

[image: Cover Image]

Access® 2021/Microsoft 365
Programming by Example

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

The companion files are also available for downloading by writing to the publisher at info@merclearning.com.

Access® 2021/Microsoft 365
Programming by Example

Julitta Korol

[image: image]

Copyright ©2022 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in
any way, stored in a retrieval system of any type, or transmitted by any means, media,
electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

(800) 232-0223

Julitta Korol. Access 2021/Microsoft 365 Programming by Example.

ISBN: 978-1-68392-841-6

This book is printed on acid-free paper in the United States of America.

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022940572

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files for this title are also available by contacting info@merclearning.com.

The sole obligation of Mercury Learning and Information to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To a new generation of Microsoft Access programmers

CONTENTS

Acknowledgments

Introduction

PART I ACCESS VBA PRIMER

Chapter 1 Getting Started with Access VBA

Understanding VBA Modules and Procedure Types

Writing Procedures in a Standard Module

Executing Your Procedures

Understanding Class Modules

Events, Event Properties, and Event Procedures

Why Use Events?

Walking Through an Event Procedure

Compiling Your Procedures

Placing a Database in a Trusted Location

Summary

Chapter 2 Getting to Know Visual Basic Editor (VBE)

Understanding the Project Explorer Window

Understanding the Properties Window

Understanding the Code Window

Other Windows in the VBE

Assigning a Name to the VBA Project

Renaming a Module

Syntax and Programming Assistance

List Properties/Methods

Parameter Info

List Constants

Quick Info

Complete Word

Indent/Outdent

Comment Block/Uncomment Block

Using the Object Browser

Using the VBA Object Library

Using the Immediate Window

Summary

Chapter 3 Access VBA Fundamentals

Introduction to Data Types

Understanding and Using Variables

Declaring Variables

Specifying the Data Type of a Variable

Using Type Declaration Characters

Assigning Values to Variables

Forcing Declaration of Variables

Understanding the Scope of Variables

Procedure-Level (Local) Variables

Module-Level Variables

Project-Level Variables

Understanding the Lifetime of Variables

Using Temporary Variables

Creating a Temporary Variable with a TempVars Collection Object

Retrieving Names and Values of TempVar Objects

Using Temporary Global Variables in Expressions

Removing a Temporary Variable from a TempVars Collection Object

Using Static Variables

Using Object Variables

Disposing of Object Variables

Finding a Variable Definition

Determining the Data Type of a Variable

Using Constants in VBA Procedures

Intrinsic Constants

Summary

Chapter 4 Access VBA Built-In and Custom Functions

Writing Function Procedures

Running Function Procedures

Data Types and Functions

Passing Arguments By Reference and By Value

Using Optional Arguments

Using the IsMissing Function

VBA Built-In Functions for User Interaction

Using the MsgBox Function

Returning Values from the MsgBox Function

Using the InputBox Function

Converting Data Types

Summary

Chapter 5 Adding Decisions to Your Access VBA Programs

Relational and Logical Operators

If. . .Then Statement

Multiline If. . .Then Statement

Decisions Based on More than One Condition

If. . .Then. . .Else Statement

If. . .Then. . .ElseIf Statement

Nested If. . .Then Statements

Select Case Statement

Using Is with the Case Clause

Specifying a Range of Values in a Case Clause

Specifying Multiple Expressions in a Case Clause

Summary

Chapter 6 Adding Repeating Actions to Your Access VBA Programs

Using the Do. . .While Statement

Another Approach to the Do. . .While Statement

Using the Do. . .Until Statement

Another Approach to the Do. . .Until Statement

Using the For. . .Next Statement

Using the For Each. . .Next Statement

Exiting Loops Early

Nested Loops

Summary

Chapter 7 Keeping Track of Multiple Values Using Arrays

Understanding Arrays

Declaring Arrays

Array Upper and Lower Bounds

Initializing and Filling an Array

Filling an Array Using Individual Assignment Statements

Filling an Array Using the Array Function

Filling an Array Using the For. . .Next Loop

Using a One-Dimensional Array

Arrays and Looping Statements

Using a Two-Dimensional Array

Static and Dynamic Arrays

Array Functions

The Array Function

The IsArray Function

The Erase Function

The LBound and UBound Functions

Errors in Arrays

Parameter Arrays

Passing Arrays to Function Procedures

Sorting an Array

Summary

Chapter 8 Keeping Track of Multiple Values Using Collections

Creating Your Own Collection

Adding Items to Your Collection

Determine the Number of Items in Your Collection

Accessing Items in a Collection

Removing Items from a Collection

Updating Items in a Collection

Returning a Collection from a Function

Collections vs. Arrays

Watching the Execution of Your VBA Procedures

Summary

Chapter 9 Getting to Know Built-In Tools for Testing and Debugging

Syntax, Runtime, and Logic Errors

Stopping a Procedure

Using Breakpoints

Removing Breakpoints

Using the Immediate Window in Break Mode

Using the Stop Statement

Using the Assert Statement

Using the Add Watch Window

Removing Watch Expressions

Using Quick Watch

Using the Locals Window

Using the Call Stack Dialog Box

Stepping Through VBA Procedures

Stepping Over a Procedure

Stepping Out of a Procedure

Running a Procedure to Cursor

Setting the Next Statement

Showing the Next Statement

Navigating with Bookmarks

Stopping and Resetting VBA Procedures

Trapping Errors

Using the Err Object

Procedure Testing

Setting Error-Trapping Options

Summary

PART II ACCESS VBA PROGRAMMING WITH DAO AND ADO

Chapter 10 Data Access Technologies in Microsoft Access

Understanding Database Engines: Jet/ACE

Understanding Access Versions and File Formats

Understanding Library References

Overview of Object Libraries in Microsoft Access

The Visual Basic for Applications Object Library (VBA)

The Microsoft Access 16.0 Object Library

OLE Automation

The Microsoft Office 16.0 Access Database Engine Object Library

The Microsoft DAO 3.6 Object Library

The Microsoft ActiveX Data Objects 6.1 Library (ADO)

Creating a Reference to the ADO Library

Understanding Connection Strings

Using ODBC Connection Strings

Creating and Using ODBC DSN Connections

Creating and Using DSN-Less ODBC Connections

Using OLE DB Connection Strings

Connection String via a Data Link File

Summary

Chapter 11 Creating and Manipulating Databases with DAO

Understanding the DBEngine and Workspace Objects

The DAO Errors Collection

Creating a Database with DAO

Copying a Database

Opening Microsoft Access Databases

Opening a Microsoft Jet Database in Read/Write Mode

Opening a Microsoft Access Database in Read-Only Mode

Opening a Microsoft Jet Database Secured with a Password

Creating and Accessing Database Tables and Fields

Creating a Microsoft Access Table and Setting Field Properties

Creating Calculated Fields

Creating Multivalue Lookup Fields

Creating Attachment Fields

Creating Append Only Memo Fields

Creating Rich Text Memo Fields

Removing a Field from a Table

Retrieving Table Properties

Linking a dBASE Table

Creating Indexes

Adding a Multiple-Field Index to a Table

Finding and Reading Records

Introduction to DAO Recordsets

Opening Various Types of Recordsets

Opening a Snapshot and Counting Records

Retrieving the Contents of a Specific Field in a Table

Moving Between Records in a Table

Finding Records in a Table-Type Recordset

Finding Records in Dynasets or Snapshots

Finding the nth Record in a Snapshot

Working with Records

Adding a New Record

Adding Attachments

Adding Values to Multivalue Lookup Fields

Modifying a Record

Deleting a Record

Deleting Attachments

Copying Records to an Excel Worksheet

Filtering Records Using the SQL WHERE Clause

Filtering Records Using the Filter Property

Creating and Running Queries

Creating a Select Query Manually

Creating a Select Query with DAO

Creating and Running a Parameter Query

Creating and Running a Make-Table Query

Creating and Running an Update Query

Running an Append Query

Running a Delete Query

Creating and Running a Pass-Through Query

Performing Other Operations with Queries

Retrieving Query Properties with DAO

Listing All Queries in a Database with DAO

Deleting a Query from a Database

Determining If a Query Is Updatable

Transaction Processing

Creating a Transaction

Summary

Chapter 12 Creating and Manipulating Databases with ADO

Creating an Access Database with ADO

Copying a Database

Copying a Database with FileSystemObject

Database Errors

Opening a Microsoft Jet Database in Read/Write Mode

Connecting to the Current Access Database

Opening Other Databases, Spreadsheets, and Text Files from Access

Connecting to an SQL Server Database

Opening a Microsoft Excel Workbook

Opening a Text File

Creating a Microsoft Access Table and Setting Field Properties

Copying a Table

Deleting a Database Table

Adding New Fields to an Existing Table

Removing a Field from a Table

Retrieving Table Properties

Retrieving Field Properties

Linking a Microsoft Access Table

Linking a Microsoft Excel Worksheet

Listing Database Tables

Listing Tables and Fields

Listing Data Types

Changing the AutoNumber

Creating a Primary Key Index

Creating Indexes Using ADO

Creating a Single-Field Index

Listing Indexes in a Table

Deleting Table Indexes

Creating Table Relationships

Introduction to ADO Recordsets

Cursor Types

Lock Types

Cursor Location

The Options Parameter

Opening a Recordset

Opening a Recordset Based on a Table or Query

Opening a Recordset Based on an SQL Statement

Opening a Recordset Based on Criteria

Opening a Recordset Directly with ADO

Moving Around in a Recordset

Finding the Record Position

Reading Data from a Field

Returning a Recordset as a String

Finding Records Using the Find Method

Finding Records Using the Seek Method

Finding a Record Based on Multiple Conditions

Using Bookmarks

Using Bookmarks to Filter a Recordset

Using the GetRows Method to Fill the Recordset

Working with Records in ADO

Adding a New Record

Modifying a Record

Editing Multiple Records

Deleting a Record

Copying Records to a Word Document

Copying Records to a Text File

Filtering Records

Sorting Records

Creating and Running Queries with ADO

Creating a Select Query with ADO

Executing an Existing Select Query with ADO

Modifying an Existing Query

Creating and Running a Parameter Query

Executing an Update Query

Creating and Executing a Pass-Through Query

Listing Queries in a Database

Deleting a Query

Using Advanced ADO Features

Fabricating a Recordset

Disconnected Recordsets

Saving a Recordset to Disk

Part 1: Saving a Recordset to Disk

Part 2: Creating an Unbound Access Form to View and Modify Data

Part 3: Writing Procedures to Control the Form and Its Data

Part 4: Viewing and Editing Data Offline

Part 5: Connecting to a Database to Update the Original Data

Cloning a Recordset

Introduction to Data Shaping

Writing a Simple SHAPE Statement

Working with Data Shaping

Writing a Complex SHAPE Statement

Shaped Recordsets with Multiple Children

Shaped Recordsets with Grandchildren

Part 1: Creating a Form with a TreeView Control

Part 2: Writing an Event Procedure for the Form Load Event

Transaction Processing

Creating a Transaction

Examining the References Collection

Summary

PART III ACCESS STRUCTURED QUERY LANGUAGE (SQL)

