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			Preface

			Linux has been the mainstay of embedded computing for many years. And yet, there are remarkably few books that cover the topic as a whole: this book is intended to fill that gap. The term "embedded Linux" is not well defined and can be applied to the operating system inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial control units. However, they are all built on the same basic open source software. Those are the technologies that I describe in this book, based on my experience as an engineer and the materials I have developed for my training courses.

			Technology does not stand still. The industry based around embedded computing is just as susceptible to Moore's law as mainstream computing. The exponential growth that this implies has meant that a surprisingly large number of things have changed since the first edition of this book was published. This third edition is fully revised to use the latest versions of the major open source components, which include Linux 5.4, the Yocto Project 3.1 Dunfell, and Buildroot 2020.02 LTS. In addition to Autotools, the book now covers CMake, a modern build system that has seen increased adoption in recent years.

			Mastering Embedded Linux Programming covers the topics in roughly the order that you will encounter them in a real-life project. The first eight chapters are concerned with the early stages of the project, covering basics such as selecting the toolchain, the bootloader, and the kernel. I introduce the idea of embedded build systems, using Buildroot and the Yocto Project as examples. The section ends with new in-depth coverage of the Yocto Project.

			Section 2, Chapters 9 to 15, looks at the various design decisions that need to be made before development can take place in earnest. It covers the topics of filesystems, software update, device drivers, the init program, and power management. Chapter 12 demonstrates various techniques for rapid prototyping with a breakout board, including how to read schematics, solder headers, and troubleshoot signals using a logic analyzer. Chapter 14 is a deep dive into Buildroot where you will learn how to partition your system software into separate services using BusyBox runit.

			Section 3, Chapters 16, 17, and 18, will help you in the implementation phase of the project. We start with Python packaging and dependency management, a topic of growing importance as machine learning applications continue to take the world by storm. Next, we move on to various forms of inter-process communication and multithreaded programming. The section concludes with a careful examination of how Linux manages memory and demonstrates how to measure memory usage and detect memory leaks using the various tools that are available.

			The fourth section, which includes Chapters 19 and 20, shows you how to make effective use of the many debug and profiling tools that Linux has to offer in order to detect problems and identify bottlenecks. Chapter 19 now describes how to configure Visual Studio Code for remote debugging using GDB. Chapter 20 now includes coverage of BPF, a new technology that enables advanced programmatic tracing inside the Linux kernel. The final chapter brings together several threads to explain how Linux can be used in real-time applications.

			Each chapter introduces a major area of embedded Linux. It describes the background so that you can learn the general principles, but it also includes detailed working examples that illustrate each of these areas. You can treat this as a book of theory, or a book of examples. It works best if you do both: understand the theory and try it out in real life.

			Who this book is for

			This book is written for developers with an interest in embedded computing and Linux who want to extend their knowledge into the various branches of the subject. In writing the book, I assume a basic understanding of the Linux command line, and in the programming examples, a working knowledge of the C and Python languages. Several chapters focus on the hardware that goes into an embedded target board, and, so, familiarity with hardware and hardware interfaces will be a definite advantage in these cases.

			What this book covers

			Chapter 1, Starting Out, sets the scene by describing the embedded Linux ecosystem and the choices available to you as you start your project.

			Chapter 2, Learning about Toolchains, describes the components of a toolchain and shows you how to create a toolchain for cross-compiling code for the target board. It describes where to get a toolchain and provides details on how to build one from the source code.

			Chapter 3, All about Bootloaders, explains the role of the bootloader in loading the Linux kernel into memory, and uses U-Boot as an example. It also introduces device trees as the mechanism used to encode the details of the hardware in almost all embedded Linux systems.

			Chapter 4, Configuring and Building the Kernel, provides information on how to select a Linux kernel for an embedded system and configure it for the hardware within the device. It also covers how to port Linux to the new hardware.

			Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part of an embedded Linux implementation by means of a step-by-step guide on how to configure a root filesystem.

			Chapter 6, Selecting a Build System, covers two commonly used embedded Linux build systems, Buildroot and the Yocto Project, which automate the steps described in the previous four chapters.

			Chapter 7, Developing with Yocto, demonstrates how to build system images on top of an existing BSP layer, develop onboard software packages with Yocto's extensible SDK, and roll your own embedded Linux distribution complete with runtime package management.

			Chapter 8, Yocto under the Hood, is a tour of Yocto's build workflow and architecture including an explanation of Yocto's unique multi-layer approach. It also breaks down the basics of BitBake syntax and semantics with examples from actual recipe files.

			Chapter 9, Creating a Storage Strategy, discusses the challenges created by managing flash memory, including raw flash chips and embedded MMC (eMMC) packages. It describes the filesystems that are applicable to each type of technology.

			Chapter 10, Updating Software in the Field, examines various ways of updating the software after the device has been deployed, and includes fully managed Over-the-Air (OTA) updates. The key topics under discussion are reliability and security.

			Chapter 11, Interfacing with Device Drivers, describes how kernel device drivers interact with the hardware by implementing a simple driver. It also describes the various ways of calling device drivers from user space.

			Chapter 12, Prototyping with Breakout Boards, demonstrates how to prototype hardware and software quickly using a pre-built Debian image for the BeagleBone Black together with a peripheral breakout board. You will learn how to read datasheets, wire up boards, mux device tree bindings, and analyze SPI signals.

			Chapter 13, Starting Up – The init Program, explains how the first user space 
program–init–starts the rest of the system. It describes three versions of the init program, each suitable for a different group of embedded systems, ranging from the simplicity of the BusyBox init, through System V init, to the current state-of-the-art approach, systemd.

			Chapter 14, Starting with BusyBox runit, shows you how to use Buildroot to divide your system up into separate BusyBox runit services each with its own dedicated process supervision and logging like that provided by systemd.

			Chapter 15, Managing Power, considers the various ways that Linux can be tuned to reduce power consumption, including dynamic frequency and voltage scaling, selecting deeper idle states, and system suspend. The aim is to make devices that run for longer on a battery charge and also run cooler.

			Chapter 16, Packaging Python, explains what choices are available for bundling Python modules together for deployment and when to use one method over another. It covers pip, virtual environments, conda, and Docker.

			Chapter 17, Learning about Processes and Threads, describes embedded systems from the point of view of the application programmer. This chapter looks at processes and threads, inter-process communications, and scheduling policies.

			Chapter 18, Managing Memory, introduces the ideas behind virtual memory and how the address space is divided into memory mappings. It also describes how to measure memory usage accurately and how to detect memory leaks.

			Chapter 19, Debugging with GDB, shows you how to use the GNU debugger, GDB, together with the debug agent, gdbserver, to debug applications running remotely on the target device. It goes on to show how you can extend this model to debug kernel code, making use of the kernel debug stubs with KGDB.

			Chapter 20, Profiling and Tracing, covers the techniques available to measure the system performance, starting from whole system profiles and then zeroing in on particular 
areas where bottlenecks are causing poor performance. It also describes how to use Valgrind to check the correctness of an application's use of thread synchronization and memory allocation.

			Chapter 21, Real-Time Programming, provides a detailed guide to real-time programming on Linux, including the configuration of the kernel and the PREEMPT_RT real-time kernel patch. The kernel trace tool, Ftrace, is used to measure kernel latencies and show the effect of the various kernel configurations.

			To get the most out of this book

			The software used in this book is entirely open source. In almost all cases, I have used the latest stable versions available at the time of writing. While I have tried to describe the main features in a manner that is not version-specific, it is inevitable that some of the examples will need adaptation to work with later software.
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			* See the Compatible Linux Distribution section of the Yocto Project Quick Build guide at https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html for more details.

			Embedded development involves two systems: the host, which is used for developing the programs, and the target, which runs them. For the host system, I have used Ubuntu 20.04 LTS, but most Linux distributions will work with just a little modification. You may decide to run Linux as a guest in a virtual machine, but you should be aware that some tasks, such as building a distribution using the Yocto Project, are quite demanding and are better run on a native installation of Linux.

			I chose three exemplar targets: the QEMU emulator, the BeagleBone Black, and the Raspberry Pi 4. Using QEMU means that you can try out most of the examples without having to invest in any additional hardware. On the other hand, some things work better if you do have real hardware, for which, I have chosen the BeagleBone Black because it is not expensive, it is widely available, and it has very good community support. The Raspberry Pi 4 was added in the third edition for its built-in Wi-Fi and Bluetooth. Of course, you are not limited to just these three targets. The idea behind the book is to provide you with general solutions to problems so that you can apply them to a wide range of target boards.

			Download the example code files

			You can download the example code files for this book from GitHub at 
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition.

			In case there's an update to the code, it will be updated on the existing GitHub repository. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781789530384_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "To configure the host side of the network, you need the tunctl command from the User Mode Linux (UML) project."

