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			Preface

			After 60 years of high-level language development, programming is still too difficult. The demand for software of ever-increasing size and complexity has exploded due to hardware advances, while programming languages have improved far more slowly. Creating new languages for specific purposes is one antidote for this software crisis.

			This book is about building new programming languages. The topic of programming language design is introduced, although the primary emphasis is on programming language implementation. Within this heavily studied subject, the novel aspect of this book is its fusing of traditional compiler-compiler tools (Flex and Byacc) with two higher-level implementation languages. A very high-level language (Unicon) plows through a compiler's data structures and algorithms like butter, while a mainstream modern language (Java) shows how to implement the same code in a more typical production environment.

			One thing I didn't really understand after my college compiler class is that the compiler is only one part of a programming language implementation. Higher-level languages, including most newer languages, may have a runtime system that dwarfs their compiler. For this reason, the second half of this book spends quality time on a variety of aspects of language runtime systems, ranging from bytecode interpreters to garbage collection.

			Who this book is for

			This book is for software developers interested in the idea of inventing their own language or developing a domain-specific language. Computer science students taking compiler construction courses will also find this book highly useful as a practical guide to language implementation to supplement more theoretical textbooks. Intermediate-level knowledge and experience working with a high-level language such as Java or C++ are required in order to get the most out of this book.

			What this book covers

			Chapter 1, Why Build Another Programming Language?, discusses when to build a programming language, and when to instead design a function library or a class library. Many readers of this book will already know that they want to build their own programming language. Some should design a library instead.

			Chapter 2, Programming Language Design, covers how to precisely define a programming language, which is important to know before trying to build a programming language. This includes the design of the lexical and syntax features of the language, as well as its semantics. Good language designs usually use as much familiar syntax as possible.

			Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression notation and the tools Ulex and JFlex. By the end, you will be opening source code files, reading them character by character, and reporting their contents as a stream of tokens consisting of the individual words, operators, and punctuation in the source file.

			Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the tools iyacc and byacc/j. You will learn how to debug problems in grammars that prevent parsing, and report syntax errors when they occur.

			Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is the construction of a tree data structure that represents the source code's logical structure. The construction of tree nodes takes place in the semantic actions that execute on each grammar rule.

			Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into them, and use symbol tables to identify two kinds of semantic errors: undeclared and illegally redeclared variables. In order to understand variable references in executable code, each variable's scope and lifetime must be tracked. This is accomplished by means of table data structures that are auxiliary to the syntax tree.

			Chapter 7, Checking Base Types, covers type checking, which is a major task required in most programming languages. Type checking can be performed at compile time or at runtime. This chapter covers the common case of static compile-time type checking for base types, also referred to as atomic or scalar types.

			Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you how to perform type checks for the arrays, parameters, and return types of method calls in the Jzero subset of Java. The more difficult parts of type checking are when multiple or composite types are involved. This is the case when functions with multiple parameters' types must be checked, or when arrays, hash tables, class instances, or other composite types must be checked.

			Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code by looking at examples for the Jzero language. Before generating code for execution, most compilers turn the syntax tree into a list of machine-independent intermediate code instructions. Key aspects of control flow, such as the generation of labels and goto instructions, are handled at this point.

			Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating information from syntax analysis into an IDE in order to provide syntax coloring and visual feedback about syntax errors. A programming language requires more than just a compiler or interpreter - it requires an ecosystem of tools for developers. This ecosystem can include debuggers, online help, or an integrated development environment. The chapter is a Unicon example, drawn from the Unicon IDE.

			Chapter 11, Bytecode Interpreters, covers designing the instruction set and the interpreter that executes bytecode. A new domain-specific language may include high-level domain programming features that are not supported directly by mainstream CPUs. The most practical way to generate code for many languages is to generate bytecode for an abstract machine whose instruction set directly supports the domain, and then execute programs by interpreting that instruction set.

			Chapter 12, Generating Bytecode, continues with code generation, taking the intermediate code from Chapter 9, Intermediate Code Generation, and generating bytecode from it. Translation from intermediate code to bytecode is a matter of walking through a giant linked list, translating each intermediate code instruction into one or more bytecode instructions. Typically, this is a loop to traverse the linked list, with a different chunk of code for each intermediate code instruction.

			Chapter 13, Native Code Generation, provides an overview of generating native code for x86_64. Some programming languages require native code to achieve their performance requirements. Native code generation is like bytecode generation, but more complex, involving register allocation and memory addressing modes.

			Chapter 14, Implementing Operators and Built-In Functions, describes how to support very high-level and domain-specific language features by adding operators and functions that are built into the language. Very high-level and domain-specific language features are often best represented by operators and functions that are built into the language, rather than library functions. Adding built-ins may simplify your language, improve its performance, or enable side effects in your language semantics that would otherwise be difficult or impossible. The examples in this chapter are drawn from Unicon, as it is much higher level than Java and implements more complex semantics in its built-ins.