Chapter 13 Creating, Modifying, and Deleting Tables and Fields

Introduction to Access SQL

Creating Tables

Deleting Tables

Modifying Tables with DDL

Adding New Fields to a Table

Changing the Data Type of a Table Column

Changing the Size of a Text Column

Deleting a Column from a Table

Adding a Primary Key to a Table

Adding a Multiple-Field Index to a Table

Deleting an Indexed Column

Deleting an Index

Setting a Default Value for a Table Column

Changing the Seed and Increment Values of AutoNumber Columns

Summary

Chapter 14 Enforcing Data Integrity and Relationships between Tables

Using CHECK Constraints

Establishing Relationships between Tables

Using the Data Definition Query Window

Summary

Chapter 15 Defining Indexes and Primary Keys

Creating Tables with Indexes

Adding an Index to an Existing Table

Creating a Table with a Primary Key

Creating Indexes with Restrictions

Deleting Indexes

Summary

Chapter 16 Views and Stored Procedures

Creating a View

Enumerating Views

Deleting a View

Creating a Stored Procedure

Creating a Parameterized Stored Procedure

Examining the Contents of a Stored Procedure

Executing a Parameterized Stored Procedure

Deleting a Stored Procedure

Changing Database Records with Stored Procedures

Summary

PART IV IMPLEMENTING DATABASE SECURITY

Chapter 17 Implementing Database Security with DDL

Two Types of Database Security

Setting the Database Password

Removing the Database Password

Creating a User Account

Changing a User Password

Creating a Group Account

Adding Users to Groups

Removing a User from a Group

Deleting a User Account

Granting Permissions for an Object

Revoking Security Permissions

Deleting a Group Account

Summary

Chapter 18 Implementing User-Level and Share-Level Security

Share-Level Security

User-Level Security

Understanding Workgroup Information Files

Creating and Joining Workgroup Information Files

Opening a Secured MDB Database

Creating and Managing Group and User Accounts

Deleting User and Group Accounts

Listing User and Group Accounts

Listing Users in Groups

Setting and Retrieving User and Group Permissions

Determining the Object Owner

Setting User Permissions for an Object

Setting User Permissions for a Database

Setting User Permissions for Containers

Checking Permissions for Objects

Setting a Database Password Using the DBEngine.CompactDatabase Method

Setting a Database Password Using the NewPassword Method

Changing a User Password

Summary

PART V VBA PROGRAMMING IN ACCESS FORMS AND REPORTS

Chapter 19 Enhancing Access Forms

Creating Access Forms

Grouping Controls Using Layouts

Rich Text Support in Forms

Using Built-In Formatting Tools

Using Images in Access Forms

Using the Attachments Control

Summary

Chapter 20 Using Form Events

Data Events

Current

BeforeInsert

AfterInsert

BeforeUpdate

AfterUpdate

Dirty

OnUndo

Delete

BeforeDelConfirm

AfterDelConfirm

Focus Events

Activate

Deactivate

GotFocus

LostFocus

Mouse Events

Click

DblClick

MouseDown

MouseMove

MouseUp

MouseWheel

Keyboard Events

KeyDown

KeyPress

KeyUp

Error Events

Error

Filter Events

Filter

ApplyFilter

Timing Events

Timer

Events Recognized by Form Sections

DblClick (Form Section Event)

Understanding and Using the OpenArgs Property

Summary

Chapter 21 Events Recognized by Form Controls

Enter (Control)

BeforeUpdate (Control)

AfterUpdate (Control)

NotInList (Control)

Click (Control)

DblClick (Control)

Chapter Summary

Chapter 22 Enhancing Access Reports and Using Report Events

Creating Access Reports

Using Report Events

Open

Close

Activate

Deactivate

NoData

Page

Error

Events Recognized by Report Sections

Format (Report Section Event)

Print (Report Section Event)

Retreat (Report Section Event)

Using the Report View

Sorting and Grouping Data

Saving Reports in .pdf or .xps File Format

Using the OpenArgs Property of the Report Object

Running Built-In Menu Commands from VBA

Creating a Report with VBA

Part I-Creating a Crosstab Query in the Query Design View

Part II-Creating a Query with VBA

Part III-Creating a Report with VBA

Part IV-Creating a Custom Form for the Query’s Parameters

Part V-Running the Form and Report

Summary

PART VI ENHANCING THE USER EXPERIENCE

Chapter 23 Customizing the Menu System in Access

The Initial Access 2021 Window

Customizing the Navigation Pane

Using VBA to Customize the Navigation Pane

Locking the Navigation Pane

Controlling the Display of Database Objects

Setting Displayed Categories

Saving and Loading the Configuration of the Navigation Pane

A Quick Overview of the Access 2021 Ribbon Interface

Ribbon Programming with XML, VBA, and Macros

Creating the Ribbon Customization XML Markup

Loading Ribbon Customizations from an External XML Document

Part 1: Setting Access Options

Part 2: Setting Up the Programming Environment

Part 3: Writing VBA Code

Part 4: Calling the LoadRibbon Function from an Autoexec Macro

Part 5: Applying the Customized Ribbon

Embedding Ribbon XML Markup in a VBA Procedure

Storing Ribbon Customization XML Markup in a Table

Assigning Ribbon Customizations to Forms and Reports

Part 1: Creating Ribbon Customization for a Report Using a Local System Table

Part 2: Making Access Aware of the New Customization

Part 3: Assigning a Ribbon Customization to a Report

Using Images in Ribbon Customizations

Requesting Images via the loadImage Callback

Part 1: Creating Ribbon Customization for Loading Custom Images

Part 2: Setting Up the Programming Environment

Part 3: Writing the VBA Callback Procedures

Part 4: Making Access Aware of the New Customization

Requesting Images via the getImage Callback

Understanding Attributes and Callbacks

Using Various Controls in Ribbon Customizations

Creating Toggle Buttons

Creating Split Buttons, Menus, and Submenus

Creating Checkboxes

Creating Edit Boxes

Creating Combo Boxes and Drop Downs

Creating a Dialog Box Launcher

Disabling a Control

Repurposing a Built-in Control

Refreshing the Ribbon

The CommandBars Object and the Ribbon

Tab Activation and Group Auto-Scaling

Customizing the Backstage View

Customizing the Quick Access Toolbar (QAT)

Summary

PART VII ADVANCED CONCEPTS IN ACCESS VBA

Chapter 24 Creating Classes in VBA

Important Terminology

Creating Custom Objects in Class Modules

Creating a Class

Variable Declarations

Defining the Properties for the Class

Creating the Property Get Procedures

Creating the Property Let Procedures

Creating the Class Methods

Creating an Instance of a Class

Event Procedures in Class Modules

Creating the User Interface

Running the Custom Application

Watching the Execution of Your Custom Object

Creating and Working with Collection Classes

The Collection Object

The Collection Class

Summary

Chapter 25 Advanced Event Programming

Sinking Events in Standalone Class Modules

Part 1: Database File Preparation

Part 2: Creating the cRecordLogger Class

Part 3: Creating an Instance of the Custom Class in the Form’s Class Module

Part 4: Testing the cRecordLogger Custom Class

Part 5: Using the cRecordLogger Custom Class with another Form

Writing Event Procedure Code in Two Places

Responding to Control Events in a Class

Declaring and Raising Events

Summary

PART VIII VBA AND MACROS

Chapter 26 Macros and Templates

Macros or VBA?

Access 2021 Macro Security

Using the AutoExec Macro

Understanding Macro Actions, Arguments, and Program Flow

Creating and Using Macros in Access 2021

Creating Standalone Macros

Running Standalone Macros

Creating and Using Submacros

Creating and Using Embedded Macros

Copying Embedded Macros

Examining Shadow Properties

Using Data Macros

Creating a Data Macro

Creating a Named Data Macro

Editing an Existing Named Macro

Calling a Named Macro from Another Macro

Using ReturnVars in Data Macros

Tracing Data Macro Execution Errors

Error Handling in Macros

Using Temporary Variables in Macros

Converting Macros to VBA Code

Converting a Standalone Macro to VBA

Converting Embedded Macros to VBA

Access Templates

Creating a Custom Blank Database Template

Understanding the .accdt File Format

Summary

PART IX WORKING TOGETHER: VBA, XML, AND RESTAPI

Chapter 27 XML Features in Access 2021

XML and Access

What Is a Well-Formed XML Document?

Exporting XML Data

Understanding the XML Data File

Understanding the XML Schema File

Understanding the XSL Transformation Files

Viewing XML Documents Formatted with Stylesheets

Advanced XML Export Options

Data Export Options

Schema Export Options

Presentation Export Options

Applying XSLT Transforms to Exported Data

Import XML Data

Importing a Schema File

Importing an XML File

Part 1: Creating a Custom Transformation File to be Used After the XML Data Import

Part 2: Exporting the Customers and Related Orders Tables to an XML File

Part 3: Importing to an Access Database Only Two Columns from the Customers Table and Five Columns from the Orders Table

Programmatically Exporting to and Importing from XML

Exporting to XML Using the ExportXML Method

Transforming XML Data with the TransformXML Method

Part 1: Creating a Custom Stylesheet for Transforming an XML Source File into Another XML Data File

Part 2: Writing a VBA Procedure to Export and Transform Data

Part 3: Importing the Transformed XML Data File to Access

Part 4: Creating another transformation

Importing to XML Using the ImportXML Method

Manipulating XML Documents Programmatically

Loading and Retrieving the Contents of an XML File

Working with XML Document Nodes

Retrieving Information from Element Nodes

Retrieving Specific Information from Element Nodes

Retrieving the First Matching Node

Using ActiveX Data Objects with XML

Saving an ADO Recordset as XML to Disk

Attribute-Centric and Element-Centric XML

Changing the Type of an XML File

Applying an XSL Stylesheet

Transforming Attribute-Centric XML Data into an HTML Table

Loading an XML Document in Excel

Summary

Chapter 28 Access and REST API

Introduction to a VBA Dictionary Object

Accessing the VBA Dictionary

Adding a Reference to the Microsoft Scripting Runtime Library

Working with the Dictionary Object’s Properties and Methods

Dictionary versus Collection

Action Item 28.1

Introduction to Regular Expressions

Character Matching in RegExp Patterns

Quantifiers in RegExp Patterns

Using the RegExp Object in VBA

The RegExp Object Declaration

RegExp Properties

RegEx Methods

Writing VBA Programs Using the RegExp Object

Introduction to REST API

Accessing REST APIs with VBA

Methods and Properties of the XMLHTTPRequest Object

Making a Basic GET Request

Action Item 28.2

Overview of JSON

Loading JSON Data into Access

Parsing JSON with Third-Party Libraries

Summary

Appendix: Installing Internet Information Services (IIS)

Creating a Virtual Directory

Setting ASP Configuration Properties

Turning Off Friendly HTTP Error Messages

Index

Acknowledgments

First, I’d like to express my gratitude to everyone at Mercury Learning and Information. A sincere thank-you to my publisher, David Pallai, for offering me the opportunity to update this book to the new 2021 version and tirelessly keeping things on track during this long project.

