis parturient
 montes, nascetur ridiculus mus. Donec quam felis,
 ultricies nec, pellentesque eu, pretium quis, sem.
 Nulla consequat massa quis enim. Donec pede justo,
 fringilla vel, aliquet nec, vulputate eget, arcu. In
 enim justo, rhoncus ut, imperdiet a, venenatis vitae,
 justo.
 </p>
 <p>Nullam dictum felis eu pede mollis pretium. Integer
 tincidunt. Cras dapibus. Vivamus elementum semper
 nisi. Aenean vulputate eleifend tellus. Aenean leo
 ligula, porttitor eu, consequat vitae, eleifend ac,
 enim. Aliquam lorem ante, dapibus in, viverra quis,
 feugiat a, tellus.
 </p>
 </article>
 ...
 </body>
...

 Listing 4.9
 /examples/chapter004/4_2_1/index.html

 [image: Two Paragraphs with Body Text between <p> and </p> Displayed in the Web Browser]

 Figure 4.11
 Two Paragraphs with Body Text between <p> and </p> Displayed in the Web Browser

 Aligning and Formatting Paragraph Text Using CSS

 Paragraph text with the p element can be formatted using CSS or CSS features.

 4.2.2 Forcing Line Breaks Using

 If you try to insert a line break or a space in the body text of the example just shown, /examples/chapter004/4_2_1/index.html, you’ll notice that it doesn’t work. The point at which the line break is supposed to be inserted is decided by the web browser based on a space that separates words. Nevertheless, you can also force a line break at a certain point in the text using
 (br = break).
 is a standalone tag. Even though you can use multiple line breaks simultaneously via
, you shouldn’t overuse it for separating paragraphs.

 The following example is commonly used to represent an address neatly by means of forced line breaks (see Figure 4.12):

 ...
 Written by John

 <address>
 John Doe

 Sample Town

 www.address.com
 </address>
...

 Listing 4.10
 /examples/chapter004/4_2_2/index.html

 [image: You Can Force Line Breaks via the
 Element]

 Figure 4.12
 You Can Force Line Breaks via the
 Element

 4.2.3 Adding Optional Line Breaks Using <wbr>

 If, on the other hand, you need an optional line break that only occurs at a specific position when it’s necessary for an optimal display in the web browser and to save the user from scrolling sideways, you can use the standalone <wbr> (or <wbr /> in XHTML) tag for this (wbr = word break). <wbr> can be quite useful if you want to prevent the web browser from breaking a line in the wrong place. A simple example follows:

 <p>Taumatawhakatangi<wbr>
hangakoauauotamatea<wbr>
turipukakapikimaungah<wbr>
oronukupokaiwhen<wbr>
uakitanatahu</p>

 Depending on how wide the display section is in the web browser, the long word can be wrapped only at the places where <wbr> was inserted.

 [image: An Extremely Long Word Wrapped at a Position Suggested by <wbr>]

 Figure 4.13
 An Extremely Long Word Wrapped at a Position Suggested by <wbr>

 Line Break via <wbr>

 The optional line break via <wbr> was added to the standard HTML version at a later time, but it had been around since HTML 2.0. The Netscape web browser had introduced this element a long time ago, and other browser manufacturers had implemented it as well.

 Nevertheless, this word separation is unattractive because the line gets broken without consideration of a grammatically correct separation. As an alternative, the named entity ­ is suitable for a conditional hyphen. Similar to <wbr>, this allows the web browser to separate the word at this point if necessary. Unlike <wbr>, the web browser adds a hyphen at the end of the wrapped word. The alternative example looks as follows:

 <p>Taumatawhakatangi­
hangakoauauotamatea­
turipukakapikimaungah­
oronukupokaiwhen­
uakitanatahu</p>

 [image: A Long Word Can Also Be Wrapped at the Position Suggested by “­” but It Also Adds a Separator, Unlike <wbr>]

 Figure 4.14
 A Long Word Can Also Be Wrapped at the Position Suggested by “­” but It Also Adds a Separator, Unlike <wbr>

 4.2.4 Forcing Spaces and Preventing Wrapping Using " "

 If you want to insert multiple spaces between two words, you can force this with the named character (= nonbreaking space). Let’s take a look at a simple example:

 <p>word1 word2</p>
<p>word3 word4</p>

 Between word1 and word2, the named HTML entity character has been written four times, resulting in four spaces between these two words, which is also displayed by the web browser. In the example with word3 and word4 the same was tried by pressing the spacebar four times. Nevertheless, in this case, the web browser displays only one space between the words.