			A block of code is set as follows:

			#include <stdio.h>

			#include <stdlib.h>

			int main (int argc, char *argv[])

			{

			    printf ("Hello, world!\n");

			    return 0;

			}

			Any command-line input or output is written as follows:

			$ sudo tunctl -u $(whoami) -t tap0

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Click Flash from Etcher to write the image."

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	


		
			Section 1: 
Elements of Embedded Linux

			The objective of Section 1 is to help the reader set up their development environment and create a working platform for the later phases. It is often referred to as the "board bring-up" phase.

			This part of the book comprises the following chapters:

			
					Chapter 1, Starting Out

					Chapter 2, Learning About Toolchains

					Chapter 3, All About Bootloaders

					Chapter 4, Configuring and Building the Kernel

					Chapter 5, Building a Root Filesystem

					Chapter 6, Selecting a Build System

					Chapter 7, Developing with Yocto

					Chapter 8, Yocto Under the Hood

			

		

	


		
			Chapter 1: Starting Out

			You are about to begin working on your next project, and this time it is going to be running Linux. What should you think about before you put finger to keyboard? Let's begin with a high-level look at embedded Linux and see why it is popular, what are the implications of open source licenses, and what kind of hardware you will need to run Linux.

			Linux first became a viable choice for embedded devices around 1999. That was when Axis (https://www.axis.com) released their first Linux-powered network camera and TiVo (https://business.tivo.com) their first Digital Video Recorder (DVR). Since 1999, Linux has become ever more popular, to the point that today it is the operating system of choice for many classes of product. In 2021, there were over two billion devices running Linux. That includes a large number of smartphones running Android, which uses a Linux kernel, and hundreds of millions of set-top boxes, smart TVs, and Wi-Fi routers, not to mention a very diverse range of devices such as vehicle diagnostics, weighing scales, industrial devices, and medical monitoring units that ship in smaller volumes.

			In this chapter, we will cover the following topics:

			
					Choosing Linux

					When not to choose Linux

					Meeting the players

					Moving through the project life cycle

					Navigating open source

					Selecting hardware for embedded Linux

					Obtaining the hardware for this book

					Provisioning your development environment

			

			Choosing Linux

			Why is Linux so pervasive? And why does something as simple as a TV need to run something as complex as Linux just to display streaming video on a screen?

			The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in 1965 that the density of components on a chip will double approximately every 2 years. That applies to the devices that we design and use in our everyday lives just as much as it does to desktops, laptops, and servers. At the heart of most embedded devices is a highly integrated chip that contains one or more processor cores and interfaces with main memory, mass storage, and peripherals of many types. This is referred to as a System on Chip, or SoC, and SoCs are increasing in complexity in accordance with Moore's Law. A typical SoC has a technical reference manual that stretches to thousands of pages. Your TV is not simply displaying a video stream as the old analog sets used to do.

			The stream is digital, possibly encrypted, and it needs processing to create an image. Your TV is (or soon will be) connected to the internet. It can receive content from smartphones, tablets, and home media servers. It can be (or soon will be) used to play games and so on. You need a full operating system to manage this degree of complexity.

			Here are some points that drive the adoption of Linux:

			
					Linux has the necessary functionality. It has a good scheduler, a good network stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage media, good support for multimedia devices, and so on. It ticks all the boxes.

					Linux has been ported to a wide range of processor architectures, including some that are very commonly found in SoC designs – Arm, MIPS, x86, and PowerPC.

					Linux is open source, so you have the freedom to get the source code and modify it to meet your needs. You, or someone working on your behalf, can create a board support package for your particular SoC board or device. You can add protocols, features, and technologies that may be missing from the mainline source code. You can remove features that you don't need to reduce memory and storage requirements. Linux is flexible.

					Linux has an active community; in the case of the Linux kernel, very active. There is a new release of the kernel every 8 to 10 weeks, and each release contains code from more than 1,000 developers. An active community means that Linux is up to date and supports current hardware, protocols, and standards.

					Open source licenses guarantee that you have access to the source code. There is no vendor tie-in.

			

			For these reasons, Linux is an ideal choice for complex devices. But there are a few caveats I should mention here. Complexity makes it harder to understand. Coupled with the fast-moving development process and the decentralized structures of open source, you have to put some effort into learning how to use it and to keep on re-learning as it changes. I hope that this book will help in the process.

			When not to choose Linux

			Is Linux suitable for your project? Linux works well where the problem being solved justifies the complexity. It is especially good where connectivity, robustness, and complex user interfaces are required. However, it cannot solve every problem, so here are some things to consider before you jump in:

			
					Is your hardware up to the job? Compared to a traditional real-time operating system (RTOS) such as VxWorks or QNX, Linux requires a lot more resources. It needs at least a 32-bit processor and lots more memory. I will go into more detail in the section on typical hardware requirements.

					Do you have the right skill set? The early parts of a project, board bring-up, require detailed knowledge of Linux and how it relates to your hardware. Likewise, when debugging and tuning your application, you will need to be able to interpret the results. If you don't have the skills in-house, you may want to outsource some of the work. Of course, reading this book helps!

					Is your system real-time? Linux can handle many real-time activities so long as 
you pay attention to certain details, which I will cover in detail in Chapter 21, 
Real-Time Programming.

					Will your code require regulatory approval (medical, automotive, aerospace, and so on)? The burden of regulatory verification and validation might make another OS a better choice. Even if you do choose Linux for use in these environments, it may make sense to purchase a commercially available distribution from a company that has supplied Linux for existing products, like the one you are building.

			

			Consider these points carefully. Probably the best indicator of success is to look around for similar products that run Linux and see how they have done it; follow best practice.

			Meeting the players

			Where does open source software come from? Who writes it? In particular, how does this relate to the key components of embedded development—the toolchain, bootloader, kernel, and basic utilities found in the root filesystem?

			The main players are as follows:

			
					The open source community: This, after all, is the engine that generates the software you are going to be using. The community is a loose alliance of developers, many of whom are funded in some way, perhaps by a not-for-profit organization, an academic institution, or a commercial company. They work together to further the aims of the various projects. There are many of them—some small, some large. Some that we will be making use of in the remainder of this book are Linux itself, U-Boot, BusyBox, Buildroot, the Yocto Project, and the many projects under the GNU umbrella.

					CPU architects: These are the organizations that design the CPUs we use. The important ones here are Arm/Linaro (Arm Cortex-A), Intel (x86 and x86_64), SiFive (RISC-V), and IBM (PowerPC). They implement or, at the very least, influence support for the basic CPU architecture.

					SoC vendors (Broadcom, Intel, Microchip, NXP, Qualcomm, TI, and many others): They take the kernel and toolchain from the CPU architects and modify them to support their chips. They also create reference boards: designs that are used by the next level down to create development boards and working products.

					Board vendors and OEMs: These people take the reference designs from SoC vendors and build them in to specific products, for instance, set-top boxes or cameras, or create more general-purpose development boards, such as those from Advantech and Kontron. An important category are the cheap development boards such as BeagleBoard/BeagleBone and Raspberry Pi that have created their own ecosystems of software and hardware add-ons.

					Commercial Linux vendors: Companies such as Siemens (Mentor), Timesys, and Wind River offer commercial Linux distributions that have undergone strict regulatory verification and validation across multiple industries (medical, automotive, aerospace, and so on).

			

			These form a chain, with your project usually at the end, which means that you do not have a free choice of components. You cannot simply take the latest kernel from https://www.kernel.org/, except in a few rare cases, because it does not have support for the chip or board that you are using.

			This is an ongoing problem with embedded development. Ideally, the developers at each link in the chain would push their changes upstream, but they don't. It is not uncommon to find a kernel that has many thousands of patches that are not merged. In addition, SoC vendors tend to actively develop open source components only for their latest chips, meaning that support for any chip more than a couple of years old will be frozen and not receive any updates.

			The consequence is that most embedded designs are based on old versions of software. They do not receive security fixes, performance enhancements, or features that are in newer versions. Problems such as Heartbleed (a bug in the OpenSSL libraries) and ShellShock (a bug in the bash shell) go unfixed. I will talk more about this later in this chapter under the topic of security.

			What can you do about it? First, ask questions of your vendors (NXP, Texas Instruments, and Xilinx, to name just a few): what is their update policy, how often do they revise kernel versions, what is the current kernel version, what was the one before that, and what is their policy for merging changes upstream? Some vendors are making great strides in this way. You should prefer their chips.

			Secondly, you can take steps to make yourself more self-sufficient. The chapters in Section 1 explain the dependencies in more detail and show you where you can help yourself. Don't just take the package offered to you by the SoC or board vendor and use it blindly without considering the alternatives.

			Moving through the project life cycle

			This book is divided into four sections that reflect the phases of a project. The phases are not necessarily sequential. Usually, they overlap and you will need to jump back to revisit things that were done previously. However, they are representative of a developer's preoccupations as the project progresses:

			
					Elements of Embedded Linux (Chapters 1 to 8) will help you set up the development environment and create a working platform for the later phases. It is often referred to as the board bring-up phase.