A whole bunch of thanks go to the editorial team for working so hard to bring this book to print. In particular, I would like to thank Jennifer Blaney, for her production expertise. To the compositor, Swaradha Typesetters, for all the composition efforts that gave this book the right look and feel.

Special thanks to my husband, Paul, for his patience during this long project.

Finally, I’d like to acknowledge readers like you who cared enough to post reviews of the previous editions of this book online. Your invaluable feedback has helped me raise the quality of this work by including the material that matters to you most. Please continue to inspire me with your ideas and suggestions.

Julitta Korol
July 2022

Introduction

Since its creation, Microsoft Access has allowed users to design and develop Windows-based database applications and has grown into the world’s most popular database. This book is for people who have already mastered the use of Microsoft Access databases and now are ready for the next step—programming. Access 2021/ Microsoft 365 Programming by Example takes nonprogrammers through detailed steps of creating Access databases from scratch and shows them how to retrieve and manage their data programmatically using various programming languages and techniques. With this book in hand, users can quickly build the toolset required for developing their own database solutions. With this book’s approach, programming an Access database from scratch and controlling it via programming code is as easy as designing and maintaining databases with the built-in tools of Access. This book gives a practical overview of many programming languages and techniques necessary in programming, maintaining, and retrieving data from today’s Access databases.

PREREQUISITES

You don’t need any programming experience to use Access 2021/Microsoft 365 Programming by Example. The only prerequisite is that you already know how to manually design an Access database and perform database tasks by creating and running various types of queries. This book also assumes that you know how to create more complex forms with embedded subforms, combo boxes, and other built-in controls. If you don’t have these skills, there are countless books on the market that can teach you step by step how to build simple databases. If you do meet these criteria, this book will take you to the Access programming level by example. You will gain working knowledge immediately by performing concrete tasks and without having to read long descriptions of concepts. True learning by example begins with the first step, followed by the next step, and the next one, and so on. By the time you complete all the steps in a hands-on exercise or a custom project, you should be able to effectively apply the same technique again and again in your own database projects.

HOW THIS BOOK IS ORGANIZED

This book is divided into nine parts (a total of 28 chapters) that progressively introduce you to programming Access databases.

PART I—ACCESS VBA PRIMER

Here you are introduced to Visual Basic for Applications (VBA)—the programming language for Microsoft Access. In this part of the book, you acquire the fundamentals of VBA that you will use repeatedly in building real-life Access database applications. Part I chapters are also the subject of a standalone book, Access 2021 Programming Pocket Primer, available from Mercury Learning and Information (ISBN: 9781683928898). If you already worked through the pocket primer book, you can skip chapters 1–9 and begin from Chapter 10.

Part I consists of the following nine chapters:

Chapter 1—Getting Started with Access VBA
In this chapter you learn about the types of Access procedures you can write and learn how and where they are written.

Chapter 2—Getting to Know Visual Basic Editor (VBE)
In this chapter you learn almost everything you need to know about working with the Visual Basic Editor window, commonly referred to as VBE. Some of the programming tools that are not covered here are discussed and used in Chapter 9.

Chapter 3—Access VBA Fundamentals
This chapter introduces basic VBA concepts that allow you to store various pieces of information for later use.

Chapter 4—Access VBA Built-In and Custom Functions
In this chapter you find out how to provide additional information to your procedures and functions before they are run.

Chapter 5—Adding Decisions to Your Access VBA Programs
In this chapter you learn how to control your program flow with several different decision-making statements.

Chapter 6—Adding Repeating Actions to Your Access VBA Programs
In this chapter you learn how to repeat the same actions in your code by using looping structures.

Chapter 7—Keeping Track of Multiple Values Using Arrays
In this chapter you learn about static and dynamic arrays and how to use them for holding various values.

Chapter 8—Keeping Track of Multiple Values Using Collections
In this chapter you learn how you can maintain your items of data while your program is running by using a special type of object – the collection.

Chapter 9—Getting to Know Built-In Tools for Testing and Debugging
In this chapter you begin using built-in debugging tools to test your programming code. You also learn how to add effective error-handling code to your procedures.

The above nine chapters will give you the fundamental techniques and concepts you will need to continue your Access VBA learning path. The skills obtained in Access VBA Primer are portable. They can be utilized in programming other Microsoft Office applications that also use VBA as their native programming language such as Excel, Word, PowerPoint, Outlook, and so on.

PART II—ACCESS VBA PROGRAMMING WITH DAO AND ADO

Here you are introduced to two sets of programming objects known as Data Access Objects (DAO) and ActiveX Data Objects (ADO) that enable Microsoft Access and other client applications to access and manipulate data. You learn how to use DAO and ADO objects in your VBA code to connect to a data source, as well as create, modify, and manipulate database objects.

Part II consists of the following three chapters:

Chapter 10—Data Access Technologies in Microsoft Access
In this chapter you get acquainted with two database engines (Jet/ACE) that Access uses, as well as several object libraries that provide objects, properties, and methods for your VBA procedures.

Chapter 11—Creating and Manipulating Databases with DAO
This chapter demonstrates how to create, copy, link, and delete database tables programmatically by using objects from the DAO object library. Here you learn how to write code to add and delete fields as well as create listings of existing tables in a database and fields in a table. You add primary keys and indexes to your database tables and create relationships between your tables. Next you practice various methods of using programming code to open a set of database records, commonly referred to as a recordset. You learn how to move around in a recordset and find, filter, and sort the required records, as well as read their contents. Finally, you learn how to perform essential database operations such as adding, updating, and deleting records. You also learn how to render your database records in three popular file formats like Excel, Word, and a text file. Creating and running various types of database queries using VBA instead of the Query Design view is also covered in this chapter.

Chapter 12—Creating and Manipulating Database with ADO.
This chapter demonstrates how to create, copy, link, and delete database tables programmatically by using objects from the ADO object library. Here you learn how to write code to add and delete fields as well as create listings of existing tables in a database and fields in a table. You add primary keys and indexes to your database tables. You also learn how to use objects from the ADOX library to create relationships between your tables. Next you practice various methods of using programming code to open a set of database records, commonly referred to as a recordset. You learn how to move around in a recordset and find, filter, and sort the required records, as well as read their contents. Finally, you learn how to perform essential database operations such as adding, updating, and deleting records. You also learn how to render your database records in three popular file formats like Excel, Word, and a text file. Creating and running various types of database queries using VBA instead of the Query Design view is also covered in this chapter. This chapter explains several advanced ADO features such as how to disconnect a recordset from a database, save it in a disk file, clone it, and shape it. You also learn about database transactions.

You will find the skills obtained in Part II of this book essential for accessing and manipulating Access databases.

PART III—ACCESS STRUCTURED QUERY LANGUAGE (SQL)

Here you are introduced to the Data Definition Language (DDL), an important component of the Structured Query Language (SQL). Like ADO and DAO, which were introduced in Part II, DDL is used for defining database objects (tables, views, stored procedures, primary keys, indexes, and constraints) and managing database security. In this part of the book, you learn how to use DDL statements with Access databases.

Part III consists of the following four chapters:

Chapter 13—Creating, Modifying, and Deleting Tables and Fields
In this chapter you learn special Data Definition Language commands for creating a new Access database, as well as creating, modifying, and deleting tables. You also learn commands for adding, modifying, and deleting fields and indexes.

Chapter 14—Enforcing Data Integrity and Relationships between Tables
Here you learn how to define rules regarding the values allowed in table fields to enforce data integrity and relationships between tables.

Chapter 15—Defining Indexes and Primary Keys
Here you learn DDL commands for creating indexes and primary keys.

Chapter 16—Views and Stored Procedures
This chapter shows you how to work with two powerful database objects known as views and stored procedures. You learn how views are like SELECT queries, and how stored procedures can perform various actions like Access Action queries and Select queries with parameters.

The skills you learn in Part III of this book will allow you to create and manipulate your Access databases using SQL DDL statements. Numerous Access SQL DDL statements and concepts introduced here are important in laying the groundwork for moving into the client/server environment (porting your Microsoft Access database to SQL Server).

PART IV—IMPLEMENTING ACCESS DATABASE SECURITY

Here we focus on Securing Access databases in the .ACCDB and .MDB file formats.

Part IV consists of the following two chapters:

Chapter 17—Implementing Database Security with DDL
In this chapter you learn how to use DDL commands and ADO objects to manage share-level security in the Microsoft Access database. You learn how to quickly create, modify, and remove a database password, and how to manage user-level accounts.

Chapter 18—Implementing User-Level and Share-Level Security
In this chapter you learn about two types of security in Microsoft Access databases: share-level security that applies to both older (MDB) and new (ACCDB) Access databases, and user-level security that can only be used with .mdb files.

The skills learned in Part IV will allow you to build more secure multiuser Access database applications that preserve and protect both data and the application itself. With the understanding of elements of security available in both file formats, you can create robust database solutions that will be less vulnerable to the malicious attacks on your computers and entire networks. Be sure to work through both security chapters before deciding which method of security is best for your database application.

PART V—PROGRAMMING IN ACCESS FORMS AND REPORTS

Here you learn how to respond to events that occur in Access forms and reports. The behavior of Microsoft Access objects such as forms, reports, and controls can be modified by writing programming code known as an event procedure or an event handler. In this part of the book, you learn how you can make your forms, reports, and controls perform useful actions by writing event procedures in form and report class modules.

Part V consists of the following four chapters:

Chapter 19—Enhancing Access Forms
This chapter presents a quick overview of types of forms you can create with Access 2021 and types of formatting you can apply to make your forms more attractive. You learn how you can group form controls using the layouts, implement rich formatting in form controls, professionally format your forms using built-in themes, and enhance forms with images.

Chapter 20—Using Form Events
In this chapter you learn the types of events that can occur on a Microsoft Access form and write event procedures to handle various form events.

Chapter 21—Events Recognized by Form Controls
In this chapter you learn the types of events that can occur on a Microsoft Access form, and you learn how to write event procedures to handle various form events.

Chapter 22—Enhancing Access Reports and Using Report Events
In this chapter you learn about many events that are triggered when an Access report is run. You write your own event procedures to specify what happens when the report is opened, activated/deactivated, or closed.

The skills acquired in Part V will help you create forms and reports that provide the desired functionality to your users thanks to the implementation of various events.