 In addition to forcing a space, you can also use the named entity character to prevent a break between two words, which the web browser automatically performs when there is insufficient space at the end of a line. For example:

 ... word1 word2 ...

 By placing this between word1 and word2, you can prevent the two words from being split between two different lines by the web browser if there’s a lack of space. word1 and word2 thus stick together in the same line forever.

 4.2.5 Adding a Topic-Based Separation Using <hr>

 You can use <hr> to create a topic-based separation in an HTML document, for example, to separate content more clearly. However, even though <hr> is visualized as a separator in HTML by web browsers, the element is also to be treated as a semantic element and not a presentation element. For example, it isn’t valid HTML to use the hr element between <p> and </p> or within a heading (<h1> to <h6>), even though web browsers are quite fault-tolerant about this.

 The example shown in Figure 4.15 with a horizontal line can be found under /examples/chapter004/4_2_5/index.html. You’ll see that a separator line also creates a paragraph.

 [image: With <hr>, a Visual Topic-Based Separation Has Been Added as a Separator Line behind the Paragraph Text]

 Figure 4.15
 With <hr>, a Visual Topic-Based Separation Has Been Added as a Separator Line behind the Paragraph Text

 4.2.6 Adding Paragraphs or Citations Using <blockquote>

 Between <blockquote> and </blockquote>, you can quote a text from another source. Most web browsers indent the text in a new paragraph. Within such block quotes, you can use other HTML elements besides text.

 The blockquote element contains cite, an HTML attribute that allows you to specify the source of the citation. With regard to books, this can also be a link to the corresponding book page or to a store where this book can be purchased. Unfortunately, no web browser provides the option to somehow make this source visible or to call the corresponding URL yet. So, to be on the safe side, you should add the source, as I did in the following example; in Figure 4.16, you can see the display in the web browser.

 ...
<blockquote cite="http://www.blindtextgenerator.com/">
 Nulla consequat massa quis enim. Donec pede justo,
 fringilla vel, aliquet nec, vulputate eget, arcu. In enim
 justo, rhoncus ut, imperdiet a, venenatis vitae, justo.
 <small> - http://www.blindtextgenerator.com/ - </small>
</blockquote>
...

 Listing 4.11
 /examples/chapter004/4_2_6/index.html

 [image: Text Quoted between <blockquote> and </blockquote> from the www.blindtextgenerator.com Website]

 Figure 4.16
 Text Quoted between <blockquote> and </blockquote> from the www.blindtextgenerator.com Website

 4.2.7 Defining a General Section Using <div>

 Between <div> and </div> (div = division), you can define a general section, which at first usually does nothing but create a new line. This div element doesn’t have any meaning until CSS comes into play, which is the main use of <div>: defining layout sections. In the following example, the HTML attribute class was used, which you can use to assign the div elements to a class that you can later select with CSS (using a selector) and visually customize or style. Here’s a familiar example that demonstrates such an application in use:

 ...
 <body>
 <div class="header">
 <hr />
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <hr />
 </div>
 <h2>News on HTML</h2>
 <div class="article">
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor ...</p>
 </div>
 <div class="footer">
 <hr />
 Legal |
 Legal Notes |
 T&Cs |
 About me
 <hr />
 </div>
 </body>
...

 Listing 4.12
 /examples/chapter004/4_2_7/index.html

 For such examples, you should prefer semantic elements such as <header>, <footer>, <article>, <nav>, and so on instead of the div element.

 Therefore, you should use the div element only if no other suitable HTML element is available. You can find more information about this in greater detail in Section 4.3. In regard to the /examples/chapter004/4_2_7/index.html example, you should, as previously described in the book, use the HTML elements <header>, <article>, and <footer> that have been newly introduced in HTML instead of the <div class="header">, <div class="article">, and <div class="footer "> sections used in the previous example. The corresponding example thus looks as follows (see Listing 4.13).

 [image: The Header and Footer of the HTML Document Appear in Gray]

 Figure 4.17
 The Header and Footer of the HTML Document Appear in Gray

 ...
 <body>
 <header>
 <hr />
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <hr />
 </header>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor ... </p>
 </article>
 <footer>
 <hr />
 Legal |
 Legal Notes |
 T&Cs |
 About me
 <hr />
 </footer>
 </body>
...

 Listing 4.13
 /examples/chapter004/4_2_7/index2.html

 4.2.8 Using <main>: An HTML Element for the Main Content

 I described the div element in the previous section, so it makes sense to deal with the main element at this point. Where <div id="main">...</div> was used in the past, you can use <main>...</main> from now on. The id attribute identifies an element that occurs only once within a document.