			Chapter 15, Domain Control Structures, covers when you need a new control structure, and provides example control structures that process text using string scanning, and render graphics regions. The generic code in previous chapters covered basic conditional and looping control structures, but domain-specific languages often have unique or customized semantics for which they introduce novel control structures. Adding new control structures is substantially more difficult than adding a new function or operator, but it is what makes domain-specific languages worth developing instead of just writing class libraries.

			Chapter 16, Garbage Collection, presents a couple of methods with which you can implement garbage collection in your language. Memory management is one of the most important aspects of modern programming languages, and all the cool programming languages feature automatic memory management via garbage collection. This chapter provides a couple of options as to how you might implement garbage collection in your language, including reference counting, and mark-and-sweep garbage collection.

			Chapter 17, Final Thoughts, reflects on the main topics presented in the book and gives you some food for thought. It considers what was learned from writing this book and gives you many suggestions for further reading.

			Appendix, Unicon Essentials, describes enough of the Unicon programming language to understand those examples in this book that are in Unicon. Most examples are given side by side in Unicon and Java, but the Unicon versions are usually shorter and easier to read.

			To get the most out of this book

			In order to understand this book, you should be an intermediate-or-better programmer in Java or a similar language; a C programmer who knows an object-oriented language will be fine.
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			Instructions for installing and using the tools are spread out a bit to reduce the startup effort, appearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are technically gifted, you may be able to get all these tools to run on macOS, but it was not used or tested during the writing of this book.

			Note

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Build-Your-Own-Programming-Language. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781800204805_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The corresponding Java main() must be put in a class."

			A block of code is set as follows:

			procedure main(argv)

			   simple := simple()

			   yyin := open(argv[1])

			   while i := yylex() do

			      write(yytext, ": ", i)

			end 

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			MethodHeader: PUBLIC STATIC MethodReturnVal

			                               MethodDeclarator {

			  $$=j0.node("MethodHeader",1070,$3,$4);

			  j0.calctype($$);

			}; 

			Any command-line input or output is written as follows:

			$ jflex nnws.l

			$ javac simple 	.java yylex.java

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the Administration panel."

			Tips or Important Notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Build Your Own Programming Language, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	


		
			Section 1: Programming Language Frontends

			In this section, you will create a basic language design and implement the frontend of a compiler for it, including a lexical analyzer and a parser that builds a syntax tree from an input source file.

			This section comprises the following chapters:

			
					Chapter 1, Why Build Another Programming Language?

					Chapter 2, Programming Language Design

					Chapter 3, Scanning Source Code

					Chapter 4, Parsing

					Chapter 5, Syntax Trees

			

		

	


		
			Chapter 1: Why Build Another Programming Language?

			This book will show you how to build your own programming language, but first, you should ask yourself, why would I want to do this? For a few of you, the answer will be simple: because it is so much fun. However, for the rest of us, it is a lot of work to build a programming language, and we need to be sure about it before we make a start. Do you have the patience and persistence that it takes?

			This chapter points out a few good reasons for building your own programming language, as well as some situations where you don't have to build your contemplated language; after all, designing a class library for your application domain might be simpler and just as effective. However, libraries have their downsides, and sometimes only a new language will do.

			After this chapter, the rest of this book will, having considered things carefully, take for granted that you have decided to build a language. In that case, you should determine some of the requirements for your language. But first, we're going to cover the following main topics in this chapter:

			
					Motivations for writing your own programming language

					The difference between programming languages and libraries

					The applicability of programming language tools to other software projects

					Establishing the requirements for your language

					A case study that discusses the requirements for the Unicon language

			

			Let's start by looking at motivations.

			So, you want to write your own programming language…

			Sure, some programming language inventors are rock stars of computer science, such as Dennis Ritchie or Guido van Rossum! But becoming a rock star of computer science was easier back then. I heard the following report a long time ago from an attendee of the second History of Programming Languages Conference: The consensus was that the field of programming languages is dead. All the important languages have been invented already. This was proven wildly wrong a year or two later when Java hit the scene, and perhaps a dozen times since then when languages such as Go emerged. After a mere six decades, it would be unwise to claim our field is mature and that there's nothing new to invent that might make you famous.

			Still, celebrity is a bad reason for building a programming language. The chances of acquiring fame or fortune from your programming language invention are slim. Curiosity and desire to know how things work are valid reasons, so long as you've got the time and inclination, but perhaps the best reasons for building your own programming language are need and necessity.

			Some folks need to build a new language or a new implementation of an existing programming language to target a new processor or compete with a rival company. If that's not you, then perhaps you've looked at the best languages (and compilers or interpreters) available for some domain that you are developing programs for, and they are missing some key features for what you are doing, and those missing features are causing you pain. Every once in a blue moon, someone comes up with a whole new style of computing that a new programming paradigm requires a new language for.

			While we are discussing your motivations for building a language, let's talk about the different kinds of languages, organization, and the examples this book will use to guide you. Each of these topics is worth looking at.