PART VI – ENHANCING THE USER EXPERIENCE

Since its 2007 release, Access like other Microsoft 365 applications, uses the Ribbon interface for its menu system. Knowing how the Ribbon works and how you can modify it to customize your Access databases will enhance the experience of your database users. We will cover this topic in one big chapter with numerous illustrated hands-on examples and programming code written in VBA and XML.

Chapter 23 – Customizing the Menu System in Access
This chapter provides an overview of the programming elements available in the Ribbon and shows how you can customize the user interface (UI) in your Access database applications. You learn how to create XML Ribbon customization markup and load it in your database. You also learn how Ribbon customizations can be assigned to forms or reports.

The skills acquired in Part VI of this book will allow you to enhance and alter the way users interact with your database application.

PART VII—ADVANCED CONCEPTS IN ACCESS VBA

Microsoft Access offers numerous built-in objects that you can access from your VBA procedures to automate many aspects of your databases. You are not limited to using these built-in objects, however. VBA allows you to create your own objects and collections of objects, complete with their own methods and properties. In this part of the book, you learn how thinking in terms of objects can help you write reusable code that’s easy to maintain. In the next two chapters you’ll be working in a new type of module, known as a class module, creating, and using classes and responding to class events.

Chapter 24—Creating Classes
In this chapter you will work with advanced VBA concepts: VBA classes, class objects, and collection classes.

Chapter 25—Advanced Event Programming
This chapter teaches advanced concepts in event programming. You learn how to respond to events in standalone class modules to make your code more manageable and portable to other objects. You also learn how to create and raise your own events.

The skills acquired in Part VII of this book will allow you write VBA code that is more efficient, much easier to read and maintain, and can be reused in many places.

PART VIII—MACROS AND TEMPLATES

Here you are introduced to three types of macros that you can create in Access 2021. In addition, you learn how to convert macros to VBA and get started with built-in templates that extensively use macros. Writing VBA code is not the only way to provide rich functionality to your Access database users. Macros have long been used to enhance the user experience without users having to write any VBA code. Access 2021 Macro Builder allows you to include complex logic, business rules, and error handling in your macros.

Part VIII contains the following chapter:

Chapter 26—Macros and Templates
This chapter introduces you to using macros. We take a detailed look at macro security, work with three types of macros (standalone, embedded, and data macros), see examples of using variables in macros, and examine error-handling actions in macros. We also discuss working with the template format in Access 2021.

The skills acquired in Part VIII will allow you to correctly utilize many of the macros available in Microsoft provided database templates in your own custom Access applications.

PART IX—WORKING TOGETHER: VBA, XML AND REST API

Extensible Markup Language (XML) has long been the standard format for sharing data without regard for the originating application or the operating system. In this part of the book, you learn how XML is used in Access to bring external data to your database as well as provide your data to other applications. You also learn about the Rest APIs, the newest and the most flexible method of integrating applications. You will use your Access VBA and XML skills to make HTTP requests to a Webserver to retrieve data and integrate it with Access. In this process you are introduced to using JSON (JavaScript Object Notation), the most popular file format for storing and transporting data.

Part IX consists of the following two chapters:

Chapter 27—XML Features in Access 2021
In this chapter you learn how to use the Extensible Markup Language (XML) with Access. You learn how to export Access data manually and programmatically to XML files, as well as import an XML file to Access and display its data in a table. You also learn how to use stylesheets and transformations to present Access data to users in a desired format.

Chapter 28—Access and REST API
This chapter focuses on expanding your VBA skillset by covering topics such as working with a VBA Dictionary Object, using regular expressions, and calling a new type of a web service, known as REST API.

The skills acquired in Part IX will make your Access applications ready to integrate with any operating system or web-based platform.

APPENDIX—INSTALLING INTERNET INFORMATION SERVICES (IIS)

This Appendix walks you through the installation of a Web server application that is used in Chapter 27 Hands-On projects.

HOW TO WORK WITH THIS BOOK

This book has been designed as a tutorial and should be followed chapter by chapter.

As you read each chapter, perform the tasks that are described. Be an active learner by getting involved in the book’s hands-on exercises and custom projects. When you are completely involved, you learn things by doing rather than studying, and you learn faster. Do not move on to new information until you’ve fully grasped the current topic. Allow your brain to sort things out and put them in proper perspective before you move on. Take frequent breaks between your learning sessions, as some chapters in this book cover lots of material. Do not try to do everything in one sitting. It’s always better to divide the material into smaller units than attempt to master all there is to learn at once. However, never stop in the middle of a hands-on exercise; finish it before taking a break. After learning a particular technique or command, try to think of ways to apply it to your own work. As you work with this book, create small sample procedures for yourself based on what you’ve learned up to a particular point. These procedures will come in handy when you need to review the subject in the future or simply need to steal some ready-made code.

THE COMPANION FILES

The example files for all the hands-on activities in this book are available in the companion files included with this book and may also be downloaded by contacting the publisher at info@merclearning.com. Digital versions of this title are available at academiccourseware.com and other digital vendors.

Access VBA Primer

P a r t I

The Access VBA Primer is divided into nine chapters that progressively introduce you to programming Microsoft Access using the 2021 version of the product. These chapters present the fundamental techniques and concepts that you need to master before you can take further steps in Access programming.

Chapter 1 Getting Started with Access VBA

Chapter 2 Getting to Know Visual Basic Editor (VBE)

Chapter 3 Access VBA Fundamentals

Chapter 4 Access VBA Built-In and Custom Functions

Chapter 5 Adding Decisions to Your Access VBA Programs

Chapter 6 Adding Repeating Actions to Your Access VBA Programs

Chapter 7 Keeping Track of Multiple Values Using Arrays

Chapter 8 Keeping Track of Multiple Values Using Collections

Chapter 9 Getting to Know Built-in Tools for Testing and Debugging

Getting Started
with Access VBA

C h a p t e r 1

Visual Basic for Applications (VBA) is the programming language built into all Microsoft® 365 applications, including Access®. In this chapter, you acquire the fundamentals of VBA that you will use over and over again in building real-life Access database applications.

UNDERSTANDING VBA MODULES AND PROCEDURE TYPES

Your job as a programmer boils down to writing various procedures that address specific problems. A procedure is a group of instructions that allows you to accomplish certain tasks when your program runs. When you place instructions (programming code) in a procedure, you can call this procedure whenever you need to perform that task. Although many tasks can be automated in Access by using macro actions, such as opening forms and reports, finding records, and executing queries, you will need VBA skills to perform advanced customizations in your Access databases.

In VBA you can write four types of procedures: subroutine procedures, function procedures, event procedures, and property procedures. Procedures are created and stored in modules. A module resembles a blank document in Microsoft Word. Each procedure in the same module must have a unique name; however, procedures in different modules can have the same name. Let’s learn a bit about each procedure type so that you can quickly recognize them when you see them in books, magazine articles, or online.

	Subroutine procedures (also called subroutines or subprocedures)

Subroutine procedures perform useful tasks but never return values. They begin with the keyword Sub and end with the keywords End Sub. Keywords are words that carry a special meaning in VBA. Let’s look at the simple subroutine ShowMessage that displays a message to the user:

Sub ShowMessage()

 MsgBox "This is a message box in VBA."

End Sub

Notice a pair of empty parentheses after the procedure name. The instruction that the procedure needs to execute is placed on a separate line between the Sub and End Sub keywords. You may place one or more instructions and even complex control structures within a subroutine procedure. Instructions are also called statements. The ShowMessage procedure will always display the same message when executed. MsgBox is a built-in VBA function often used for programming user interactions (see Chapter 4, “Access VBA Built-In and Custom Functions,” for more information on this function).

 If you’d like to write a more universal procedure that can display a different message each time the procedure is executed, you will need to write a subroutine that takes arguments. Arguments are values that are needed for a procedure to do something. Arguments are placed within the parentheses after the procedure name. Let’s look at the following procedure that also displays a message to the user; however, this time we can pass any text string to display:

Sub ShowMessage2(strMessage As String)

 MsgBox strMessage

End Sub

This subprocedure requires one text value before it can be run; strMessage is the arbitrary argument name. It can represent any text you want. Therefore, if you pass it the text “Today is Monday,” that is the text the user will see when the procedure is executed. If you don’t pass the value to this procedure, VBA will display an error. Notice that following the argument name, we can also specify the data type for the argument. Data types are discussed in Chapter 3. If the data type is not specified, Access will use its default data type (Variant) for this argument. The built-in MsgBox function requires that we pass to it a text string, so we can use String data type for the strMessage argument. All this information is covered in detail as you progress through this book.

 If your subprocedure requires more than one argument, list the arguments within the parentheses and separate them with commas. For example, let’s improve the preceding procedure by also passing it a text string containing a user name:

Sub ShowMessage3(strMessage As String, strUserName as String)

 MsgBox strUserName & ", your message is: " & strMessage

End Sub

The ampersand (&) operator is used for concatenating text strings inside the VBA procedure. If we pass to the above subroutine the text “Keep on learning.” As the strMessage argument and “John” as the strUserName argument, the procedure will display the following text in a message box:

John, your message is: Keep on learning.

	Function procedures (functions)

Functions perform specific tasks and can return values. They begin with the keyword Function and end with the keywords End Function. Let’s look at a simple function that adds two numbers:

Function addTwoNumbers()

 Dim num1 As Integer

 Dim num2 As Integer

 num1 = 3

 num2 = 2

 addTwoNumbers = num1 + num2

End Function

The preceding function procedure always returns the same result, which is the value 5. The Dim statements inside this function procedure are used to declare variables that the function will use. A variable is a name that is used to refer to an item of data. Because we want the function to perform a calculation, we specify that the variables will hold integer values. Variables and data types are covered in detail in Chapter 3, “Access VBA Fundamentals.”

 The variable definitions (the lines with the Dim statements) are followed by the variable assignment statements in which we assign specific numbers to the variables num1 and num2. Finally, the calculation is performed by adding together the values held in both variables: num1 + num2. To return the result of our calculation, we set the function name to the value or the expression we want to return:

addTwoNumbers = num1 + num2

Although this function example returns a value, not all functions have to return values. Functions, like subroutines, can perform actions without returning any values.

Like procedures, functions can accept arguments. For example, to make our addTwoNumbers function more versatile, we can rewrite it as follows:

Function addTwoNumbers2(num1 As Integer, num2 As Integer)

 addTwoNumbers2 = num1 + num2

End Function

Now we can pass any two numbers to the preceding function to add them together. For example, we can write the following statement to display the result of the function in a message box:

Sub DisplayResult()

 MsgBox("Total=" & addTwoNumbers2(34,80))

End Sub

Notice that the procedure DisplayResult calls two functions: the built-in MsgBox function and your custom addTwoNumbers2 function. The result of the addTwoNumbers2 function is concatenated to the “Total=” string and then displayed to the user.