 Like all other new HTML elements, you should use the main element as sensibly as possible. In practice, you use it for the main content of a website, which means it’s best not to place it inside <article>, <aside>, <footer>, <nav>, or header elements.

 In the web browser, the main element is rendered like the div element with no special properties and only creates a line break. However, unlike the div element, you should use the main element only once (visibly) in an HTML document. In contrast to the <section> element, the main element isn’t a section element, but a pure grouping element. Thus, the use of such a section doesn’t affect the heading structure (the document outline) of the HTML document.

 Here’s an example of how you can group a section as the main section of a web page:

 ...
 <body>
 <header>
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 </header>
 <main>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor...</p>
 </article>
 </main>
 <footer>
 Legal |
 Legal Notes |
 T&Cs |
 About me
 </footer>
 </body>
...

 Listing 4.14
 /examples/chapter004/4_2_8/index.html

 Using <main> Multiple Times?

 <main> is intended to present the main content of an HTML document and should therefore be included only once in a document. If it’s used more than once, then this page won’t pass the validation check. Nevertheless, there are single-page web applications, that is, applications that consist of a single HTML document and whose content is dynamically reloaded, where this rule can become an issue. For this reason, the use of the main element has been adjusted somewhat, and multiple main elements can now be used. However, only one <main> element of those can be visible at a time. All other main elements must be provided with the hidden attribute. For example:

 <main>...</main>
<main hidden>...</main>
<main hidden>...</main>

 Although there are other ways in CSS to hide individual elements, you can use only the hidden attribute with <main> for the HTML document to be valid. All other options are invalid.

 4.2.9 Labeling Content Separately Using <figure> and <figcaption>

 To set off or group certain content such as tables, images, listings, videos, or other HTML elements from the usual body text, you can use the figure element. If you want to link this section with an (optional) caption, you should use the figcaption element. Like the figure element, the figcaption element can contain other HTML elements besides ordinary body text. Thus, the figure element serves as the semantic parent for an element belonging to the page content, such as an image, table, listing, or other content, and the figcaption element encloses the subtitle to that element.

 Here’s a simple example, the result of which is shown in Figure 4.18:

 ...
 <h2>HTML</h2>
 <article>
 <h3>figure and figcaption in use</h3>
 <p>The text before figure ...</p>
 <figure>

 <figcaption>Figure 1: Once upon a time ...</figcaption>
 </figure>
 <p>The text after figure</p>
 </article>
...

 Listing 4.15
 /examples/chapter004/4_2_9/index.html

 If you want to place the (optional) caption with the figcaption element before the content (above the image in the example), you need to use the element right after the opening <figure>. However, it’s only possible to use a figcaption element between <figure> and </figure>, and <figcaption> must be the first or last element of the figure element.

 [image: In the <article> Element between <figure> and </figure>, an Image Has Been Inserted with the Element and a Caption with the <figcaption> Element]

 Figure 4.18
 In the <article> Element between <figure> and </figure>, an Image Has Been Inserted with the Element and a Caption with the <figcaption> Element

 Between <figure> and </figure> you can also use more than one content type (e.g., an image in the example). In the web browser, a figure usually doesn’t get displayed separately. In addition to a separate line, the content between <figure> and </figure> is often displayed slightly indented. However, CSS is used for the design of the figure element anyway.

 4.2.10 Creating Unordered Lists Using and

 An unordered list is basically nothing more than an unnumbered bulleted list in which all list entries are given a bullet character. The web browsers usually display this bullet with a bullet point.

 You can introduce such a list with an opening (ul = unordered list), followed by the actual bullet points, which you write between and . Each li element (li = list item) is a bullet point. At the end, you must end the unordered bullet list with the closing . Only li elements can be contained between and . In between the li elements, you can also use other HTML elements (except for section elements).

 Here’s a simple example of an unordered list, the execution of which you can see in Figure 4.19.

 ...
<article>
 <h2>Unordered bullet list with ul</h2>

 Lorem ipsum dolor sit amet
 Donec quam felis ultricies
 Nulla consequat massa quis
 Etiam ultricies nisi vel
 Donec vitae sapien ut libero

</article>
...

 Listing 4.16
 /examples/chapter004/4_2_10_15/index.html

 [image: Bulleted Lists with the Element Are Usually Displayed with a Bullet Point]

 Figure 4.19
 Bulleted Lists with the Element Are Usually Displayed with a Bullet Point

 4.2.11 Creating Ordered Lists Using and

 What you’ve just read about the ul element also applies to the ol element (ol = ordered list). The only exception is that the ol element is an ordered list—more precisely, a numbered list in which the individual li elements are automatically numbered.