					System Architecture and Design Choices (Chapters 9 to 15) will help you to look at some of the design decisions you will have to make concerning the storage of programs and data, how to divide work between kernel device drivers and applications, and how to initialize the system.

					Writing Embedded Applications (Chapters 16 to 18) shows how to package and deploy Python applications, make effective use of the Linux process and thread model, and how to manage memory in a resource-constrained device.

					Debugging and Optimizing Performance (Chapters 19 to 21) describes how to trace, profile, and debug your code in both the applications and the kernel. The last chapter explains how to design for real-time behavior when required.

			

			Now, let's focus on the four basic elements of embedded Linux that comprise the first section of the book.

			The four elements of embedded Linux

			Every project begins by obtaining, customizing, and deploying these four elements: the toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of the first section of this book.

			
					Toolchain: The compiler and other tools needed to create code for your 
target device.

					Bootloader: The program that initializes the board and loads the Linux kernel.

					Kernel: This is the heart of the system, managing system resources and interfacing with hardware.

					Root filesystem: Contains the libraries and programs that are run once the kernel has completed its initialization.

			

			Of course, there is also a fifth element, not mentioned here. That is the collection of programs specific to your embedded application that make the device do whatever it is supposed to do, be it weigh groceries, display movies, control a robot, or fly a drone.

			Typically, you will be offered some or all of these elements as a package when you buy your SoC or board. But, for the reasons mentioned in the preceding paragraph, they may not be the best choices for you. I will give you the background to make the right selections in the first eight chapters and I will introduce you to two tools that automate the whole process for you: Buildroot and the Yocto Project.

			Navigating open source

			The components of embedded Linux are open source, so now is a good time to consider what that means, why open sources work the way they do, and how this affects the often proprietary embedded device you will be creating from it.

			Licenses

			When talking about open source, the word free is often used. People new to the subject often take it to mean nothing to pay, and open source software licenses do indeed guarantee that you can use the software to develop and deploy systems for no charge. However, the more important meaning here is freedom, since you are free to obtain the source code, modify it in any way you see fit, and redeploy it in other systems. These licenses give you this right. Compare that with freeware licenses, which allow you to copy the binaries for no cost but do not give you the source code, or other licenses that allow you to use the software for free under certain circumstances, for example, for personal use, but not commercial. These are not open source.

			I will provide the following comments in the interest of helping you understand the implications of working with open source licenses, but I would like to point out that I am an engineer and not a lawyer. What follows is my understanding of the licenses and the way they are interpreted.

			Open source licenses fall broadly into two categories: copyleft licenses, such as the GNU General Public License (GPL), and permissive licenses, such as the BSD and MIT licenses.

			The permissive licenses say, in essence, that you may modify the source code and use it in systems of your own choosing so long as you do not modify the terms of the license in any way. In other words, with that one restriction, you can do with it what you want, including building it into possibly proprietary systems.

			The GPL licenses are similar but have clauses that compel you to pass the rights to obtain and modify the software on to your end users. In other words, you share your source code. One option is to make it completely public by putting it onto a public server. Another is to offer it only to your end users by means of a written offer to provide the code when requested. The GPL goes further to say that you cannot incorporate GPL code into proprietary programs. Any attempt to do so would make the GPL apply to the whole. In other words, you cannot combine a GPL and proprietary code in one program. Aside from the Linux kernel, the GNU Compiler Collection and GNU Debugger as well as many other freely available tools associated with the GNU project fall under the umbrella of the GPL.

			So, what about libraries? If they are licensed with the GPL, any program linked with them becomes GPL also. However, most libraries are licensed under the GNU Lesser General Public License (LGPL). If this is the case, you are allowed to link with them from a proprietary program.

			Important note

			All of the preceding description relates specifically to GPL v2 and LGPL v2.1. I should mention the latest versions of GPL v3 and LGPL v3. These are controversial, and I will admit that I don't fully understand the implications. However, the intention is to ensure that the GPL v3 and LGPL v3 components in any system can be replaced by the end user, which is in the spirit of open source software for everyone.

			The GPL v3 and LGPL v3 have their problems though. There are issues with security. If the owner of a device has access to the system code, then so might an unwelcome intruder. Often the defense is to have kernel images that are signed by an authority such as the vendor, so that unauthorized updates are not possible. Is that an infringement of my right to modify my device? Opinions differ.

			Important note

			The TiVo set-top box is an important part of this debate. It uses a Linux kernel, which is licensed under GPL v2. TiVo have released the source code of their version of the kernel and so comply with the license. TiVo also has a bootloader that will only load a kernel binary that is signed by them. Consequently, you can build a modified kernel for a TiVo box, but you cannot load it on the hardware. The Free Software Foundation (FSF) takes the position that this is not in the spirit of open source software and refers to this procedure as Tivoization. The GPL v3 and LGPL v3 were written to explicitly prevent this from happening. Some projects, the Linux kernel in particular, have been reluctant to adopt the GPL version 3 licenses because of the restrictions they would place on device manufacturers.

			Selecting hardware for embedded Linux

			If you are designing or selecting hardware for an embedded Linux project, what do you look out for?

			First, a CPU architecture that is supported by the kernel—unless you plan to add a new architecture yourself, of course! Looking at the source code for Linux 5.4, there are 25 architectures, each represented by a sub-directory in the arch/ directory. They are all 
32- or 64-bit architectures, most with an MMU, but some without. The ones most often found in embedded devices are Arm, MIPS, PowerPC, and x86, each in 32 and 64-bit variants, all of which have memory management units (MMUs).

			Most of this book is written with this class of processor in mind. There is another group that doesn't have an MMU and that runs a subset of Linux known as microcontroller Linux or uClinux. These processor architectures include ARC (Argonaut RISC Core), Blackfin, MicroBlaze, and Nios. I will mention uClinux from time to time, but I will not go into detail because it is a rather specialized topic.

			Second, you will need a reasonable amount of RAM. 16 MiB is a good minimum, although it is quite possible to run Linux using half that. It is even possible to run Linux with 4 MiB if you are prepared to go to the trouble of optimizing every part of the system. It may even be possible to get lower, but there comes a point at which it is no longer Linux.

			Third, there is non-volatile storage, usually flash memory. 8 MiB is enough for a simple device such as a webcam or a simple router. As with RAM, you can create a workable Linux system with less storage if you really want to, but the lower you go, the harder it becomes. Linux has extensive support for flash storage devices, including raw NOR and NAND flash chips, and managed flash in the form of SD cards, eMMC chips, USB flash memory, and so on.

			Fourth, a serial port is very useful, preferably a UART-based serial port. It does not have to be fitted on production boards, but makes board bring-up, debugging, and development much easier.

			Fifth, you need some means of loading software when starting from scratch. Many microcontroller boards are fitted with a Joint Test Action Group (JTAG) interface for this purpose. Modern SoCs also have the ability to load boot code directly from removable media, especially SD and micro SD cards, or serial interfaces such as UART or USB.

			In addition to these basics, there are interfaces to the specific bits of hardware your device needs to get its job done. Mainline Linux comes with open source drivers for many thousands of different devices, and there are drivers (of variable quality) from the SoC manufacturer and from the OEMs of third-party chips that may be included in the design, but remember my comments on the commitment and ability of some manufacturers. As a developer of embedded devices, you will find that you spend quite a lot of time evaluating and adapting third-party code, if you have it, or liaising with the manufacturer if you don't. Finally, you will have to write the device support for interfaces that are unique to the device or find someone to do it for you.

			Obtaining the hardware for this book

			The examples in this book are intended to be generic, but to make them relevant and easy to follow, I have had to choose specific hardware. I have chosen three exemplar devices: the Raspberry Pi 4, the BeagleBone Black, and QEMU. The first is by far the most popular Arm-based single board computer on the market. The second is a widely available and cheap development board that can be used in serious embedded hardware. The third is a machine emulator that can be used to create a range of systems that are typical of embedded hardware. It was tempting to use QEMU exclusively, but, like all emulations, it is not quite the same as the real thing. Using the Raspberry Pi 4 and BeagleBone Black, you have the satisfaction of interacting with real hardware and seeing real LEDs flash. While the BeagleBone Black is several years old now, it remains open source hardware (unlike the Raspberry Pi). This means that the board design materials are freely available for anyone to build a BeagleBone Black or derivative into their products.

			In any case, I encourage you to try out as many of the examples as you can, using either of these three platforms, or indeed any embedded hardware you may have to hand.