	Event procedures

Event procedures are automatically executed in response to an event initiated by the user or program code or triggered by the system. Access provides numerous events that you can respond to, like the Click, Double-Click, Open, Load, and Focus events. Events, event properties, and event procedures are introduced later in this chapter. They are also covered in Chapter 9, “Getting to Know Built-In Tools for Testing and Debugging”, Chapter 20, “Using Form Events.”, Chapter 22, “Enhancing Access Reports and Using Report Events”, and Chapter 25, “Advanced Event Programming”.

	Property procedures

Property procedures are used to get or set the values of custom properties for forms, reports, and class modules. The three types of property procedures (Property Get, Property Let, and Property Set) begin with the Property keyword followed by the property type (Get, Let, or Set), the property name, and a pair of empty parentheses, and end with the End Property keywords. Here’s an example of a property procedure that retrieves the value of an author’s royalty:

Property Get Royalty()

 Royalty = (Sales * Percent) – Advance

End Property

Property procedures are a more advanced feature in Access programming and are covered in detail in Chapter 24, “Creating Classes in VBA”.

WRITING PROCEDURES IN A STANDARD MODULE

As mentioned earlier, procedures are created and stored in modules. Access has two types of modules: standard module and class module. Standard modules are used to hold subprocedures and function procedures that can be run from anywhere in the application because they are not associated with any form or report.

Because we already have a couple of procedures to try out, let’s do a quick hands-on exercise to learn how to open standard modules, write procedures, and execute them.

NOTE
All code files and figures for the hands-on projects may be found in the companion files.

[image: image] Hands-On 1.1 Working in a Standard Module

	Create a folder on your hard drive named C:\VBAAccess2021_ByExample_Primer.

	Open Access and click Blank database. Type Chap01 in the File Name box and click the folder button to set the location for the database to the C:\VBAAccess2021_ByExample_Primer folder. Finally, click the Create button to create the specified database (see Figure 1.1). Access will create the database in its default .ACCDB format.

[image: image]
Figure 1.1.Creating a blank desktop Access database.

	To launch the programming environment, select the Database Tools tab and click Visual Basic (see Figure 1.2). You can also press Alt+F11 to get to this screen.

[image: image]
Figure 1.2.Activating a Visual Basic development environment.

The screen that opens is your Visual Basic Environment, often referred to as VBE. All your coding will be performed in this screen. Before you can do your work here, you need to determine which module you need to work with. As mentioned earlier, we use a standard module for most general programming tasks. Initially nothing is open, so let’s add the first module.

	Insert a standard module by choosing Module from the Insert menu (see Figure 1.3).

[image: image]
Figure 1.3.Inserting a standard module.

Each module begins with a declaration section that lists various settings and declarations that apply to every procedure in the module. Figure 1.4 shows the default declaration. Option Compare Database specifies how string comparisons are evaluated in the module—whether the comparison is case-sensitive or insensitive. This is a case-insensitive comparison that respects the sort order of the database. This means that “a” is the same as “A.” If you delete the Option Compare Database statement, the default string comparison setting for the module is Option Compare Binary (used for case-sensitive comparisons where “a” is not the same as “A”).

[image: image]
Figure 1.4.Standard module.

Another declaration (not shown here) called the Option Explicit statement is often used to ensure that all variables used within this module are formally declared. You will learn about this statement and variables in Chapter 4.

 Following the declaration section is the procedure section, which holds the module’s procedures. You can begin writing your procedures at the cursor position within the Module1 (Code) window.

	In the Module1 (Code) window, enter the code of subroutines and function procedures as shown in Figure 1.5. These are the same sub procedures and functions that we’ve discussed so far in this chapter. You can write procedures and functions in the same module, or you can keep them separate by adding another standard module to your VBA project.

 Notice that Access inserts a horizontal line after each End Sub or End Function keyword to make it easier to identify each procedure. The Procedure drop-down box at the top-right corner of the Module1 (Code) window displays the name of the procedure in which the insertion point is currently located.

[image: image]
Figure 1.5.Standard module with subprocedures and functions.

EXECUTING YOUR PROCEDURES

Now that you’ve filled the standard module with some procedures and functions, let’s see how you can run them. There are many ways of running (executing) your code. In the next hands-on exercise, you will execute your code in four different ways using:

	Run menu (Run Sub/UserForm)

	Toolbar button (Run Sub/UserForm)

	Keyboard (F5)

	Immediate window

[image: image] Hands-On 1.2 Running Procedures and Functions

	Place the insertion point anywhere within the ShowMessage procedure. The Procedure box in the top-right corner of the Module1 (Code) window should display ShowMessage. Choose Run Sub/UserForm from the Run menu.

Access runs the selected procedure and displays the message box with the text “This is a message box in VBA.”

	Click OK to close the message box. Try running this procedure again, this time by pressing the F5 key on the keyboard. Click OK to close the message box. If the Access window seems stuck and you can’t activate any menu option, this is often an indication that there is a message box open in the background. Access will not permit you to do any operation until you close the pop-up window.

	Now, run this procedure for the third time by clicking the Run Sub/UserForm button ([image: image]) on the toolbar. This button has the same tooltip as the Run Sub/UserForm (F5) option on the Run menu
.

NOTE

Procedures that require arguments cannot be executed directly using the methods you just learned. You need to type some input values for these procedures to run. A perfect place to do this is the Immediate window, which is covered in detail in Chapter 2, “Getting to Know Visual Basic Editor (VBE).” For now, let’s open this window and see how you can use it to run VBA procedures.

	Select Immediate Window from the View menu.

Access opens a small window and places it just below the Module1 (Code) window. You can size and reposition this window as needed. Figure 1.6 shows statements that you will run from the Immediate window in Steps 5–8.

	Type the following in the Immediate window and press Enter to execute.

ShowMessage2 "I'm learning VBA."

Access executes the procedure and displays the message in a message box. Click OK to close the message box. Notice that to execute the ShowMessage2 procedure, you need to type the procedure name, a space, and the text you want to display. The text string must be surrounded by double quotation marks. In a similar way you can execute the ShowMessage3 procedure by providing two required text strings. For example, on a new line in the Immediate window, type the following statement and press Enter to execute:

ShowMessage3 "Keep on learning.", "John"

When you press the Enter key, Access executes the ShowMessage3 procedure and displays the text “John, your message is: Keep on learning.” Click OK to close this message box.

NOTE

You can also use the Call statement to run a procedure in the Immediate window. When using this statement, you must place the values of arguments within parentheses, as shown here:

Call ShowMessage3("Keep on learning.", "John")

Function procedures are executed using different methods. Step 6 demonstrates how to call the addTwoNumbers function.

	On a new line in the Immediate window, type a question mark followed by the name of the function procedure and press Enter:

?addTwoNumbers

Access should display the result of this function (the number 5) on the next line in the Immediate window.

	Now run the addTwoNumbers2 procedure. Type the following instruction in the Immediate window and press Enter:

?addTwoNumbers2(56, 24)

Access displays the result of adding these two numbers on the next line.

	If you’d rather see the function result in a message box, type the following instruction in the Immediate window and press Enter:

MsgBox("Total=" & addTwoNumbers2(34,80))

Access displays a message box with the text “Total=114”.

NOTE
See Chapter 2 for more information on running your procedures and functions from the Immediate window.

[image: image]
Figure 1.6. Running procedures and functions in the Immediate window.

Now that you’ve familiarized yourself a bit with standard modules, let’s move on to another type of module known as the class module.

UNDERSTANDING CLASS MODULES

Class modules come in three varieties: standalone class modules, form modules, and report modules.

	Standalone class modules—These modules are used to create your own custom objects with their own properties and methods. You create a standalone class module by choosing Insert | Class Module in the Microsoft Visual Basic for Applications window. Access will create a default class module named Class1 and will list it in the Class modules folder in the Project Explorer window. You will work with standalone class modules in Chapter 8.

	Form modules—Each Access form can contain a form module, which is a special type of a class module.

	Report modules—Each Access report can contain a report module, which is a special type of class module.

All newly created forms and reports are lightweight by design because they don’t have modules associated with them when they’re first created. Therefore, they load and display faster than forms and reports with modules. These lightweight forms and reports have their Has Module property set to No (see Figure 1.7). When you open a form or report in Design view and click the View Code button ([image: image]) in the Tools section of the Form Design or Report Design tab, Access creates a form or report module. The Has Module property of a form or report is automatically set to Yes to indicate that the form or report now has a module associated with it. Note that this happens even if you have not written a single line of VBA code. Access opens a module window and assigns a name to the module that consists of three parts: the name of the object (e.g., form or report), an underscore character, and the name of the form or report. For example, a newly created form that has not been saved is named Form_Form1, a form module in the Customers form is named Form_Customers, and a report module in the Customers report is named Report_Customers (see Figure 1.8).

As with report modules, form modules store event procedures for events recognized by the form and its controls, as well as general function procedures and subprocedures. You can also write Property Get, Property Let, and Property Set procedures to create custom properties for the form or report. The procedures stored in their class modules are available only while you are using that form or report.

[image: image]
Figure 1.7.When you begin designing a new form in the Access user interface, the form does not have a module associated with it. Notice that the Has Module property on the form’s property sheet is set to No.

[image: image]
Figure 1.8.Database modules are automatically organized in folders. Form and report modules are listed in the Microsoft Access Class Objects folder. Standard modules can be found in the Modules folder. The Class Modules folder organizes standalone class modules.

EVENTS, EVENT PROPERTIES, AND EVENT PROCEDURES

To customize your database applications or to deliver products that fit your users’ specific needs, you’ll be doing quite a bit of event-driven programming. Access is an event-driven application. This means that whatever happens in an Access application is the result of an event that Access has detected. Events are things that happen to objects and can be triggered by the user or by the system, such as clicking a mouse button, pressing a key, selecting an item from a list, or changing a list of items available in a listbox. As a programmer, you will often want to modify the application’s built-in response to a particular event. Before the application processes the user’s mouseclicks and keypresses in the usual way, you can tell the application how to react to the activity. For example, if a user clicks a Delete button on your form, you can display a custom delete confirmation message to ensure that the user selected the intended record for deletion.

For each event defined for a form, form control, or report, there is a corresponding event property. If you open any Access form in Design view and choose Properties in the Tools section of the Form Design tab, and then click the Event tab of the property sheet, you will see a long list of events your form can respond to (see Figure 1.9).

Forms, reports, and the controls that appear on them have various event properties you can use to trigger desired actions. For example, you can open or close a form when a user clicks a command button, or you can enable or disable controls when the form loads.

To specify how a form, report, or control should respond to events, you can write event procedures. In your programming code, you may need to describe what should happen if a user clicks on a command button or selects from a combo box. For example, when you design a custom form, you should anticipate and program events that can occur at runtime (while the form is being used). The most common event is the Click event. Every time a command button is clicked, it triggers an event procedure to respond to the Click event for that button.