 Here’s an example of an ordered list, the execution of which you can see in Figure 4.20.

 OEBPS/common/logo.png
® Rheinwerk

OEBPS/common/cover.jpg

OEBPS/bilderklein/klein04_017.png
My Blog
e,

News on HTML

Aprevienw of the new HTML elements

Loren avn ol it e, consctetver sipscin ol Acsescomodo st door Aceera
s, Cum o toque pesaios € magas i porcs Moot s Fdclis s Donec
e, s a5 PSS . i, 5, ol RSSOt G i
Doneepedejust. ingls el lgue ac, Sl 2 . I cai s shoncs . impeic
S veasnats Vs, s,

LealLera Noes | 16Cs [About .

OEBPS/bilderklein/klein04_019.png
Unordered list with ul

¢ Lorem ipsum dolor sit amet
Donec quam felis ultricies
Nulla consequat massa quis
Etiam ultricies nisi vel

* Donec vitae sapien ut libero

OEBPS/bilderklein/klein04_018.png
My Blog
[e—

e

e gt e

[

OEBPS/bilderklein/klein04_014.png
Taumatawhakatangibangakoavavotamateaturipukakapikimavngah-
oronukupokaiwhenvakitanatab

Lezal | Legal Notes | T&Cs | About me.

OEBPS/bilderklein/klein04_013.png
Taumatawhakarangibangakoavauotamatearuripukakapikimaungah
oronukupokaishenuakitanatabu

Lezal | Legal Notes | T&Cs | Aboutme.

OEBPS/bilderklein/klein04_016.png
My Blog

pr

News on HTML
A presie afthe e HTML clements
i o et e 5 et e, acen il . Do o s s

[R e e
ot gy i g sy bt g

e ——
v oA g s M

Lol Lol T st

OEBPS/bilderklein/klein04_015.png
My Blog

o og.

News on HTML
A presie afthe e HTML clements

ol e e s et e oo . s s o s o
e e g e s o 5 Do Pt . g e et
o e s o A it S o o

Finaly implemeated

Sl i s e e s G Cos i Vo et sper s ek

e il e .t . St e . A o
e e s i

Lol Lo 18

OEBPS/bilderklein/klein04_012.png
Written by Johy
Joln Doe.
Sample Town
weaddress.com

Leeal | Lesal Notes | T&Cs | Aboutme

OEBPS/bilderklein/klein04_011.png
My Blog

e
News on HTML

Lt ot st i i A ol s et e A s o
g ol e Bt i st A

N ——

e o A o . ot . o e . AL o 5
Precitebi

Lol Lo T e

OEBPS/bilderklein/klein04_010.png
=,
My Blog

News on HTML
Apreview ofthe new HTML clements

OEBPS/bilderklein/klein04_007.png
My Blog
Asimple blog ...
News on HTML

A preview of the new HTML elements

It looks like ...
News on CSS

New Styles at Last

After a long time of development

OEBPS/bilderklein/klein04_009.png
=,
My Blog

Ainple g

News on HTML

Apreview ofthe new HTML el

Lol a1 bt e

OEBPS/bilderklein/klein04_008.png
My Blog P,

Asimple o

News on HTML
Apreview of the new HTML elements
Itoss ke

News on CSS.

New Styles at Last

Aftr s fong e of devclopmeat

OEBPS/bilderklein/klein04_004.png
My Blog

New HTML elements on the horizon

Farther links

OEBPS/bilderklein/klein04_003.png
My Blog
New HTML elements on the horizon

e —

Partuer websies

OEBPS/bilderklein/klein04_006.png
Heading 1
Heading 1.1
Heading 1.1.1
Heading 1.2
Heading 1.3

Heading 1.3.1

Heading 2

OEBPS/bilderklein/klein04_005.png
Blog | Links | about e | Loval oty
My Blog

[

New HTML clements on the horizon
[r—

T

Siniar avtices

Qe
+ VAC o IATG e
ot Vi Sdcs

OEBPS/keys/TheAntiquaB-W4SemiLightItalic.otf

OEBPS/keys/TheAntiquaB-W6SemiBold.otf

OEBPS/keys/TheAntiquaB-W6SemiBoldItalic.otf

OEBPS/keys/KeyboardUniversal.otf

OEBPS/keys/RheinwerkCallout.otf

OEBPS/keys/RheinwerkCalloutTS2.otf

OEBPS/keys/TheAntiquaB-W4SemiLight.otf

OEBPS/bilderklein/klein04_001.png
T sond caper
Chapter 2.1
FrIS—

OEBPS/bilderklein/klein03_008.png
Description fext for search engines

e serpsimuator com

Dec 26,2023 —Adescrpton should be as shortand precise s possile Here you
Should summarze n 2.3 sntences whal s page s aboul. Characiers ..