			The Raspberry Pi 4

			At the time of writing, the Raspberry Pi 4 Model B is the flagship tiny, dual-display, desktop computer produced by the Raspberry Pi Foundation. Their website is 
https://raspberrypi.org/. The Pi 4's technical specs include the following:

			
					A Broadcom BCM2711 1.5 GHz quad-core Cortex-A72 (Arm® v8) 64-bit SoC

					2, 4, or 8 GiB DDR4 RAM

					2.4 GHz and 5.0 GHz 802.11ac wireless, Bluetooth 5.0, BLE

					A serial port for debug and development

					A MicroSD slot, which can be used as the boot device

					A USB-C connector that is used to power the board

					2 × full size USB 3.0 and 2 × full size USB 2.0 host ports

					A Gigabit Ethernet port

					2 × micro-HDMI ports for video and audio output

			

			In addition, there is a 40-pin expansion header for which there are a great variety of daughter boards, known as HATs (Hardware Attached on Top), that allow you to adapt the board to do many different things. However, you will not need any HATs for the examples in this book. Instead, you will make use of the Pi 4's built-in Wi-Fi and Bluetooth (which the BeagleBone Black lacks).

			In addition to the board itself, you will require the following:

			
					A 5V USB-C power supply capable of delivering 3 A or more

					A USB to TTL serial cable with 3.3V logic-level pins like the Adafruit 954

					A MicroSD card and a means of writing to it from your development PC or laptop, which will be needed to load software onto the board

					An Ethernet cable and a router to connect it to, as some of the examples require network connectivity

			

			Next is the BeagleBone Black.

			The BeagleBone Black

			The BeagleBone and the later BeagleBone Black are open hardware designs for a small, credit card-sized development board produced by CircuitCo LLC. The main repository of information is at https://beagleboard.org/. The main points of the specifications are as follows:

			
					A TI AM335x 1 GHz Arm® Cortex-A8 Sitara SoC

					512 MiB DDR3 RAM

					2 or 4 GiB 8-bit eMMC onboard flash storage

					A serial port for debug and development

					A MicroSD slot, which can be used as the boot device

					A Mini-USB OTG client/host port that can also be used to power the board

					A full size USB 2.0 host port

					A 10/100 Ethernet port

					An HDMI port for video and audio output

			

			In addition, there are two 46-pin expansion headers for which there are a great variety of daughter boards, known as capes, which allow you to adapt the board to do many different things. However, you do not need to fit any capes for the examples in this book.

			In addition to the board itself, you will require the following:

			
					A Mini-USB to USB-A cable (supplied with the board).

					A serial cable that can interface with the 6-pin 3.3V TTL level signals provided by the board. The BeagleBoard website has links to compatible cables.

					A MicroSD card and a means of writing to it from your development PC or laptop, which will be needed to load software onto the board.

					An Ethernet cable and a router to connect it to, as some of the examples require network connectivity.

					A 5V power supply capable of delivering 1 A or more.

			

			In addition to the above, Chapter 12, Prototyping with Breakout Boards, also requires 
the following:

			
					A SparkFun model GPS-15193 Breakout board.

					A Saleae Logic 8 logic analyzer. This apparatus will be used to probe pins for SPI communications between the BeagleBone Black and NEO-M9N.

			

			QEMU

			QEMU is a machine emulator. It comes in a number of different flavors, each of which can emulate a processor architecture and a number of boards built using that architecture. For example, we have the following:

			
					qemu-system-arm: 32-bit Arm

					qemu-system-mips: MIPS

					qemu-system-ppc: PowerPC

					qemu-system-x86: x86 and x86_64

			

			For each architecture, QEMU emulates a range of hardware, which you can see by using the -machine help option. Each machine emulates most of the hardware that would normally be found on that board. There are options to link hardware to local resources, such as using a local file for the emulated disk drive.

			Here is a concrete example:

			$ qemu-system-arm -machine vexpress-a9 -m 256M -drive file=rootfs.ext4,sd -net nic -net use -kernel zImage -dtb vexpress- v2p-ca9.dtb -append "console=ttyAMA0,115200 root=/dev/mmcblk0" -serial stdio -net nic,model=lan9118 -net tap,ifname=tap0

			The options used in the preceding command line are as follows:

			
					-machine vexpress-a9: Creates an emulation of an Arm Versatile Express development board with a Cortex A-9 processor

					-m 256M: Populates it with 256 MiB of RAM

					-drive file=rootfs.ext4,sd: Connects the SD interface to the local file rootfs.ext4 (which contains a filesystem image)

					-kernel zImage: Loads the Linux kernel from the local file named zImage

					-dtb vexpress-v2p- ca9.dtb: Loads the device tree from the local file vexpress-v2p-ca9.dtb

					-append "...": Appends this string as the kernel command line

					-serial stdio: Connects the serial port to the terminal that launched QEMU, usually so that you can log on to the emulated machine via the serial console

					-net nic,model=lan9118: Creates a network interface

					-net tap,ifname=tap0: Connects the network interface to the virtual network interface, tap0

			

			To configure the host side of the network, you need the tunctl command from the User Mode Linux (UML) project; on Debian and Ubuntu, the package is named uml-utilites:

			$ sudo tunctl -u $(whoami) -t tap0

			This creates a network interface named tap0 that is connected to the network controller in the emulated QEMU machine. You configure tap0 in exactly the same way as any other interface.

			All of these options are described in detail in the following chapters. I will be using Versatile Express for most of my examples, but it should be easy to use a different machine or architecture.

			Provisioning your development environment

			I have only used open source software, both for the development tools and the target operating system and applications. I assume that you will be using Linux on your development system. I tested all the host commands using Ubuntu 20.04 LTS, and so there is a slight bias toward that particular version, but any modern Linux distribution is likely to work just fine.

			Summary

			Embedded hardware will continue to get more complex, following the trajectory set by Moore's Law. Linux has the power and the flexibility to make use of hardware in an efficient way. Together we will learn how to harness that power so we can build robust products that delight our users. This book will take you through the five phases of the embedded project's life cycle, beginning with the four elements of embedded Linux.

			The sheer variety of embedded platforms and the fast pace of development lead to isolated pools of software. In many cases, you will become dependent on this software, especially the Linux kernel that is provided by your SoC or board vendor, and, to a lesser extent, the toolchain. Some SoC manufacturers are getting better at pushing their changes upstream and the maintenance of these changes is getting easier. Despite these improvements, selecting the right hardware for your embedded Linux project is still an exercise fraught with peril. Open source license compliance is another topic you need to be aware when building products atop the embedded Linux ecosystem.

			In this chapter, you were introduced to the hardware and some of the software you will use throughout this book (namely QEMU). Later on, we will examine some powerful tools that can help you create and maintain the software for your device. We cover Buildroot and dig deep into the Yocto Project. Before I describe these build tools, I will describe the four elements of embedded Linux, which you can apply to all embedded Linux projects, however they are created.

			The next chapter is all about the first of these, the toolchain, which you need in order to compile code for your target platform.

		

	


		
			Chapter 2: Learning about Toolchains

			The toolchain is the first element of embedded Linux and the starting point of your project. You will use it to compile all the code that will run on your device. The choices you make at this early stage will have a profound impact on the final outcome. Your toolchain should be capable of making effective use of your hardware by using the optimum instruction set for your processor. It should support the languages that you require and have a solid implementation of the Portable Operating System Interface (POSIX) and other system interfaces.

			Your toolchain should remain constant throughout the project. In other words, once you have chosen your toolchain, it is important to stick with it. Changing compilers and development libraries in an inconsistent way during a project will lead to subtle bugs. That being said, it is still best to update your toolchain when security flaws or bugs are found.

			Obtaining a toolchain can be as simple as downloading and installing a TAR file, or it can be as complex as building the whole thing from source code. In this chapter, I take the latter approach, with the help of a tool called crosstool-NG, so that I can show you the details of creating a toolchain. Later on, in Chapter 6, Selecting a Build System, I will switch to using the toolchain generated by the build system, which is the more usual means of obtaining a toolchain. When we get to Chapter 14, Starting with BusyBox runit, we'll save ourselves some time by downloading a prebuilt Linaro toolchain to use with Buildroot.

			In this chapter, we will cover the following topics:

			
					Introducing toolchains

					Finding a toolchain

					Building a toolchain using the crosstool-NG tool

					The anatomy of a toolchain

					Linking with libraries – static and dynamic linking

					The art of cross-compiling

			

			Technical requirements

			To follow along with the examples, make sure you have the following:

			
					A Linux-based host system with autoconf, automake, bison, bzip2, cmake, flex, g++, gawk, gcc, gettext, git, gperf, help2man, libncurses5-dev, libstdc++6, libtool, libtool-bin, make, patch, python3-dev, rsync, texinfo, unzip, wget, and xz-utils or their equivalents installed.

			

			I recommend using Ubuntu 20.04 LTS or later since the exercises in this chapter were all tested against that Linux distribution at the time of writing. Here is the command to install all the required packages on Ubuntu 20.04 LTS:

			$ sudo apt-get install autoconf automake bison bzip2 cmake \ flex g++ gawk gcc

			gettext git gperf help2man libncurses5-dev libstdc++6 libtool \ libtool-bin make

			patch python3-dev rsync texinfo unzip wget xz-utils

			All of the code for this chapter can be found in the Chapter02 folder from the book's GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition

			Introducing toolchains

			A toolchain is a set of tools that compiles source code into executables that can run on your target device and includes a compiler, a linker, and runtime libraries. Initially, you need one to build the other three elements of an embedded Linux system: the bootloader, the kernel, and the root filesystem. It has to be able to compile code written in assembly, C, and C++ since these are the languages used in the base open source packages.