When you assign your event procedure to an event property, you set an event trap. Event trapping gives you considerable control in handling events because you basically interrupt the default processing that Access would normally carry out in response to the user’s keypress or mouseclick. If a user clicks a command button to save a form, whatever code you’ve written in the Click event of that command button will run. The event programming code is stored as a part of a form, report, or control and is triggered only when user interaction with a form or report generates a specific event; therefore, it cannot be used as a standalone procedure.

[image: image]
Figure 1.9.Event properties for an Access form are listed on the Event tab in the property sheet.

Why Use Events?

Events allow you to make your applications dynamic and interactive. To handle a specific event, you need to select the appropriate event property on the property sheet and then write an event handling procedure. Access will provide its own default response to those events you have not programmed. Events cannot be defined for tables or queries.

Walking Through an Event Procedure

The following hands-on exercise demonstrates how to write event procedures. Your task is to change the background color of a text box control on a form when the text box is selected and then return the default background color when you tab or click out of that text box.

[image: image] Hands-On 1.3 Writing an Event Procedure

	Close the Chap01.accdb database file used in Hands-On 1.1 and save changes to the file when prompted.

	Copy the AssetTracking.accdb database from the companion CD to your C:\VBAAccess2021_ByExample_Primer folder. This file is a copy of the Asset tracking database template provided by Microsoft.

	Open the database C:\VBAAccess2021_ByExample_Primer\AssetTracking.accdb. Upon loading, when you see a Welcome screen, click the Get Started button.

	Access opens the database and displays a security warning message (see Figure 1.10). To use the file, click the Enable Content button in the message bar. Access will close the database and reopen it. If you see the Welcome screen, click the Get Started button again
.

NOTE

The last section of this chapter explains how you can use trusted locations to keep Access from disabling the VBA code upon opening a database.

 As Microsoft continues to improve security in Office, the default behavior and banners displayed in Access and other Office applications may be different from those presented in the instructions and images included in this book. For the most recent guidelines, please see https://docs.microsoft.com/en-us/deployoffice/security/internet-macros-blocked.

[image: image]
Figure 1.10.Active content such as VBA Macros can contain viruses and other security hazards. By default, Access displays a Security Warning message when you first load a database file that contains active content. You should enable content only if you trust the contents of the file.

	Open the Asset Details form in Design view. To do this, right-click the Asset Details form and choose Design View from the shortcut menu.

NOTE

If the property sheet is not displayed next to the AssetDetails form, click the Property Sheet button in the Tools group of the Ribbon’s Form Design tab.

	Click the Manufacturer text box control on the Asset Details form, and then click the Event tab in the property sheet. The property sheet will display Manufacturer in the control drop-down box.

 The list of event procedures available for the text box control appears, as shown in Figure 1.11.

[image: image]
Figure 1.11.To create an event procedure for a form control, use the Build button, which is displayed as an ellipsis (. . .). This button is not available unless an event is selected.

	Click in the column next to the On Got Focus event name, and then click the Build button (. . .), as shown in Figure 1.11 in the previous step. This will bring up the Choose Builder dialog box (see Figure 1.12).

[image: image]
Figure 1.12.To write VBA programming code for your event procedure, choose Code Builder in the Choose Builder dialog box.

	Select Code Builder in the Choose Builder dialog box and click OK. This brings up the VBE window that you’ve worked with using the Chap01.accdb database in earlier Hands-On exercises (see Figure 1.13).

 Look at Figure 1.13. Access creates a skeleton of the GotFocus event procedure. The name of the event procedure consists of three parts: the object name (Manufacturer), an underscore character (_), and the name of the event (GotFocus) occurring to that object. The word Private indicates that the event procedure cannot be triggered by an event from another form. The word Sub in the first line denotes the beginning of the event procedure. The words End Sub in the last line denote the end of the event procedure. The statements to be executed when the event occurs are written between these two lines.

[image: image]
Figure 1.13.Code Builder displays the event procedure Code window with a blank event procedure for the selected object. Here you can enter the code for Access to run when the specified GotFocus procedure is triggered.

Notice that the procedure name ends with a pair of empty parentheses (). Words such as Sub, End, or Private have special meaning to Visual Basic and are called keywords (reserved words). Visual Basic displays keywords in blue, but you can change the color of your keywords from the Editor Format tab in the Options dialog box (choose Tools | Options in the Visual Basic Editor window). All VBA keywords are automatically capitalized.

 At the top of the Code window (see Figure 1.13), there are two drop-down listboxes. The one on the left is called Object. This box displays the currently selected control (Manufacturer). The box on the right is called Procedure. If you position the mouse over one of these boxes, the tooltip indicates the name of the box. Clicking on the down arrow at the right of the Procedure box displays a list of all possible event procedures associated with the object type selected in the Object box. You can close the drop-down listbox by clicking anywhere in the unused portion of the Code window.

	To change the background color of a text box control to green, enter the following statement between the existing lines:

Me.Manufacturer.BackColor = RGB(0, 255, 0)

Notice that when you type each period, Visual Basic displays a list containing possible item choices. This feature, called List Properties/Methods, is a part of Visual Basic’s on-the-fly syntax and programming assistance, and is covered in Chapter 2. When finished, your first event procedure should look as follows:

Private Sub Manufacturer_GotFocus()

 Me.Manufacturer.BackColor = RGB(0, 255, 0)

End Sub

The statement you just entered tells Visual Basic to change the background color of the Manufacturer text box to green when the cursor is moved into that control. The color is specified by using the RGB function. Me is the reference to the form that is currently active and contains the Manufacturer text box control.

[image: image]

	In the Visual Basic window, choose File | Close and Return to Microsoft Access. Notice that [Event Procedure] now appears next to the On Got Focus event property in the property sheet for the selected Manufacturer text box control (see Figure 1.14).

[image: image]
Figure 1.14.[Event Procedure] in the property sheet denotes that the text box’s On Got Focus event has an event procedure associated with it.

	To test your GotFocus event procedure, switch from the Design view of the Asset Details form to Form view by clicking the View button on the Ribbon’s Design tab.

	While in the Form view, click in the Manufacturer text box and notice the change in the background color.

	Now, click on any other text box control on the Asset Details form.

	Notice that the Manufacturer text box does not return to the original color. So far, you’ve told Visual Basic only what to do when the specified control receives the focus. If you want the background color to change when the focus moves to another control, there is one more event procedure to write—On Lost Focus.

	To create the LostFocus procedure, return your form to Design view and click the Manufacturer control. In the property sheet for this control, select the Event tab, and then click the Build button to the right of the On Lost Focus event property. In the Choose Builder dialog box, select Code Builder.

	To change the background color of a text box control to white, enter the following statement inside the Manufacturer_LostFocus event procedure:

Me.Manufacturer.BackColor = RGB(255,255,255)

The completed On Lost Focus procedure is shown in Figure 1.15.

[image: image]
Figure 1.15.The GotFocus and LostFocus event procedures will now control the behavior of the Manufacturer control when the control is in focus and out of focus.

	In the Visual Basic window, choose File | Close and Return to Microsoft Access. Notice that [Event Procedure] now appears next to the On Lost Focus event property in the property sheet for the selected Manufacturer text box control.

	Repeat steps 11–12 to test both event procedures you have written.

	When you are done, save the changes you made in the Asset Tracking database.

COMPILING YOUR PROCEDURES

The VBA code you write in the Visual Basic Editor Code window is automatically compiled by Access before you run it. The syntax of your VBA statements is first thoroughly checked for errors, and then your procedures are converted into executable format. If an error is discovered during the compilation process, Access stops compiling and displays an error message. It also highlights the line of code that contains the error. The compiling process can take from seconds to minutes or longer, depending on the number of procedures written and the number of modules used.

To ensure that your procedures have been compiled, you can explicitly compile them after you are done programming. You can do this by choosing Debug | Compile in the Visual Basic Editor window.

Access saves all the code in your database in its compiled form. Compiled code runs more quickly the next time you open it. You should always save your modules after you compile them. In Chapter 9, “Getting to Know Built-In Tools for Testing and Debugging,” you will learn how to test and troubleshoot your VBA procedures.

PLACING A DATABASE IN A TRUSTED LOCATION

By default, the security features built into Access disable the VBA code and macros when you open a database. To make it easy to work with Access databases in this book, you will not want to bother with enabling content each time you open a database. To trust your databases permanently, you can place them in a trusted location—a folder on your local or network drive that you mark as trusted. You can get more information about the Enable Content button and access the Trust Center to set up a trusted folder by choosing File | Info (see Figure 1.16). This screen can also be activated by clicking the text message in the Security Warning message bar: “Some active content has been disabled. Click for more details.” See Figure 1.10 . Note that you will not see this message in the Info Section because you already told Access to trust the AssetTracking database by clicking on the Enable Content button. See the next Hands-On section on how to view this message.

[image: image]
Figure 1.16.The Info tab with an explanation of the Security Warning message.

Hands-On 1.4 will take you through the process of setting up a trusted folder for your Access databases by using the Options button.

[image: image] Hands-On 1.4 Placing an Access Database in a Trusted Location

	Close the AssetTracking database you worked with in the previous Hands-On and open the Chap01.accdb database. The database should load with the warning message. Do not click the Enable Content button.

	Click the text of the warning message. Access will activate the Info section of the File tab, as shown in Figure 1.16.

	In the same screen, click the Options button.

	In the left pane of the Access Options dialog box, click Trust Center, and then click Trust Center Settings in the right pane, as shown in Figure 1.17.

[image: image]
Figure 1.17.Working with the Trust Center (Step 1).

	In the left pane of the Trust Center dialog box, click Trusted Locations, as shown in Figure 1.18, and click the Add new location button.

[image: image]
Figure 1.18.Working with the Trust Center (Step 2).

	In the Path text box, type the path and folder name of the location on your local drive that you want to set up as a trusted source for opening files. Let’s enter C:\VBAAccess2021_ByExample_Primer to designate this folder as a trusted location for Chapters 1-9 of this book’s database programming exercises (see Figure 1.19). Fill in the Description as shown.

[image: image]
Figure 1.19.Working with the Trust Center (Step 3).

	Click OK to close the Microsoft Office Trusted Location dialog box.

The Trusted Locations list in the Trust Center dialog box now includes the C:\VBAAccess2021_ByExample_Primer folder as a trusted source (see Figure 1.20). Files put in a trusted location can be opened without being checked by the Trust Center security feature. On your own, create trusted folders for the remaining chapters in this book. These folders are listed in Figure 1.20 as C:\VBAAccess2021_ByExample and C:\VBAAccess2021_XML.

	Click OK to close the Trust Center dialog box.

	Click OK to close the Access Options dialog box.

	Close the Chap01.accdb database and exit Access.