			Types of programming language implementations

			Whatever your reasons, before you build a programming language, you should pick the best tools and technologies you can find to do the job. In our case, this book will pick them for you. First, there is a question of the implementation language that you are building your language in. Programming language academics like to brag about writing their language in that language itself, but this is usually only a half-truth (or someone was being very impractical and showing off at the same time). There is also the question of just what kind of programming language implementation to build:

			
					A pure interpreter that executes source code itself

					A native compiler and a runtime system, such as in C

					A transpiler that translates your language into some other high-level language

					A bytecode compiler with an accompanying bytecode machine, such as Java

			

			The first option is fun but usually too slow. The second option is the best, but usually, it's too labor-intensive; a good native compiler may take many person-years of effort.

			While the third option is by far the easiest and probably the most fun, and I have used it before with success, if it isn't a prototype, then it is sort of cheating. Sure, the first version of C++ was a transpiler, but that gave way to compilers and not just because it was buggy. Strangely, generating high-level code seems to make your language even more dependent on the underlying language than the other options, and languages are moving targets. Good languages have died because their underlying dependencies disappeared or broke irreparably on them. It can be the death of a thousand small cuts.

			This book chooses the fourth option: we will build a bytecode compiler with an accompanying bytecode machine because that is a sweet spot that gives the most flexibility while still offering decent performance. A chapter on native code compilation is included for those of you who require the fastest possible execution.

			The notion of a bytecode machine is very old; it was made famous by UCSD's Pascal implementation and the classic SmallTalk-80 implementation, among others. It became ubiquitous to the point of entering lay English with the promulgation of Java's JVM. Bytecode machines are abstract processors interpreted by software; they are often called virtual machines (as in Java Virtual Machine), although I will not use that terminology because it is also used to refer to software tools that use real hardware instruction sets, such as IBM's classic platforms or more modern tools such as Virtual Box.

			A bytecode machine is typically quite a bit higher level than a piece of hardware, so a bytecode implementation affords much flexibility. Let's have a quick look at what it will take to get there…

			Organizing a bytecode language implementation

			To a large extent, the organization of this book follows the classic organization of a bytecode compiler and its corresponding virtual machine. These components are defined here, followed by a diagram to summarize them:

			
					A lexical analyzer reads in source code characters and figures out how they are grouped into a sequence of words or tokens.

					A syntax analyzer reads in a sequence of tokens and determines whether that sequence is legal according to the grammar of the language. If the tokens are in a legal order, it produces a syntax tree.

					A semantic analyzer checks to ensure that all the names being used are legal for the operations in which they are being used. It checks their types to determine exactly what operations are being performed. All this checking makes the syntax tree heavy, laden with the extra information about where variables are declared and what their types are.

					An intermediate code generator figures out memory locations for all the variables and all the places where a program may abruptly change execution flow, such as loops and function calls. It adds them to the syntax tree and then walks this even fatter tree before building a list of machine-independent intermediate code instructions.

					A final code generator turns the list of intermediate code instructions into the actual bytecode in a file format that will be efficient to load and execute.

			

			Independent from the steps of this bytecode virtual machine compiler, a bytecode interpreter is written to load and execute programs. It is a gigantic loop with a switch statement in it, but for exotic programming languages, the compiler might be no big deal and all the magic will happen in the bytecode interpreter. The whole organization can be summarized by the following diagram:

			
				
					[image: Figure 1.1 – Phases and dataflow in a simple programming language
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			Figure 1.1 – Phases and dataflow in a simple programming language

			It will take a lot of code to illustrate how to build a bytecode machine implementation of a programming language. How that code is presented is important and will tell you what you need to know going in, and much of what you may learn from going through this book.

			Languages used in the examples

			This book provides code examples in two languages using a parallel translations model. The first language is Java, because that language is ubiquitous. Hopefully, you know it or C++ and will be able to read the examples with intermediate proficiency. The second example language is the author's own language, Unicon. While reading this book, you can judge for yourself which language is better suited to building your own programming language. As many examples as possible will be provided in both languages, and the examples in the two languages will be written as similarly as possible. Sometimes, this will be to the advantage of the lesser language.

			The differences between Java and Unicon will be obvious, but they are somewhat lessened in importance by the compiler construction tools we will use. We will use modern descendants of the venerable Lex and YACC tools to generate our scanner and parser, and by sticking to tools for Java and Unicon that remain as compatible as possible with the original Lex and YACC, the frontends of our compiler will be nearly identical in both languages. Lex and YACC are declarative programming languages that solve some of our hard problems at an even higher level than Java or Unicon.

			While we are using Java and Unicon as our implementation languages, we will need to talk about one more language: the example language we are building. It is a stand-in for whatever language you decide to build. Somewhat arbitrarily, I will introduce a language called Jzero for this purpose. Niklaus Wirth invented a toy language called PL/0 (programming language zero; the name is a riff on the language name PL/1) that was used in compiler construction courses. Jzero will be a tiny subset of Java that serves a similar purpose. I looked pretty hard (that is, I googled Jzero and then Jzero compiler) to see whether someone had already posted a Jzero definition we could use, and did not spot one by that name, so we will just make it up as we go along.