			Usually, toolchains for Linux are based on components from the GNU project 
(http://www.gnu.org), and that is still true in the majority of cases at the time of writing. However, over the past few years, the Clang compiler and the associated Low Level Virtual Machine (LLVM) project (http://llvm.org) have progressed to the point that it is now a viable alternative to a GNU toolchain. One major distinction between LLVM and GNU-based toolchains is the licensing; LLVM has a BSD license while GNU has the GPL. 

			There are some technical advantages to Clang as well, such as faster compilation and better diagnostics, but GNU GCC has the advantage of compatibility with the existing code base and support for a wide range of architectures and operating systems. While it took some years to get there, Clang can now compile all the components needed for embedded Linux and is a viable alternative to GNU. To learn more about that, see https://www.kernel.org/doc/html/latest/kbuild/llvm.html.

			There is a good description of how to use Clang for cross-compilation at https://clang.llvm.org/docs/CrossCompilation.html. If you would like to use it as part of an embedded Linux build system, the EmbToolkit (https://embtoolkit.org) fully supports both GNU and LLVM/Clang toolchains, and various people are working on using Clang with Buildroot and the Yocto Project. I will cover embedded build systems in Chapter 6, Selecting a Build System. Meanwhile, this chapter focuses on the GNU toolchain as it is still the most popular and mature toolchain for Linux.

			A standard GNU toolchain consists of three main components:

			
					Binutils: A set of binary utilities including the assembler and the linker. It is available at http://gnu.org/software/binutils.

					GNU Compiler Collection (GCC): These are the compilers for C and other languages, which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common backend that produces assembler code, which is fed to the GNU assembler. It is available at http://gcc.gnu.org/.

					C library: A standardized application program interface (API) based on the POSIX specification, which is the main interface to the operating system kernel 
for applications. There are several C libraries to consider, as we shall see later on in this chapter.

			

			Along with these, you will need a copy of the Linux kernel headers, which contain definitions and constants that are needed when accessing the kernel directly. Right now, you need them to be able to compile the C library, but you will also need them later when writing programs or compiling libraries that interact with particular Linux devices, for example, to display graphics via the Linux frame buffer driver. This is not simply a question of making a copy of the header files in the include directory of your kernel source code. Those headers are intended for use in the kernel only and contain definitions that will cause conflicts if used in their raw state to compile regular Linux applications.

			Instead, you will need to generate a set of sanitized kernel headers, which I have illustrated in Chapter 5, Building a Root Filesystem.

			It is not usually crucial whether the kernel headers are generated from the exact version of Linux you are going to be using or not. Since the kernel interfaces are always backward compatible, it is only necessary that the headers are from a kernel that is the same as, or older than, the one you are using on the target.

			Most people would consider the GNU Debugger (GDB) to be part of the toolchain as well, and it is usual that it is built at this point. I will talk about GDB in Chapter 19, Debugging with GDB.

			Now that we've talked about kernel headers and seen what the components of a toolchain are, let's look at the different types of toolchains.

			Types of toolchains

			For our purposes, there are two types of toolchain:

			
					Native: This toolchain runs on the same type of system (sometimes the same actual system) as the programs it generates. This is the usual case for desktops and servers, and it is becoming popular on certain classes of embedded devices. The Raspberry Pi running Debian for ARM, for example, has self-hosted native compilers.

					Cross: This toolchain runs on a different type of system than the target, allowing the development to be done on a fast desktop PC and then loaded onto the embedded target for testing.

			

			Almost all embedded Linux development is done using a cross-development toolchain, partly because most embedded devices are not well suited to program development since they lack computing power, memory, and storage, but also because it keeps the host and target environments separate. The latter point is especially important when the host and the target are using the same architecture, x86_64, for example. In this case, it is tempting to compile natively on the host and simply copy the binaries to the target.

			This works up to a point, but it is likely that the host distribution will receive updates more often than the target, or that different engineers building code for the target will have slightly different versions of the host development libraries. Over time, the development and target systems will diverge, and you will violate the principle that the toolchain should remain constant throughout the life of the project. You can make this approach work if you ensure that the host and the target build environments are in lockstep with each other. However, a much better approach is to keep the host and the target separate, and a cross toolchain is the way to do that.

			However, there is a counter argument in favor of native development. Cross development creates the burden of cross compiling all the libraries and tools that you need for your target. We will see later in the section titled The art of cross compiling that cross development is not always simple because many open source packages are not designed to be built in this way. Integrated build tools, including Buildroot and the Yocto Project, help by encapsulating the rules to cross-compile a range of packages that you need in typical embedded systems, but if you want to compile a large number of additional packages, then it is better to natively compile them. For example, building a Debian distribution for the Raspberry Pi or BeagleBone using a cross compiler would be very hard. Instead, they are natively compiled. 

			Creating a native build environment from scratch is not easy. You would still need a cross compiler at first to create the native build environment on the target, which you then use to build the packages. Then, in order to perform the native build in a reasonable amount of time, you would need a build farm of well-provisioned target boards, or you may be able to use Quick EMUlator (QEMU) to emulate the target.

			Meanwhile, in this chapter, I will focus on a more mainstream cross compiler environment, which is relatively easy to set up and administer. We will start by looking at what distinguishes one target CPU architecture from another.

			CPU architectures

			The toolchain has to be built according to the capabilities of the target CPU, which includes the following:

			
					CPU architecture: ARM, Microprocessor without Interlocked Pipelined Stages (MIPS), x86_64, and so on.

					Big- or little-endian operation: Some CPUs can operate in both modes, but the machine code is different for each.

					Floating point support: Not all versions of embedded processors implement a hardware floating-point unit, in which case the toolchain has to be configured to call a software floating-point library instead.

					Application Binary Interface (ABI): The calling convention used for passing parameters between function calls.

			

			With many architectures, the ABI is constant across the family of processors. One notable exception is ARM. The ARM architecture transitioned to the Extended Application Binary Interface (EABI) in the late 2000s, resulting in the previous ABI being named the Old Application Binary Interface (OABI). While the OABI is now obsolete, you'll continue to see references to EABI. Since then, the EABI has split into two, based on the way the floating-point parameters are passed. 

			The original EABI uses general-purpose (integer) registers, while the newer Extended Application Binary Interface Hard-Float (EABIHF) uses floating point registers. The EABIHF is significantly faster at floating-point operations, since it removes the need for copying between integer and floating-point registers, but it is not compatible with CPUs that do not have a floating-point unit. The choice, then, is between two incompatible ABIs; you cannot mix and match the two, and so you have to decide at this stage.

			GNU uses a prefix to the name of each tool in the toolchain, which identifies the various combinations that can be generated. It consists of a tuple of three or four components separated by dashes, as described here:

			
					CPU: This is the CPU architecture, such as ARM, MIPS, or x86_64. If the CPU has both endian modes, they may be differentiated by adding el for little-endian or eb for big-endian. Good examples are little-endian MIPS, mipsel, and big-endian ARM, armeb.

					Vendor: This identifies the provider of the toolchain. Examples include buildroot, poky, or just unknown. Sometimes it is left out altogether.

					Kernel: For our purposes, it is always linux.

					Operating system: A name for the user space component, which might be gnu or musl. The ABI may be appended here as well, so for ARM toolchains, you may see gnueabi, gnueabihf, musleabi, or musleabihf.

			

			You can find the tuple used when building the toolchain by using the -dumpmachine option of gcc. For example, you may see the following on the host computer:

			$ gcc -dumpmachine

			x86_64-linux-gnu

			This tuple indicates a CPU of x86_64, a kernel of linux, and a user space of gnu.

			Important note

			When a native compiler is installed on a machine, it is normal to create links to each of the tools in the toolchain with no prefixes, so that you can call the C compiler with the gcc command.

			Here is an example using a cross compiler:

			$ mipsel-unknown-linux-gnu-gcc -dumpmachine

			mipsel-unknown-linux-gnu

			This tuple indicates a CPU of little-endian MIPS, an unknown vendor, a kernel of linux, and a user space of gnu.

			Choosing the C library

			The programming interface to the Unix operating system is defined in the C language, which is now defined by the POSIX standards. The C library is the implementation of that interface; it is the gateway to the kernel for Linux programs, as shown in the following diagram. Even if you are writing programs in another language, maybe Java or Python, the respective runtime support libraries will have to call the C library eventually, as shown here:
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			Figure 2.1 – C library

			Whenever the C library needs the services of the kernel, it will use the kernel system call interface to transition between user space and kernel space. It is possible to bypass the C library by making the kernel system calls directly, but that is a lot of trouble and almost never necessary.