Goooooooooogle »

1234567809010 Next

OEBPS/bilderklein/klein04_002.png
My Blog

New HTML elements on the horizon

OEBPS/bilderklein/klein03_005.png
@ Logicatinting ik

€ > C 0| CuserswolitDoam.. 12 % % O &

OEBPS/bilderklein/klein03_004.png
€ Rheinwerk
Publishing

OEBPS/bilderklein/klein03_007.png
| About me

OEBPS/bilderklein/klein03_006.png
. Using the srip lement.

€ 5 X O fie| CuserspuoliDo. 12 % ® O & i
This page says.

Asavascript

OEBPS/bilderklein/klein03_002.png
© e e ot

€ 5 C O el Csasmolioamen. 2 % G € * O 2

OEBPS/bilderklein/klein03_003.png
—The Heading of the HTML Page.

“ww noxcop com
Do, 2023 - Tho il i usual islayed n o header bar of to browsar. But he e

150 has an mportant meaning when seting bookmarks and

OEBPS/bilderklein/klein02_002.png
The main heading

Here is an ordinary paragraph text

-
A subheading
Ancther paragraph with text
w

OEBPS/bilderklein/klein02_009.png
HTML Document

<ldoctype htnl> [

<html>

<head>
<meta charset="UTF-8">
<titletindos titlec/title> @
</head>

<body>
<I-- Visible section --> o
</body>

</html>

OEBPS/bilderklein/klein02_008.png
Thesaluefor el

—
http://rheinwerk-computing.con/">A Hyperlink

OEBPS/bilderklein/klein03_001.png
En

i

OEBPS/bilderklein/klein02_010.png
> head

— body

OEBPS/bilderklein/klein02_005.png
Content.

/—)%
<p> Paragraph Text </p>
—~ —

StartTag End Tag

OEBPS/bilderklein/klein02_004.png
o PP

Asubheading

st gt i .

o o o

oY
o 0@
s s <5y

OEBPS/bilderklein/klein02_007.png
PR .

+. (Ertor. Endtag seen, but thre wer open lemenis
Exnioe courn oo s S
fon texctos o

Eror. Uncossd lemen b
Exnioet courn 8.0l 21
s 15 on raies

Error Endtag o o4y seen bt there were uncosed lemens.
Exmioe courn oine crm
FRTT—

OEBPS/bilderklein/klein02_006.png
=

€0 C O] S e 2 % @ & % O & 1

s A s .

50 e e i & et s 308X

- = Sson

OEBPS/bilderklein/klein02_003.png
Echooses tour

s =

OEBPS/bilderklein/klein01_002.png

OEBPS/bilderklein/klein01_009.png
[—

3

XX)

OEBPS/bilderklein/klein01_008.png
€3 C b s b X =k

Markup Valic

Vo VR bty P o ek Bevt

Valdote by et input

OEBPS/bilderklein/klein02_001.png
© virsouTie

C 5 C 0ol @ & G & % O @)

The main heading

PR ——
A subheading

Avothr pusgraph wih et

OEBPS/bilderklein/klein01_010.png
[——"
€5 0 4 wtagmn
+ Erer sy enaog 1

OEBPS/bilderklein/klein01_005.png

OEBPS/bilderklein/klein01_004.png
2 et e e ¢ e R OO &= 0 X

e L P —— L
e S

P H
P g
8 oz
& e, g

OEBPS/bilderklein/klein01_007.png
© 0 Dl Chm e @ % © 4 % O @) |

A headline

OEBPS/bilderklein/klein01_006.png
rre=y e
i ey

OEBPS/bilderklein/klein01_003.png
Heading

itle of the page

Link1 Normal paragraph, Lorem ipsun dolor it ame,
consectetuer adipiscing el sed diam ronummy

Link 1 nibh euismd tincidunt t aoreet dolore magna.
aliguam erat volatpat. Ut wisi enim ad minim
tink 1 veniom, quis nostrud execi taton ullamcorper
susciptloborts i ut aliquip ex ea commodo
Link1 o e

consequat. Duis autem vel eu irure dofor in
hendreritin vulputate veitesse molestie alquip

/ AN

= m
HIML css

index html style.css

OEBPS/bilderklein/klein01_001.png
Web Browser