			The Java examples in this book will be tested using OpenJDK 14; maybe other versions of Java (such as OpenJDK 12 or Oracle Java JDK) will work the same, but maybe not. You can get OpenJDK from http://openjdk.java.net, or if you are on Linux, your operating system probably has an OpenJDK package that you can install. Additional programming language construction tools (Jflex and byacc/j) that are required for the Java examples will be introduced in subsequent chapters as they are used. The Java implementations we will support might be more constrained by which versions will run these language construction tools than anything else.

			The Unicon examples in this book work with Unicon version 13.2, which can be obtained from http://unicon.org. To install Unicon on Windows, you must download a .msi file and run the installer. To install on Linux, you usually do a git clone of the sources and type make. You will then want to add the unicon/bin directory to your PATH:

			git clone git://git.code.sf.net/p/unicon/unicon

			make

			Having gone through our organization and the implementation that this book will use, perhaps we should take another look at when a programming language is called for, and when one can be avoided by developing a library instead.

			Language versus library – what's the difference?

			Don't make a programming language when a library will do the job. Libraries are by far the most common way to extend an existing programming language to perform a new task. A library is a set of functions or classes that can be used together to write applications for some hardware or software technology. Many languages, including C and Java, are designed almost completely to revolve around a rich set of libraries. The language itself is very simple and general, while much of what a developer must learn to develop applications consists of how to use the various libraries.

			The following is what libraries can do:

			
					Introduce new data types (classes) and provide public functions (an API) for manipulating them

					Provide a layer of abstraction on top of a set of hardware or operating system calls

			

			The following is what libraries cannot do:

			
					Introduce new control structures and syntax in support of new application domains

					Embed/support new semantics within the existing language runtime system

			

			Libraries do some things badly, in that you might end up preferring to make a new language:

			
					Libraries often get larger and more complex than necessary.

					Libraries can have even steeper learning curves and poorer documentation than languages.

					Every so often, libraries have conflicts with other libraries, and version incompatibilities often break applications that use libraries.

			

			There is a natural evolutionary path from the library to language. A reasonable approach to building a new language to support an application domain is to start by making or buying the best library available for that application domain. If the result does not meet your requirements in terms of supporting the domain and simplifying the task of writing programs for that domain, then you have a strong argument for a new language.

			This book is about building your own language, not just building your own library. It turns out that learning about these tools and techniques is useful in other contexts.

			Applicability to other software engineering tasks

			The tools and technologies you learn about from building your own programming language can be applied to a range of other software engineering tasks. For example, you can sort almost any file or network input processing task into three categories:

			
					Reading XML data with an XML library

					Reading JSON data with a JSON library

					Reading anything else by writing code to parse it in its native format

			

			The technologies in this book are useful in a wide array of software engineering tasks, which is where the third of these categories is encountered. Frequently structured data must be read in a custom file format.

			For some of you, the experience of building your own programming language might be the single largest program you have written thus far. If you persist and finish it, it will teach you lots of practical software engineering skills, besides whatever you learn about compilers and interpreters and such. This will include working with large dynamic data structures, software testing, and debugging complex problems, among other skills.

			That's enough of the inspirational motivation. Let's talk about what you should do first: figure out your requirements.

			Establishing the requirements for your language

			After you are sure you need a new programming language for what you are doing, take a few minutes to establish the requirements. This is open-ended. It is you defining what success for your project will look like. Wise language inventors do not create a whole new syntax from scratch. Instead, they define it in terms of a set of modifications to make to a popular existing language. Many great programming languages (Lisp, Forth, SmallTalk, and many others) had their success significantly limited by the degree to which their syntax was unnecessarily different from mainstream languages. Still, your language requirements include what it will look like, and that includes syntax.

			More importantly, you must define a set of control structures or semantics where your programming language needs to go beyond existing language(s). This will sometimes include special support for an application domain that is not well-served by existing languages and their libraries. Such domain-specific languages (DSLs) are common enough that whole books are focused on that topic. Our goal for this book will be to focus on the nuts and bolts of building the compiler and runtime system for such a language, independent of whatever domain you may be working in.

			In a normal software engineering process, requirements analysis would start with brainstorming lists of functional and non-functional requirements. Functional requirements for a programming language involve the specifics of how the end user developer will interact with it. You might not anticipate all the command-line options for your language upfront, but you probably know whether interactivity is required, or whether a separate compile step is OK. The discussion of interpreters and compilers in the previous section, and this book's presentation of a compiler, might seem to make that choice for you, but Python is an example of a language that provides a fully interactive interface, even though the source code you type in it gets crunched into bytecode rather than interpreted.

			Non-functional requirements are properties that your programming language must achieve that are not directly tied to the end user developer's interactions. They include things such as what operating system(s) it must run on, how fast execution must be, or how little space the programs written in your language must run within.