	Open the Chap01.accdb database file from your C:\VBAPrimerAccess_ByExample folder and notice that Access no longer displays the Security Warning message.

	Close the Chap01.accdb database.

[image: image]
Figure 1.20.Working with the Trust Center (Step 4).

SUMMARY

In this chapter, you learned about subroutine procedures, function procedures, property procedures, and event procedures. You also learned different ways of executing subroutines and functions. The main hands-on exercise in this chapter walked you through writing two event procedures in the Asset Details form’s class module for a Manufacturer text control placed in the form. You finished this chapter by designating trusted location folders for your Access databases that you will create and work with in this book.

This chapter has given you a glimpse of the Microsoft Visual Basic programming environment built into Access. The next chapter will take you deeper into this interface, showing you various windows and shortcuts that you can use to program faster and with fewer errors.

Getting to Know
Visual Basic
Editor (VBE)

C h a p t e r 2

Now that you know how to write procedures and functions in standard modules and event procedures in modules placed behind a form, we’ll spend some time in the Visual Basic Editor window to become familiar with the multitude of tools it offers to simplify your programming tasks. With the tools located in the Visual Basic Editor window, you can:

	Write your own VBA procedures

	Create custom forms

	View and modify object properties

	Test and debug VBA procedures and locate errors

You can enter the VBA programming environment in either of the following ways:

	By selecting the Database Tools tab, and then Visual Basic in the Macro group

	From the keyboard, by pressing Alt+F11

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window, located on the left side of the Visual Basic Editor window, provides access to modules behind forms and reports via the Microsoft Access Class Objects folder (see Figure 2.1). The Modules folder lists only standard modules that are not behind a form or report.

In addition to the Microsoft Access Class Objects and Modules folders, the VBA Project Explorer window can contain a Class Modules folder. Class modules are used for creating your own objects, as demonstrated in Chapter 8. Using the Project Explorer window, you can easily move between modules currently loaded into memory.

You can activate the Project Explorer window in one of three ways:

	From the View menu by selecting Project Explorer

	From the keyboard by pressing Ctrl-R

	From the Standard toolbar by clicking the Project Explorer button () as shown in Figure 2.2.

[image: image]
Figure 2.1.The Project Explorer window provides easy access to your VBA procedure code.

NOTE

If the Project Explorer window is visible but not active, activate it by clicking the Project Explorer title bar.

Buttons on the Standard toolbar (Figure 2.2) provide a quick way to access many Visual Basic features.

[image: image]
Figure 2.2.Use the toolbar buttons to quickly access frequently used features in the VBE window.

The Project Explorer window (see Figure 2.3) contains three buttons:

	View Code—Displays the Code window for the selected module.

	View Object—Displays the selected form or report in the Microsoft Access Class Objects folder. This button is disabled when an object in the Modules or Class Modules folder is selected.

	Toggle Folders—Hides and unhides the display of folders in the Project Explorer window.

[image: image]
Figure 2.3.The VBE Project Explorer window contains three buttons that allow you to view code or objects and toggle folders.

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties for the currently selected Access class or module. The name of the selected object is displayed in the Object box located just below the Properties window title bar. The Properties window displays the current settings for the selected object. Object properties can be viewed alphabetically or by category by clicking on the appropriate tab.

	Alphabetic tab—Lists all properties for the selected object alphabetically. You can change the property setting by selecting the property name, and then typing or selecting the new setting.

	Categorized tab—Lists all properties for the selected object by category. You can collapse the list so that you see only the category names, or you can expand a category to see the properties. The plus (+) icon to the left of the category name indicates that the category list can be expanded. The minus (–) indicates that the category is currently expanded.

The Properties window can be accessed in the following ways:

	From the View menu by selecting Properties Window

	From the keyboard by pressing F4

	From the Standard toolbar by clicking the Properties Window button () located to the right of the Project Explorer button

Figure 2.4 displays the properties of the E-mail Address text box control located in the Form_Order Details form in the Northwind 2007 sample Access database. In order to access properties for a form control, you need to perform the steps outlined in Hands-On 2.1.

NOTE

All code files and figures for the hands-on projects may be found in the companion files.

[image: image] Hands-On 2.1 Using the Properties Window to View Control Properties

	Copy the Northwind 2007 sample database from the companion files to your C:\VBAAccess2021_ByExample_Primer folder.

	Open and load the C:\VBAAccess2021_ByExample_Primer\Northwind 2007.accdb file. Log in to the database as Andrew Cencini.

	When Northwind 2007 opens, press Alt+F11 to activate the Visual Basic Editor window, or choose Database Tools | Visual Basic.

	In the Project Explorer window, click the Toggle Folders button () and select the Microsoft Access Class Objects folder. Highlight the Form_Order Details form (Figure 2.4) and click the View Object button () located to the left of the Toggle Folders button. This will open the selected form in Design view.

	Press Alt+F11 to return to the Visual Basic Editor. The Properties window will be filled with the properties for the Form_Order Details form. To view the properties of the E-mail Address text box control on this form, as shown in Figure 2.4, select E-mail Address from the drop-down list located below the Properties window’s title bar.

[image: image]
Figure 2.4.You can edit object properties in the Properties window, or you can edit them in the property sheet when a form or report is open in Design view.

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as for viewing and modifying the code of existing Visual Basic procedures. Each VBA module can be opened in a separate Code window.

There are several ways to activate the Code window:

	From the Project Explorer window, choose the appropriate module and then click the View Code button ([image: image])

	From the Microsoft Visual Basic menu bar, choose View | Code

	From the keyboard, press F7

At the top of the Code window there are two drop-down list boxes that allow you to move quickly within the Visual Basic code. In the Object box on the left side of the Code window, you can select the object whose code you want to view, as shown in Figure 2.5.

[image: image]
Figure 2.5.The Object drop-down box lists objects that are available in the module selected in the Project Explorer window.

The box on the right side of the Code window lets you select a procedure to view. When you click the down arrow at the right of this box, the names of all procedures located in a module are listed alphabetically, as shown in Figure 2.6. When you select a procedure in the Procedure box, the cursor will jump to the first line of that procedure.

[image: image]
Figure 2.6.The Procedure drop-down box lists events to which the object selected in the Object drop-down box can respond. If the selected module contains events written for the highlighted object, the names of these events appear in bold type.

By choosing Window | Split or dragging the split bar (located at the top of the vertical scroll bar) to a selected position in the Code window, you can divide the Code window into two panes, as shown in Figure 2.7.

[image: image]
Figure 2.7.By splitting the Code window, you can view different sections of a long procedure or a different procedure in each window pane.

Setting up the Code window for the two-pane display is useful for copying, cutting, and pasting sections of code between procedures in the same module. To return to a one-window display, drag the split bar all the way to the top of the Code window or choose Window | Split.

There are two icons at the bottom of the Code window (see Figure 2.7). The Procedure View icon changes the display to only one procedure at a time in the Code window. To select another procedure, use the Procedure drop-down box. The Full Module View icon changes the display to all the procedures in the selected module. Use the vertical scrollbar in the Code window to scroll through the module’s code. The Margin Indicator bar is used by the Visual Basic Editor to display helpful indicators during editing and debugging.

OTHER WINDOWS IN THE VBE

In addition to the Code window, there are several other windows that are frequently used in the Visual Basic environment, such as the Immediate, Locals, Watch, Project Explorer, Properties, and Object Browser windows. The Docking tab in the Options dialog box, shown in Figure 2.8, displays a list of available windows and allows you to choose which windows you want to be dockable. To access this dialog box, select Tools | Options in the Visual Basic Editor window.

[image: image]
Figure 2.8.You can use the Docking tab in the Options dialog box to control which windows are currently displayed in the Visual Basic programming environment.

ASSIGNING A NAME TO THE VBA PROJECT

A VBA Project is a set of Microsoft Access objects, modules, forms, and references.

When you create a Microsoft Access database and later switch to the VBE window, you will see in the Project Explorer window that Access had automatically assigned the database name to the VBA Project. For example, if your database is named Chap01.accdb, the Project Properties window displays Chap01 (Chap01) where the first “Chap01” denotes the VBA Project name and the “Chap01” in the parentheses is the name of the database. You can change the name of the VBA Project in one of the following ways:

	Choose Tools | <database name> Properties, enter a new name in the Project Name box of the Project Properties window (see Figure 2.9), and click OK.

	In the Project Explorer window, right-click the name of the project and select <database name> Properties. Enter a new name in the Project Name box of the Project Properties window (see Figure 2.9) and click OK.

To avoid naming conflicts between projects, make sure that you give your projects unique names.

[image: image]
Figure 2.9.Use the Project Properties dialog box to rename the VBA Project.

RENAMING A MODULE

When you insert a new module to your VBA Project, Access generates a default name for the module—Module1, Module2, and so on. You can rename your modules right after you insert them into the VBA project or when your project is being saved for the first time. In the latter case, Access will iterate through all the newly added (not saved) modules and will prompt you with the Save As dialog box to accept or change the module name. You can change the module name at any time via the Properties window. Simply select the module name (e.g., Module1) in the Project Explorer window and double-click the Name property in the Properties window. This action will highlight the default module name next to the Name property. Type the new name for the module and press Enter. The module name in the Project Explorer window should now reflect your change.

SYNTAX AND PROGRAMMING ASSISTANCE

Writing procedures in Visual Basic requires that you use hundreds of built-in instructions and functions. Because most people cannot memorize the correct syntax of all the instructions available in VBA, the IntelliSense® technology provides you with syntax and programming assistance on demand while you are entering instructions. While working in the Code window, you can have special tools pop up and guide you through the process of creating correct VBA code. The Edit toolbar in the VBE window, shown in Figure 2.10, contains several buttons that let you enter correctly formatted VBA instructions with speed and ease. If the Edit toolbar isn’t currently docked in the Visual Basic Editor window, you can turn it on by choosing View | Toolbars.

[image: image]
Figure 2.10.The Edit toolbar provides timesaving buttons while entering VBA code.

List Properties/Methods

Each object can contain one or more properties and methods. When you enter the name of the object in the Code window followed by a period that separates the name of the object from its property or method, a pop-up menu may appear. This menu lists the properties and methods available for the object that precedes the period. To turn on this automated feature, choose Tools | Options. In the Options dialog box, click the Editor tab, and make sure the Auto List Members checkbox is selected. As you enter VBA instructions, Visual Basic suggests properties and methods that can be used with the object, as demonstrated in Figure 2.11.

[image: image]
Figure 2.11.When Auto List Members is selected, Visual Basic suggests properties and methods that can be used with the object as you are entering the VBA instructions.

To choose an item from the pop-up menu, start typing the name of the property or method you want to use. When the correct item name is highlighted, press Enter to insert the item into your code and start a new line or press the Tab key to insert the item and continue writing instructions on the same line. You can also double-click the item to insert it in your code. To close the pop-up menu without inserting an item, press Esc. When you press Esc to remove the pop-up menu, Visual Basic will not display the menu for the same object again.