			There are several C libraries to choose from. The main options are as follows:

			
					glibc: This is the standard GNU C library, available at https://gnu.org/software/libc. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. The license is LGPL 2.1.

					musl libc: This is available at https://musl.libc.org. The musl libc library is comparatively new but has been gaining a lot of attention as a small and standards-compliant alternative to GNU libc. It is a good choice for systems with a limited amount of RAM and storage. It has an MIT license.

					uClibc-ng: This is available at https://uclibc-ng.org. u is really a Greek mu character, indicating that this is the microcontroller C library. It was first developed to work with uClinux (Linux for CPUs without memory management units) but has since been adapted to be used with full Linux. The uClibc-ng library is a fork of the original uClibc project (https://uclibc.org), which has unfortunately fallen into disrepair. Both are licensed with LGPL 2.1.

					eglibc: This is available at http://www.eglibc.org/home. Now obsolete, eglibc was a fork of glibc with changes to make it more suitable for embedded usage. Among other things, eglibc added configuration options and support for architectures not covered by glibc, in particular the PowerPC e500 CPU core. The code base from eglibc was merged back into glibc in version 2.20. The eglibc library is no longer maintained.

			

			So, which to choose? My advice is to use uClibc-ng only if you are using uClinux. If you have a very limited amount of storage or RAM, then musl libc is a good choice, otherwise, use glibc, as shown in this flow chart:
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			Figure 2.2 – Choosing a C library

			Your choice of C library could limit your choice of toolchain since not all pre-built toolchains support all C libraries.

			Finding a toolchain

			You have three choices for your cross-development toolchain: you may find a ready-built toolchain that matches your needs; you can use one generated by an embedded build tool, which is covered in Chapter 6, Selecting a Build System; or you can create one yourself as described later in this chapter.

			A pre-built cross toolchain is an attractive option, in that you only have to download and install it, but you are limited to the configuration of that particular toolchain and you are dependent on the person or organization you got it from.

			Most likely, it will be one of these:

			
					An SoC or board vendor. Most vendors offer a Linux toolchain.

					A consortium dedicated to providing system-level support for a given architecture. For example, Linaro, (https://www.linaro.org) have pre-built toolchains for the ARM architecture.

					A third-party Linux tool vendor, such as Mentor Graphics, TimeSys, or MontaVista.

					The cross-tool packages for your desktop Linux distribution. For example, Debian-based distributions have packages for cross compiling for ARM, MIPS, and PowerPC targets.

					A binary SDK produced by one of the integrated embedded build tools. The Yocto Project has some examples at http://downloads.yoctoproject.org/releases/yocto/yocto-[version]/toolchain.

					A link from a forum that you can't find anymore.

			

			In all of these cases, you have to decide whether the pre-built toolchain on offer meets your requirements. Does it use the C library you prefer? Will the provider give you updates for security fixes and bugs, bearing in mind my comments on support and updates from Chapter 1, Starting Out. If your answer is no to any of these, then you should consider creating your own.

			Unfortunately, building a toolchain is no easy task. If you truly want to do the whole thing yourself, take a look at Cross Linux From Scratch (https://trac.clfs.org). There you will find step-by-step instructions on how to create each component.

			A simpler alternative is to use crosstool-NG, which encapsulates the process into a set of scripts and has a menu-driven frontend. You still need a fair degree of knowledge, though, just to make the right choices.

			It is simpler still to use a build system such as Buildroot or the Yocto Project, since they generate a toolchain as part of the build process. This is my preferred solution, as I have shown in Chapter 6, Selecting a Build System.

			With the ascendance of crosstool-NG, building your own toolchain is certainly a valid and viable option. Let's look at how to do that next.

			Building a toolchain using crosstool-NG

			Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross-development toolchains and called it crosstool (http://kegel.com/crosstool/). In 2007, Yann E. Morin used that base to create the next generation of crosstool, crosstool-NG (https://crosstool-ng.github.io). Today it is by far the most convenient way to create a standalone cross toolchain from source.

			In this section, we will use crosstool-NG to build toolchains for the BeagleBone Black 
and QEMU.

			Installing crosstool-NG

			Before you can build crosstool-NG from source, you will first need to install a native toolchain and some build tools on your host machine. See the section on Technical requirements at the beginning of this chapter for crosstool-NG's complete list of build and runtime dependencies.

			Next, get the current release from the crosstool-NG Git repository. In my examples, I have used version 1.24.0. Extract it and create the frontend menu system, ct-ng, as shown in the following commands:

			$ git clone https://github.com/crosstool-ng/crosstool-ng.git

			$ cd crosstool-ng

			$ git checkout crosstool-ng-1.24.0

			$ ./bootstrap

			$ ./configure --prefix=${PWD}

			$ make

			$ make install

			The --prefix=${PWD} option means that the program will be installed into the current directory, which avoids the need for root permissions, as would be required if you were to install it in the default location /usr/local/share.

			We now have a working installation of crosstool-NG that we can use to build cross toolchains with. Type bin/ct-ng to launch the crosstool menu.

			Building a toolchain for BeagleBone Black

			Crosstool-NG can build many different combinations of toolchains. To make the initial configuration easier, it comes with a set of samples that cover many of the common use cases. Use bin/ct-ng list-samples to generate the list.

			The BeagleBone Black has a TI AM335x SoC, which contains an ARM Cortex A8 core and a VFPv3 floating-point unit. Since the BeagleBone Black has plenty of RAM and storage, we can use glibc as the C library. The closest sample is arm-cortex_a8-linux-gnueabi. 

			You can see the default configuration by prefixing the name with show-, as 
demonstrated here:

			$ bin/ct-ng show-arm-cortex_a8-linux-gnueabi

			[G...]   arm-cortex_a8-linux-gnueabi

			    Languages       : C,C++

			    OS              : linux-4.20.8

			    Binutils        : binutils-2.32

			    Compiler        : gcc-8.3.0

			    C library       : glibc-2.29

			    Debug tools     : duma-2_5_15 gdb-8.2.1 ltrace-0.7.3 strace-4.26

			    Companion libs  : expat-2.2.6 gettext-0.19.8.1 gmp-6.1.2 isl-0.20 libelf-0.8.13 libiconv-1.15 mpc-1.1.0 mpfr-4.0.2 ncurses-6.1 zlib-1.2.11

			    Companion tools :

			This is a close match with our requirements, except that it uses the eabi binary interface, which passes floating-point arguments in integer registers. We would prefer to use hardware floating point registers for that purpose because it would speed up function calls that have float and double parameter types. You can change the configuration later, so for now you should select this target configuration:

			$ bin/ct-ng arm-cortex_a8-linux-gnueabi

			At this point, you can review the configuration and make changes using the configuration menu command menuconfig:

			$ bin/ct-ng menuconfig

			The menu system is based on the Linux kernel menuconfig, and so navigation of the user interface will be familiar to anyone who has configured a kernel. If not, refer to Chapter 4, Configuring and Building the Kernel, for a description of menuconfig.

			There are three configuration changes that I would recommend you make at this point:

			
					In Paths and misc options, disable Render the toolchain read-only 
(CT_PREFIX_DIR_RO).

					In Target options | Floating point, select hardware (FPU) (CT_ARCH_FLOAT_HW).

					In Target options, enter neon for Use specific FPU.

			

			The first is necessary if you want to add libraries to the toolchain after it has been installed, which I describe later, in the Linking with libraries section. The second selects the eabihf binary interface for the reasons discussed earlier. The third is needed to build the Linux kernel successfully. The names in parentheses are the configuration labels stored in the configuration file. When you have made the changes, exit the menuconfig menu and save the configuration as one does.

			Now you can use crosstool-NG to get, configure, and build the components according to your specification, by typing the following command:

			$ bin/ct-ng build

			The build will take about half an hour, after which you will find your toolchain is present in ~/x-tools/arm-cortex_a8-linux-gnueabihf.

			Next, let's build a toolchain that targets QEMU.

			Building a toolchain for QEMU

			On the QEMU target, you will be emulating an ARM-versatile PB evaluation board that has an ARM926EJ-S processor core, which implements the ARMv5TE instruction set. You need to generate a crosstool-NG toolchain that matches the specification. The procedure is very similar to the one for the BeagleBone Black.

			You begin by running bin/ct-ng list-samples to find a good base configuration to work from. There isn't an exact fit, so use a generic target, arm-unknown-linux-gnueabi. You select it as shown, running distclean first to make sure that there are no artifacts left over from a previous build:

			$ bin/ct-ng distclean

			$ bin/ct-ng arm-unknown-linux-gnueabi

			As with the BeagleBone Black, you can review the configuration and make changes 
using the configuration menu command bin/ct-ng menuconfig. There is only one change necessary:

			
					In Paths and misc options, disable Render the toolchain read-only 
(CT_PREFIX_DIR_RO).

			

			Now, build the toolchain with the command shown here:

			$ bin/ct-ng build

			As before, the build will take about half an hour. The toolchain will be installed in ~/x-tools/arm-unknown-linux-gnueabi.