			The non-functional requirement regarding how fast execution must be usually determines the answer as to whether you can target a software (bytecode) machine or need to target native code. Native code is not just faster; it is also considerably more difficult to generate, and it might make your language considerably less flexible in terms of runtime system features. You might choose to target bytecode first, and then work on a native code generator afterward.

			The first language I learned to program on was a BASIC interpreter in which the programs had to run within 4 KB of RAM. BASIC at the time had a low memory footprint requirement. But even in modern times, it is not uncommon to find yourself on a platform where Java won't run by default! For example, on virtual machines with configured memory limits for user processes, you may have to learn some awkward command-line options to compile or run even simple Java programs.

			Many requirements analysis processes also define a set of use cases and ask the developer to write descriptions for them. Inventing a programming language is different from your average software engineering project, but before you are finished, you may want to go there. A use case is a task that someone performs using a software application. When the software application is a programming language, if you are not careful, the use cases may be too general to be useful, such as write my application and run my program. While those two might not be very useful, you might want to think about whether your programming language implementation must support program development, debugging, separate compilation and linking, integration with external languages and libraries, and so forth. Most of those topics are beyond the scope of this book, but we will consider some of them.

			Since this book will present the implementation of a language called Jzero, here are some requirements for it. Some of these requirements may appear arbitrary. If it is not clear to you where one of them came from, it either came from our source inspiration language (plzero) or previous experience teaching compiler construction:

			
					Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java programs. This requirement allows us to check the behavior of our test programs when we are debugging our language implementation.

					Jzero should provide enough features to allow interesting computations. This includes if statements, while loops, and multiple functions, along with parameters.

					Jzero should support a few data types, including Booleans, integers, arrays, and the String type. It only needs to support a subset of their functionality, as described later. These are enough types to allow input and output of interesting values into a computation.

					Jzero should emit decent error messages, showing the filename and line number, including messages for attempts to use Java features not in Jzero. We will need reasonable error messages to debug the implementation.

					Jzero should run fast enough to be practical. This requirement is vague, but it implies that we won't be doing a pure interpreter. Pure interpreters are a very retro thing, evocative of the 1960s and 1970s.

					Jzero should be as simple as possible so that I can explain it. Sadly, this rules out generating native code or even JVM bytecode; we will provide our own simple bytecode machine.

			

			Perhaps more requirements will emerge as we go along, but this is a start. Since we are constrained for time and space, perhaps this requirements list is more important for what it does not say, rather than for what it does say. By way of comparison, here are some of the requirements that led to the creation of the Unicon programming language.

			Case study – requirements that inspired the Unicon language

			This book will use the Unicon programming language, located at http://unicon.org, for a running case study. We can start with reasonable questions such as, why build Unicon, and what are its requirements? To answer the first question, we will work backward from the second one.

			Unicon exists because of an earlier programming language called Icon, from the University of Arizona (http://www.cs.arizona.edu/icon/). Icon has particularly good string and list processing abilities and is used for building many scripts and utilities, as well as both programming language and natural language processing projects. Icon's fantastic built-in data types, including structure types such as lists and (hash) tables, have influenced several languages, including Python and Unicon. Icon's signature research contribution is integrating goal-directed evaluation, including backtracking and automatic resumption of generators, into a familiar mainstream syntax. Unicon requirement #1 is to preserve these best bits of Icon.

			Unicon requirement #1 – preserve what people love about Icon

			One of the things that people love about Icon is its expression semantics, including its generators and goal-directed evaluation. Icon also provides a rich set of built-in functions and data types so that many or most programs can be understood directly from the source code. Unicon's goal would be 100% compatibility with Icon. In the end, we achieved more like 99% compatibility.

			It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old source code will run forever, but for Unicon, we include that in requirement #1. We have placed a harder requirement on backward compatibility than most modern languages. While C is very backward compatible, C++, Java, Python, and Perl are examples of languages that have wandered away, in some cases far away, from being compatible with the programs written in them back in their glory days. In the case of Unicon, perhaps 99% of Icon programs run unmodified as Unicon programs.

			Icon was designed for maximum programmer productivity on small-sized projects; a typical Icon program is less than 1,000 lines of code, but Icon is very high level and you can do a lot of computing in a few hundred lines of code! Still, computers keep getting more capable and users want to write much larger programs than Icon was designed to handle. Unicon requirement #2 was to support programming in large-scale projects.

			Unicon requirement #2 – support large-scale programs working on big data

			For this reason, Unicon adds classes and packages to Icon, much like C++ adds them to C. Unicon also improved the bytecode object file format and made numerous scalability improvements to the compiler and runtime system. It also refines Icon's existing implementation to be more scalable in many specific items, such as adopting a much more sophisticated hash function.

			Icon is designed for classic UNIX pipe-and-filter text processing of local files. Over time, more and more people were wanting to write with it and required more sophisticated forms of input/output, such as networking or graphics. Unicon requirement #3 is to support ubiquitous input/output capabilities at the same high level as the built-in types.

			Unicon requirement #3 – high-level input/output for modern applications

			Support for I/O is a moving target. At first, it included networking facilities and GDBM and ODBC database facilities to accompany Icon's 2D graphics. Then, it grew to include various popular internet protocols and 3D graphics. The definition of what input/output capabilities are ubiquitous continues to evolve and varies by platform, but touch input and gestures or shader programming capabilities are examples of things that have become rather ubiquitous by this point.

			Arguably, despite billionfold improvements in CPU speed and memory size, the biggest difference between programming in 1970 and programming in 2020 is that we expect modern applications to use a myriad of sophisticated forms of I/O: graphics, networking, databases, and so forth. Libraries can provide access to such I/O, but language-level support can make it easier and more intuitive.

			Icon is pretty portable, having been run on everything from Amigas to Crays to IBM mainframes with EBCDIC character sets. Although the platforms have changed almost unbelievably over the years, Unicon still retains Icon's goal of maximum source code portability: code that gets written in Unicon should continue to run unmodified on all computing platforms that matter. This leads to Unicon requirement #4.

			Unicon requirement #4 – provide universally implementable system interfaces

			For a very long time, portability meant running on PCs, Macs, and UNIX workstations. But again, the set of computing platforms that matter is a moving target. These days, work is underway in Unicon to support Android and iOS, in case you count them as computing platforms. Whether they count might depend on whether they are open enough and used for general computing tasks, but they are certainly capable of being used as such.

			All those juicy I/O facilities that were implemented for requirement #3 must be designed in such a way that they can be multi-platform portable across all major platforms.

			Having given you some of Unicon's primary requirements, here is an answer to the question, why build Unicon at all? One answer is that after studying many languages, I concluded that Icon's generators and goal-directed evaluation (requirement #1) were features that I wanted when writing programs from now on. But after allowing me to add 2D graphics to their language, Icon's inventors were no longer willing to consider further additions to meet requirements #2 and #3. Another answer is that there was a public demand for new capabilities, including volunteer partners and some financial support. Thus, Unicon was born.

			Summary

			In this chapter, you learned the difference between inventing a programming language and inventing a library API to support whatever kinds of computing you want to do. Several different forms of programming language implementations were considered. This first chapter allowed you to think about functional and non-functional requirements for your own language. These requirements might be different from the example requirements discussed for the Java subset Jzero and the Unicon programming language, which were both introduced.

			Requirements are important because they allow you to set goals and define what success will look like. In the case of a programming language implementation, the requirements include what things will look and feel like to the programmers that use your language, as well as what hardware and software platforms it must run on. The look and feel of a programming language includes answering both external questions regarding how the language implementation and the programs written in the language are invoked, as well as internal issues such as verbosity: how much the programmer must write to accomplish a given compute task.

			You may be keen to get straight to the coding part. Although the classic build and fix mentality of novice programmers might work on scripts and short programs, for a piece of software as large as a programming language, we need a bit more planning first. After this chapter's coverage of the requirements, Chapter 2, Programming Language Design, will prepare you to construct a detailed plan for the implementation that will occupy our attention for the remainder of this book!

			Questions

			
					What are the pros and cons of writing a language transpiler that generates C code, instead of a traditional compiler that generates assembler or native machine code?

					What are the major components or phases in a traditional compiler?

					From your experience, what are some pain points where programming is more difficult than it should be? What new programming language feature(s) address these pain points?

					Write a set of functional requirements for a new programming language.

			

		

	
		
			Chapter 2: Programming Language Design

			Before trying to build a programming language, you need to define it. This includes the design of the features of the language that are visible on its surface, including basic rules for forming words and punctuation. This also includes higher-level rules, called syntax, that govern the number and order of words and punctuation in larger chunks of programs, such as expressions, statements, functions, and programs. Language design also includes the underlying meaning, also known as semantics.

			Programming language design often begins by writing example code to illustrate each of the important features of your language, as well as show the variations that are possible for each construct. Writing examples with a critical eye lets you find and fix many possible inconsistencies in your initial ideas. From these examples, you can then capture the general rules that each language construct follows. Write down sentences that describe your rules as you understand them from your examples. Note that there are two kinds of rules. Lexical rules govern what characters must be treated together, such as words or multi-character operators, such as ++. Syntax rules, on the other hand, are rules for combining multiple words or punctuation to form larger meaning; in natural language, they are often phrases, sentences, or paragraphs, while in a programming language, they might be expressions, statements, functions, or programs.

			Once you have come up with examples of everything that you want your language to do, as well as written down the lexical and syntax rules, write a language design document (or language specification) that you can refer to while coding your language. You can change things later, but it helps to have a plan to work from.

			In this chapter, we're going to cover the following main topics:

			
					Determining the kinds of words and punctuation to provide in your language

					Specifying the control flow

					Deciding on what kinds of data to support

					Overall program structure

					Completing the Jzero language definition

					Case study – designing graphics facilities in Unicon

			

			Let's start by identifying the basic elements that are allowed in source code in your language.