			You will need a working cross toolchain to complete the exercises in the next section.

			Anatomy of a toolchain

			To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG toolchain you have just created. The examples use the ARM Cortex A8 toolchain created for the BeagleBone Black, which has the prefix arm-cortex_a8-linux-gnueabihf-. If you built the ARM926EJ-S toolchain for the QEMU target, then the prefix will be arm-unknown-linux-gnueabi instead.

			The ARM Cortex A8 toolchain is in the directory ~/x-tools/arm-cortex_a8-linux-gnueabihf/bin. In there, you will find the cross compiler, arm-cortex_a8-linux-gnueabihf-gcc. To make use of it, you need to add the directory to your path using the following command:

			$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

			Now you can take a simple helloworld program, which in the C language looks like this:

			#include <stdio.h>

			#include <stdlib.h>

			int main (int argc, char *argv[])

			{

			    printf ("Hello, world!\n");

			    return 0;

			}

			You compile it like this:

			$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld

			You can confirm that it has been cross-compiled by using the file command to print the type of the file:

			$ file helloworld

			helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 4.20.8, with debug_info, not stripped

			Now that you've verified that your cross compiler works, let's take a closer look at it.

			Finding out about your cross compiler

			Imagine that you have just received a toolchain and that you would like to know more about how it was configured. You can find out a lot by querying gcc. For example, to find the version, you use --version:

			$ arm-cortex_a8-linux-gnueabihf-gcc --version

			arm-cortex_a8-linux-gnueabihf-gcc (crosstool-NG 1.24.0) 8.3.0

			Copyright (C) 2018 Free Software Foundation, Inc.

			This is free software; see the source for copying conditions.  There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

			To find how it was configured, use -v:

			$ arm-cortex_a8-linux-gnueabihf-gcc -v

			Using built-in specs.

			COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc

			COLLECT_LTO_WRAPPER=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/libexec/gcc/arm-cortex_a8-linux-gnueabihf/8.3.0/lto-wrapper

			Target: arm-cortex_a8-linux-gnueabihf

			Configured with: /home/frank/crosstool-ng/.build/arm-cortex_a8-linux-gnueabihf/src/gcc/configure --build=x86_64-build_pc-linux-gnu --host=x86_64-build_pc-linux-gnu --target=arm-cortex_a8-linux-gnueabihf --prefix=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf --with-sysroot=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot --enable-languages=c,c++ --with-cpu=cortex-a8 --with-float=hard --with-pkgversion='crosstool-NG 1.24.0' --enable-__cxa_atexit --disable-libmudflap --disable-libgomp --disable-libssp --disable-libquadmath --disable-libquadmath-support --disable-libsanitizer --disable-libmpx --with-gmp=/home/frank/crosstool-ng/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-mpfr=/home/frank/crosstool-ng/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-mpc=/home/frank/crosstool-ng/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-isl=/home/frank/crosstool-ng/.build/arm-cortex_a8-linux-gnueabihf/buildtools --enable-lto --with-host-libstdcxx='-static-libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -lm' --enable-threads=posix --enable-target-optspace --enable-plugin --enable-gold --disable-nls --disable-multilib --with-local-prefix=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot --enable-long-long

			Thread model: posix

			gcc version 8.3.0 (crosstool-NG 1.24.0)

			There is a lot of output there, but the interesting things to note are the following:

			
					--with-sysroot=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot: This is the default sysroot directory; see the following section for an explanation.

					--enable-languages=c,c++: Using this, we have both C and C++ 
languages enabled.

					--with-cpu=cortex-a8: The code is generated for an ARM Cortex A8 core.

					--with-float=hard: Generates opcodes for the floating-point unit and uses the VFP registers for parameters.

					--enable-threads=posix: This enables the POSIX threads.

			

			These are the default settings for the compiler. You can override most of them on the gcc command line. For example, if you want to compile for a different CPU, you can override the configured setting, --with-cpu, by adding -mcpu to the command line, as follows:

			$ arm-cortex_a8-linux-gnueabihf-gcc -mcpu=cortex-a5 \ helloworld.c \

			-o helloworld 

			You can print out the range of architecture-specific options available using --target-help, as follows:

			$ arm-cortex_a8-linux-gnueabihf-gcc --target-help

			You may be wondering whether it matters that you get the configuration exactly right at this point, since you can always change it as shown here. The answer depends on the way you anticipate using it. If you plan to create a new toolchain for each target, then it makes sense to set everything up at the beginning, because it will reduce the risk of getting it wrong later on. Jumping ahead a little to Chapter 6, Selecting a Build System, I call this the Buildroot philosophy. If, on the other hand, you want to build a toolchain that is generic and you are prepared to provide the correct settings when you build for a particular target, then you should make the base toolchain generic, which is the way the Yocto Project handles things. The preceding examples follow the Buildroot philosophy.

			The sysroot, library, and header files

			The toolchain sysroot is a directory that contains subdirectories for libraries, header files, and other configuration files. It can be set when the toolchain is configured through --with-sysroot=, or it can be set on the command line using --sysroot=. You can see the location of the default sysroot by using -print-sysroot:

			$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

			/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot 

			You will find the following subdirectories in sysroot:

			
					lib: Contains the shared objects for the C library and the dynamic linker/loader, ld-linux

					usr/lib: The static library archive files for the C library, and any other libraries that may be installed subsequently

					usr/include: Contains the headers for all the libraries

					usr/bin: Contains the utility programs that run on the target, such as the 
ldd command

					usr/share: Used for localization and internationalization

					sbin: Provides the ldconfig utility, used to optimize library loading paths

			

			Plainly, some of these are needed on the development host to compile programs, and others, for example, the shared libraries and ld-linux, are needed on the target at runtime.

			Other tools in the toolchain

			Below is a list of commands to invoke the various other components of a GNU toolchain, together with a brief description:

			
					addr2line: Converts program addresses into filenames and numbers by reading the debug symbol tables in an executable file. It is very useful when decoding addresses printed out in a system crash report.

					ar: The archive utility is used to create static libraries.

					as: This is the GNU assembler.

					c++filt: This is used to demangle C++ and Java symbols.

					cpp: This is the C preprocessor and is used to expand #define, #include, and other similar directives. You seldom need to use this by itself.

					elfedit: This is used to update the ELF header of the ELF files.

					g++: This is the GNU C++ frontend, which assumes that source files contain 
C++ code.

					gcc: This is the GNU C frontend, which assumes that source files contain C code.

					gcov: This is a code coverage tool.

					gdb: This is the GNU debugger.

					gprof: This is a program profiling tool.

					ld: This is the GNU linker.

					nm: This lists symbols from object files.

					objcopy: This is used to copy and translate object files.

					objdump: This is used to display information from object files.

					ranlib: This creates or modifies an index in a static library, making the linking stage faster.

					readelf: This displays information about files in ELF object format.

					size: This lists section sizes and the total size.

					strings: This displays strings of printable characters in files.

					strip: This is used to strip an object file of debug symbol tables, thus making it smaller. Typically, you would strip all the executable code that is put onto the target.

			

			We will now switch gears from command-line tools and return to the topic of the C library.

			Looking at the components of the C library

			The C library is not a single library file. It is composed of four main parts that together implement the POSIX API:

			
					libc: The main C library that contains the well-known POSIX functions such as printf, open, close, read, write, and so on

					libm: Contains math functions such as cos, exp, and log

					libpthread: Contains all the POSIX thread functions with names beginning 
with pthread_

					librt: Has the real-time extensions to POSIX, including shared memory and asynchronous I/O

			

			The first one, libc, is always linked in but the others have to be explicitly linked with the -l option. The parameter to -l is the library name with lib stripped off. For example, a program that calculates a sine function by calling sin() would be linked with libm using -lm:

			$ arm-cortex_a8-linux-gnueabihf-gcc myprog.c -o myprog -lm

			You can verify which libraries have been linked in this or any other program by using the readelf command:

			$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "Shared library"

			 0x00000001 (NEEDED)               Shared library: [libm.so.6]

			 0x00000001 (NEEDED)               Shared library: [libc.so.6] 

			Shared libraries need a runtime linker, which you can expose using this:

			$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "program interpreter"

			    [Requesting program interpreter: /lib/ld-linux-armhf.so.3] 

			This is so useful that I have a script file named list-libs, which you will find in the book code archive in MELP/list-libs. It contains the following commands:

			#!/bin/sh

			${CROSS_COMPILE}readelf -a $1 | grep "program interpreter"

			${CROSS_COMPILE}readelf -a $1 | grep "Shared library"

			There are other library files we can link to other than the four components of the C library. We will look at how to do that in the next section.

			Linking with libraries – static and dynamic linking

			Any application you write for Linux, whether it be in C or C++, will be linked with the libc C library. This is so fundamental that you don't even have to tell gcc or g++ to do it because it always links libc. Other libraries that you may want to link with have to be explicitly named through the -l option.