			Determining the kinds of words and punctuation to provide in your language

			Programming languages have several different categories of words and punctuation. In natural language, words are categorized into parts of speech – nouns, verbs, adjectives, and so on. The categories that correspond to parts of speech that you will have to invent for a programming language can be constructed by doing the following:

			
					Defining a set of reserved words or keywords

					Specifying characters in identifiers that name variables, functions, and constants

					Creating a format for literal constant values for built-in data types

					Defining single and multi-letter operators and punctuation marks

			

			You should write down precise descriptions of each of these categories as part of your language design document. In some cases, you might just make lists of particular words or punctuation to use, but in other cases, you will need patterns or some other way to convey what is and is not allowed in that category.

			For reserved words, a list will do for now. For names of things, a precise description must include details such as what non-letters symbols are allowed in such names. For example, in Java, names must begin with a letter and can then include letters and digits; underscores are allowed and treated as letters. In other languages, hyphens are allowed within names, so the three symbols a, -, and b make up a valid name, not a subtraction of b from a. When a precise description fails, a complete set of examples will suffice.

			Constant values, also called literals, are a surprising and major source of complexity in lexical analyzers. Attempting to precisely describe real numbers in Java comes out something like this: Java has two different kinds of real numbers – floats and doubles – but they look the same until you get to the end, where there is an optional f (or F) or d (or D) to distinguish floats from doubles. Before that, real numbers must have either a decimal point (.) or an exponent (e or E) part, or both. If there is a decimal point, there must be at least one digit on one side of the decimal or the other. If there is an exponent part, it must have an e (or E) followed by an optional minus sign and one or more digits. To make matters worse, Java has a weird hexadecimal real constant format that few programmers have heard of, consisting of 0x or 0X followed by digits in hex format, with an optional decimal and mandatory exponent part consisting of a p (or P), followed by digits in decimal format.

			Describing operators and punctuation marks is usually almost as easy as listing the reserved words. One major difference is that operators usually have precedence rules that you will need to determine. For example, in numeric processing, the multiplication operator has almost always higher precedence than the addition operator, so x + y * z will multiply y * z before it adds x to the product of y and z. In most languages, there are at least 3-5 levels of precedence, and many popular mainstream languages have from 13 to 20 levels of precedence that must be considered carefully. The following diagram shows the operator precedence table for Java. We will need it for Jzero:

			
				
					[image: Figure 2.1 – Java operator precedence ]
				

			

			Figure 2.1 – Java operator precedence

			The preceding diagram shows that Java has a lot of operators organized into 10 levels of precedence, though I might be simplifying this a bit. In your language, you might get away with fewer, but you will have to address the issue of operator precedence if you want to build a real language.

			A similar issue is operator associativity. In many languages, most operators associate from left to right, but a few strange ones associate from right to left. For example, the x + y + z expression is equivalent to (x + y) + z, but the x = y = 0 expression is equivalent to x = (y = 0).

			The principle of least surprise applies to operator precedence and associativity, as well as to what operators you put in your language in the first place. If you define arithmetic operators and give them strange precedence or associativity, people will reject your language out of hand. If you happen to be introducing new, possibly domain-specific data types in your language, you have way more freedom to define operator precedence and associativity for any new operators you introduce in your language.

			Once you have worked out what the individual words and punctuation in your language should be, you can work your way up to larger constructs. This is the transition from lexical analysis to syntax, and syntax is important because it is the level at which bits of code become large enough to specify some computation to be performed. We will look at this in more detail in a later chapters, but at the design stage, you should at least think about how programmers will specify the control flow, declare data, and build entire programs. First, you must plan for the control flow.

			Specifying the control flow

			The control flow is how the program's execution proceeds from place to place within the source code. Most control flow constructs should be familiar to programmers who have been trained in mainstream programming languages. The innovations in your language design can then focus on the features that are novel or domain-specific and that motivate you to create a new language in the first place. Make these novel things as simple and as readable as possible. Envision how those new features ought to fit into the rest of the programming language.

			Every language must have conditionals and loops, and almost all of them use if and while to start them. You could invent your own special syntax for an if expression, but unless you've got a good reason to, you would be shooting yourself in the foot. Here are some control flow constructs from Java that would certainly be in Jzero:

			if (e) s;

			if (e) s1 else s2;

			while (e) s;

			for (…) s;

			Here are some other less common Java control flow constructs that are not in Jzero. If they were to appear in a program, what should a Jzero compiler do with them?

			switch (e) { … }

			do s while (e);

			By default, our compiler will print a cryptic message that doesn't explain things very well. In the next two chapters, we will make our compiler for Jzero print a nice error message about the Java features that it does not support.

			Besides conditionals and loops, languages tend to have a syntax for calling subroutines and returning afterward. All these ubiquitous forms of control flow are abstractions of the underlying machine's capability to change the location where instructions are executing – the GOTO. If you invent a better notation for changing the location where instructions are executing, it will be a big deal.