			The library code can be linked in two different ways: statically, meaning that all the library functions your application calls and their dependencies are pulled from the library archive and bound into your executable; and dynamically, meaning that references to the library files and functions in those files are generated in the code but the actual linking is done dynamically at runtime. You will find the code for the examples that follow in the book code archive in MELP/Chapter02/library.

			We'll start with static linking.

			Static libraries

			Static linking is useful in a few circumstances. For example, if you are building a small system that consists of only BusyBox and some script files, it is simpler to link BusyBox statically and avoid having to copy the runtime library files and linker. It will also be smaller because you only link in the code that your application uses rather than supplying the entire C library. Static linking is also useful if you need to run a program before the filesystem that holds the runtime libraries is available.

			You can link all the libraries statically by adding -static to the command line:

			$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o helloworld-static

			You will note that the size of the binary increases dramatically:

			$ ls -l

			total 4060

			-rwxrwxr-x 1 frank frank   11816 Oct 23 15:45 helloworld

			-rw-rw-r-- 1 frank frank     123 Oct 23 15:35 helloworld.c

			-rwxrwxr-x 1 frank frank 4140860 Oct 23 16:00 helloworld-static 

			Static linking pulls code from a library archive, usually named lib[name].a. In the preceding case, it is libc.a, which is in [sysroot]/usr/lib:

			$ export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)

			$ cd $SYSROOT

			$ ls -l usr/lib/libc.a

			-rw-r--r-- 1 frank frank 31871066 Oct 23 15:16 usr/lib/libc.a

			Note that the syntax export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot) places the path to the sysroot in the shell variable, SYSROOT, which makes the example a little clearer.

			Creating a static library is as simple as creating an archive of object files using the ar command. If I have two source files named test1.c and test2.c, and I want to create a static library named libtest.a, then I would do the following:

			$ arm-cortex_a8-linux-gnueabihf-gcc -c test1.c

			$ arm-cortex_a8-linux-gnueabihf-gcc -c test2.c

			$ arm-cortex_a8-linux-gnueabihf-ar rc libtest.a test1.o test2.o

			$ ls -l

			total 24

			-rw-rw-r-- 1 frank frank 2392 Oct 9 09:28 libtest.a

			-rw-rw-r-- 1 frank frank 116 Oct 9 09:26 test1.c

			-rw-rw-r-- 1 frank frank 1080 Oct 9 09:27 test1.o

			-rw-rw-r-- 1 frank frank 121 Oct 9 09:26 test2.c

			-rw-rw-r-- 1 frank frank 1088 Oct 9 09:27 test2.o

			Then I could link libtest into my helloworld program, using this:

			$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \

			-L../libs -I../libs -o helloworld

			Now let's rebuild the same program using dynamic linking.

			Shared libraries

			A more common way to deploy libraries is as shared objects that are linked at runtime, which makes more efficient use of storage and system memory, since only one copy of the code needs to be loaded. It also makes it easy to update the library files without having to relink all the programs that use them.

			The object code for a shared library must be position-independent, so that the runtime linker is free to locate it in memory at the next free address. To do this, add the -fPIC parameter to gcc, and then link it using the -shared option:

			$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test1.c

			$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test2.c

			$ arm-cortex_a8-linux-gnueabihf-gcc -shared -o libtest.so test1.o test2.o

			This creates the shared library, libtest.so. To link an application with this library, you add -ltest, exactly as in the static case mentioned in the preceding section, but this time the code is not included in the executable. Instead, there is a reference to the library that the runtime linker will have to resolve:

			$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \

			-L../libs -I../libs -o helloworld

			$ MELP/list-libs helloworld

			    [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

			 0x00000001 (NEEDED)            Shared library: [libtest.so.6]

			 0x00000001 (NEEDED)            Shared library: [libc.so.6] 

			The runtime linker for this program is /lib/ld-linux-armhf.so.3, which must be present in the target's filesystem. The linker will look for libtest.so in the default search path: /lib and /usr/lib. If you want it to look for libraries in other directories as well, you can place a colon-separated list of paths in the LD_LIBRARY_PATH shell variable:

			$ export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib

			Because shared libraries are separate from the executables they link to, we need to be aware of their versions when deploying them.

			Understanding shared library version numbers

			One of the benefits of shared libraries is that they can be updated independently of the programs that use them.

			Library updates are of two types:

			
					Those that fix bugs or add new functions in a backward-compatible way

					Those that break compatibility with existing applications 

			

			GNU/Linux has a versioning scheme to handle both these cases.

			Each library has a release version and an interface number. The release version is simply a string that is appended to the library name; for example, the JPEG image library libjpeg is currently at release 8.2.2 and so the library is named libjpeg.so.8.2.2. There is a symbolic link named libjpeg.so to libjpeg.so.8.2.2, so that when you compile a program with -ljpeg, you link with the current version. If you install version 8.2.3, the link is updated, and you will link with that one instead.

			Now suppose that version 9.0.0 comes along and that breaks the backward compatibility. The link from libjpeg.so now points to libjpeg.so.9.0.0, so that any new programs are linked with the new version, possibly throwing compile errors when the interface to libjpeg changes, which the developer can fix. 

			Any programs on the target that are not recompiled are going to fail in some way, because they are still using the old interface. This is where an object known as the soname helps. The soname encodes the interface number when the library was built and is used by the runtime linker when it loads the library. It is formatted as <library name>.so.<interface number>. For libjpeg.so.8.2.2, the soname is libjpeg.so.8 because the interface number when that libjpeg shared library was built is 8:

			$ readelf -a /usr/lib/x86_64-linux-gnu/libjpeg.so.8.2.2 \

			| grep SONAME

			 0x000000000000000e (SONAME)    Library soname: [libjpeg.so.8] 

			Any program compiled with it will request libjpeg.so.8 at runtime, which will be a symbolic link on the target to libjpeg.so.8.2.2. When version 9.0.0 of libjpeg is installed, it will have a soname of libjpeg.so.9, and so it is possible to have two incompatible versions of the same library installed on the same system. Programs that were linked with libjpeg.so.8.*.* will load libjpeg.so.8, and those linked with libjpeg.so.9.*.* will load libjpeg.so.9.

			This is why, when you look at the directory listing of /usr/lib/x86_64-linux-gnu/libjpeg*, you find these four files:

			
					libjpeg.a: This is the library archive used for static linking.

					libjpeg.so -> libjpeg.so.8.2.2: This is a symbolic link, used for dynamic linking.

					libjpeg.so.8 -> libjpeg.so.8.2.2: This is a symbolic link, used when loading the library at runtime.

					libjpeg.so.8.2.2: This is the actual shared library, used at both compile time and runtime.

			

			The first two are only needed on the host computer for building and the last two are needed on the target at runtime.

			While you can invoke the various GNU cross-compilation tools directly from the command line, this technique does not scale beyond toy examples such as helloworld. To really be effective at cross-compiling, we need to combine a cross toolchain with a build system.

			The art of cross-compiling

			Having a working cross toolchain is the starting point of a journey, not the end of it. At some point, you will want to begin cross-compiling the various tools, applications, and libraries that you need on your target. Many of them will be open source packages, each of which has its own method of compiling and its own peculiarities. 

			There are some common build systems, including the following:

			
					Pure makefiles, where the toolchain is usually controlled by the make variable CROSS_COMPILE

					The GNU build system known as Autotools

					CMake (https://cmake.org)

			

			Both Autotools and makefiles are needed to build even a basic embedded Linux system. CMake is cross-platform and has seen increased adoption over the years especially among the C++ community. In this section, we will cover all three build tools.

			Simple makefiles

			Some important packages are very simple to cross-compile, including the Linux kernel, the U-Boot bootloader, and BusyBox. For each of these, you only need to put the toolchain prefix in the make variable CROSS_COMPILE, for example, arm-cortex_a8-linux-gnueabi-. Note the trailing dash -.

			So, to compile BusyBox, you would type this:

			$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

			Or, you can set it as a shell variable:

			$ export CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

			$ make

			In the case of U-Boot and Linux, you also have to set the make variable ARCH to one of the machine architectures they support, which I will cover in Chapter 3, All About Bootloaders, and Chapter 4, Configuring and Building the Kernel.

			Both Autotools and CMake can generate makefiles. Autotools only generates makefiles whereas CMake supports other ways of building projects depending on which 
platform(s) we are targeting (strictly Linux in our case). Let's look at cross-compiling 
with Autotools first.

			Autotools

			The name Autotools refers to a group of tools that are used as the build system in many open source projects. The components, together with the appropriate project pages, are as follows:

			
					GNU Autoconf (https://www.gnu.org/software/autoconf/autoconf.html)

					GNU Automake (https://www.gnu.org/savannah-checkouts/gnu/automake/)

					GNU Libtool (https://www.gnu.org/software/libtool/libtool.html)

					Gnulib (https://www.gnu.org/software/gnulib/)
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