			The biggest controversy when designing many or most control flow constructs seems to be whether they are statements or whether you should make them expressions that produce a result that can be used in a surrounding expression. I have used languages where the result of if expressions are useful – C/C++/Java even have an operator for that: the i?t:e conditional operator. I have not found a language that did something very meaningful in making a while loop an expression; the best they did was have the while expressions produce a result, telling us whether the loop exited due to the test condition or due to an internal break.

			If you are inventing a new language from scratch, one of the big questions for you is whether you can come up with some new control structure(s) to support your intended application domain. For example, suppose you want your language to provide special support for investing in the stock market. If you manage to come up with a better control structure for specifying conditions, constraints, or iterative operations within this domain, you might provide a competitive edge to those who are coding in your language for this domain. The program will have to run on an underlying von Neuman instruction set, so you will have to figure out how to map any such new control structure to instructions such as Boolean logic tests and GOTO instructions.

			Whatever control flow constructs you decide to support, you will also need to design a set of data types and declarations that reflect the information that the programs in your language will manipulate.

			Deciding on what kinds of data to support

			There are at least three categories of data types to consider in your language design. The first one is atomic, scalar primitive types, often called first-class data types. The second is composite or container types, which are capable of holding and organizing collections of values. The third (which may be variants of the first or second categories) is application domain-specific types. You should formulate a plan for each of these categories.

			Atomic types

			Atomic types are generally built-in and immutable. You don't modify existing values; you just use operators to create new values. Pretty much all languages have built-in types for numbers and a few additional types. A Boolean type, null type, and maybe a string type are common atomics, but there are others.

			You decide just how complicated to get with atomics: how many different machine representations of integers and real numbers do you need? Some languages might provide a single type for all numbers, while others might provide 5 or 10 (or more) for integers and another few for real numbers. The more you add, the more flexibility and control you give to programmers that use your language, but the more difficult your implementation task will be later.

			Similarly, it is impossible to design a single-string data type that is ideal for all applications that use strings a lot. But how many string types do you want to support? One extreme is having no string type at all, only a short integer type for holding characters. Such languages would consider strings to be part of composite types. Maybe strings are supported only by a library rather than in the language. Strings may be arrays or objects, but even such languages usually have some special lexical rules that allow string constant values to be given as double-quoted sequences of characters of some kind. Another extreme is that, given the importance of strings in many application domains, your language might want to support multiple string types for various character sets (ASCII, UTF8, and so on) with auxiliary types (character sets) and special types and control structures that support analyzing and constructing strings. Many popular languages treat strings as a special atomic type.

			If you are especially clever, you may decide to support only a few built-in types for numbers and strings but make those types as flexible as possible. Popular existing programming languages vary widely regarding how many types are used for these classic built-in types, and for many other possible data types that you might include. Once you go beyond integers, real numbers, and strings, the only types that are universal are container types, which allow you to assemble data structures.

			Some of the things you must think about regarding atomic types include the following:

			
					How many values do they have?

					How are all those values encoded as literal constants in the source code?

					What kinds of operators or built-in functions use operands or parameters?

			

			The first question will tell you how many bytes the type will require in memory. The second and third questions tie back to the question of determining the rules for words and punctuation in the language. The third question may also give insight into how much effort, in terms of the code generator or runtime system, will be required to implement support for the type in your language. Atomic types can be more work or less work to implement, but they are seldom as complicated as composite types. We will discuss these next.

			Composite types

			Composite types are types that help you allocate and access multiple values in a coordinated fashion. Languages vary enormously regarding the extent of their syntax support for composite types. Some only support arrays and structs and require programmers to build all their own data structures on top of these. Many provide all higher-level composite types via libraries. However, some higher-level languages provide numerous sophisticated data structures as built-ins with syntax support.

			The most ubiquitous composite type is an array type, where multiple values are accessed using a numerically contiguous range of integer indices. You will probably have something like an array in your language. Your main design considerations should be how are the indices given, and how are changes in the size of the composite value handled? Most popular languages use indices that start at zero. Zero-based array indexes simplify index calculations and are easier for a language inventor to implement, but they are less intuitive for new programmers. Some languages use 1-based indices or allow the programmer to specify a range of indices starting at an arbitrary integer other than 0.

			Regarding changes in size, some languages allow no changes in size at all in their array types, or they make the programmer jump through hoops to build new arrays of different sizes based on existing arrays. Other languages are engineered to make adding values to an array a cheap and easy operation. No one design is perfect for all applications, so you just pick one and live with the consequences, support multiple array-like data types for different purposes, or design a very clever type that accommodates a range of common uses well.

			Besides arrays, you should think about what other composite types you need. Almost all languages support a record, struct, or class type for grouping values of several different types together and accessing them by names called fields. The more elaborate you get with this, the more complex your language implementation will be. If you need proper object orientation in your language, be prepared to pay for it in time spent writing your compiler and runtime code. As a designer, the warning is to keep it simple, but as a programmer, I would not want to use a programming language that did not give me this capability in some form.
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