To display the Properties/Methods pop-up menu again, you can:

	Press Ctrl-J

	Use the Backspace key to delete the period, and then type the period again

	Right-click in the Code window, and select List Properties/Methods from the shortcut menu

	Choose Edit | List Properties/Methods

	Click the List Properties/Methods button ([image: image]) on the Edit toolbar

Parameter Info

Some VBA functions and methods can take one or more arguments (or parameters). If a Visual Basic function or method requires an argument, you can see the names of required and optional arguments in a tip box that appears just below the cursor as soon as you type the open parenthesis or enter a space. The Parameter Info feature (see Figure 2.12) makes it easy for you to supply correct arguments to a VBA function or method. In addition, it reminds you of two other things that are very important for the function or method to work correctly: the order of the arguments and the required data type of each argument. For example, if you enter in the Code window the instruction DoCmd.OpenForm and type a space after the OpenForm method, a tip box appears just below the cursor. Then as soon as you supply the first argument and enter the comma, Visual Basic displays the next argument in bold. Optional arguments are surrounded by square brackets []. To close the Parameter Info window, all you need to do is press Esc.

[image: image]
Figure 2.12.A tip window displays a list of arguments used by a VBA function or method.

To open the tip box using the keyboard, enter the instruction or function, followed by the open parenthesis, and then press Ctrl-Shift-I. You can also click the Parameter Info button ([image: image]) on the Edit toolbar or choose Edit | Parameter Info from the menu bar.

You can also display the Parameter Info box when entering a VBA function. To try this out quickly, choose View | Immediate Window, and then type the following in the Immediate window:

Mkdir(

You should see the MkDir(Path As String) tip box just below the cursor. Now, type "C:\NewFolder" followed by the ending parenthesis. When you press Enter, Visual Basic will create a folder named NewFolder in the root directory of your computer. Activate File Explorer and check it out!

List Constants

If there is a check mark next to the Auto List Members setting in the Options dialog box (Editor tab), Visual Basic displays a pop-up menu listing the constants that are valid for the property or method. A constant is a value that indicates a specific state or result. Access and other members of the Microsoft 365 have a number of predefined, built-in constants.

Suppose you want to open a form in Design view. In Microsoft Access, a form can be viewed in Design view (acDesign), Datasheet view (acFormDS), PivotChart view (acFormPivotChart), PivotTable view (acFormPivotTable), Form view (acNormal), and Print Preview (acPreview). Each of these options is represented by a built-in constant. Microsoft Access constant names begin with the letters “ac.” As soon as you enter a comma and a space following your instruction in the Code window (e.g., DoCmd.OpenForm "Products"), a pop-up menu will appear with the names of valid constants for the OpenForm method, as shown in Figure 2.13.

[image: image]
Figure 2.13.The List Constants pop-up menu displays a list of constants that are valid for the property or method typed.

The List Constants menu can be activated by pressing Ctrl+Shift+J or by clicking the List Constants button ([image: image]) on the Edit toolbar.

Quick Info

When you select an instruction, function, method, procedure name, or constant in the Code window and then click the Quick Info button ([image: image]) on the Edit toolbar (or press Ctrl+I), Visual Basic will display the syntax of the highlighted item as well as the value of its constant (see Figure 2.14). The Quick Info feature can be turned on or off using the Options dialog box (Tools | Options). To use the feature, click the Editor tab in the Options dialog box, and make sure there is a check mark in the box next to Auto Quick Info.

[image: image]
Figure 2.14.The Quick Info feature provides a list of function parameters, as well as constant values and VBA statement syntax.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code window is with the Complete Word feature. As you enter the first few letters of a keyword and click the Complete Word button ([image: image]) on the Edit toolbar, Visual Basic will complete the keyword entry for you. For example, if you enter the first three letters of the keyword DoCmd (DoC) in the Code window, and then click the Complete Word button on the Edit toolbar, Visual Basic will complete the rest of the command. In the place of DoC you will see the entire instruction, DoCmd.

If there are several VBA keywords that begin with the same letters, when you click the Complete Word button on the Edit toolbar, Visual Basic will display a pop-up menu listing all of them. To try this, enter only the first three letters of the word Application (App), and then press the Complete Word button on the toolbar. You can then select the appropriate word from the pop-up menu.

Indent/Outdent

The Editor tab in the Options dialog box, shown in Figure 2.15, contains many settings you can enable to make automated features available in the Code window.

[image: image]
Figure 2.15.The Options dialog box lists features you can turn on and off to fit the VBA programming environment to your needs.

When the Auto Indent option is turned on, Visual Basic automatically indents the selected lines of code using the Tab Width value. The default entry for Auto Indent is four characters (see Figure 2.15). You can easily change the tab width by typing a new value in the text box. Why would you want to use indentation in your code? Indentation makes your VBA procedures more readable and easier to understand. Indenting is especially recommended for entering lines of code that make decisions or repeat actions.

Let’s see how you can indent and outdent lines of code using the Form_InventoryList form in the Northwind database that you opened in the previous hands-on exercise.

[image: image] Hands-On 2.2 Using the Indent/Outdent Feature

	In the Project Explorer window in the Microsoft Access Class Objects folder, double-click Form_Inventory List. The Code window should now show the CmdPurchase_Click event procedure written for this form.

	In the Code window, select the block of code beginning with the keyword If and ending with the keywords End If.

	Click the Indent button ([image: image]) on the Edit toolbar or press Tab on the keyboard. The selected block of code will move four spaces to the right. You can adjust the number of spaces to indent by choosing Tools | Options and entering the appropriate value in the Tab Width box on the Editor tab.

	Now, click the Outdent button ([image: image]) on the Edit toolbar or press Shift+Tab to return the selected lines of code to the previous location in the Code window. The Indent and Outdent options are also available from Visual Basic Editor’s Edit menu.

Comment Block/Uncomment Block

The apostrophe placed at the beginning of a line of code denotes a comment. Besides the fact that comments make it easier to understand what the procedure does, comments are also very useful in testing and troubleshooting VBA procedures. For example, when you execute a procedure, it may not run as expected. Instead of deleting the lines of code that may be responsible for the problems encountered, you may want to skip the lines for now and return to them later. By placing an apostrophe at the beginning of the line you want to avoid, you can continue checking the other parts of your procedure. While commenting one line of code by typing an apostrophe works fine for most people, when it comes to turning entire blocks of code into comments, you’ll find the Comment Block and Uncomment Block buttons on the Edit toolbar very handy and easy to use.

To comment a few lines of code, select the lines and click the Comment Block button ([image: image]). To turn the commented code back into VBA instructions, click the Uncomment Block button ([image: image]). If you click the Comment Block button without selecting a block of text, the apostrophe is added only to the line of code where the cursor is currently located.

USING THE OBJECT BROWSER

If you want to move easily through the myriad of VBA elements and features, examine the capabilities of the Object Browser. This special built-in tool is available in the Visual Basic Editor window.

To access the Object Browser, use any of the following methods:

	Press F2

	Choose View | Object Browser

	Click the Object Browser button ([image: image]) on the toolbar

The Object Browser allows you to browse through the objects available to your VBA procedures, as well as view their properties, methods, and events. With the aid of the Object Browser, you can quickly move between procedures in your database application and search for objects and methods across various type libraries.

The Object Browser window, shown in Figure 2.16, is divided into several sections. The top of the window displays the Project/Library drop-down listbox with the names of all currently available libraries and projects.

A library is a special file that contains information about the objects in an application. New libraries can be added via the References dialog box (select Tools | References). The entry for <All Libraries> lists the objects of all libraries installed on your computer. While the Access library contains objects specific to using Microsoft Access, the VBA library provides access to three objects (Debug, Err, and Collection), as well as several built-in functions and constants that give you flexibility in programming. You can send output to the Immediate window, get information about runtime errors, work with the Collection object, manage files, deal with text strings, convert data types, set date and time, and perform mathematical operations.

Below the Project/Library drop-down listbox is a search box (Search Text) that allows you to quickly find information in a library. This field remembers the last four items you searched for. To find only whole words, right-click anywhere in the Object Browser window, and then choose Find Whole Word Only from the shortcut menu. The Search Results section of the Object Browser displays the Library, Class, and Member elements that meet the criteria entered in the Search Text box. When you type the search text and click the Search button, Visual Basic expands the Object Browser window to show the search results. You can hide or show the Search Results section by clicking the button located to the right of the binoculars. In the lower section of the Object Browser window, the Classes listbox displays the available object classes in the selected library. If you select the name of the open database (e.g., Northwind) in the Project/Library listbox, the Classes list will display the objects as listed in the Explorer window.

In Figure 2.16, the Form_Inventory List object class is selected. When you highlight a class, the list on the right side (Members) shows the properties, methods, and events available for that class. By default, members are listed alphabetically. You can, however, organize the Members list by group type (properties, methods, or events) using the Group Members command from the Object Browser shortcut menu (right-click anywhere in the Object Browser window to display this menu).

When you select the Northwind 2007 project in the Project/Library listbox, the Members listbox will list all the procedures available in this project. To examine a procedure’s code, double-click its name. When you select a VBA library in the Project/Library listbox, you will see the Visual Basic built-in functions and constants. If you need more information on the selected class or member, click the question mark button located at the top of the Object Browser window.

The bottom of the Object Browser window displays a code template area with the definition of the selected member. Clicking the green hyperlink text in the code template lets you jump to the selected member’s class or library in the Object Browser window. Text displayed in the code template area can be copied and pasted to a Code window. If the Code window is visible while the Object Browser window is open, you can save time by dragging the highlighted code template and dropping it into the Code window. You can easily adjust the size of the various sections of the Object Browser window by dragging the dividing horizontal and vertical lines.

[image: image]
Figure 2.16.The Object Browser window allows you to browse through all the objects, properties, and methods available to the current VBA project.

Let’s put the Object Browser to use in VBA programming. Assume that you want to write a VBA procedure to control a checkbox placed on a form and would like to see the list of properties and methods that are available for working with checkboxes.

[image: image] Hands-On 2.3 Using the Object Browser

	In the Visual Basic Editor window, press F2 to display the Object Browser.

	In the Project/Library listbox (see Figure 2.16), click the drop-down arrow and select the Access library.

	Type checkbox in the Search Text box and click the Search button ([image: image]). Make sure you don’t enter a space in the search string.

Visual Basic begins to search the Access library and displays the search results. By analyzing the search results in the Object Browser window, you can find the appropriate VBA instructions for writing your VBA procedures. For example, looking at the Members list lets you quickly determine that you can enable or disable a checkbox by setting the Enabled property. To get detailed information on any item found in the Object Browser, select the item and press F1 to activate online help.

USING THE VBA OBJECT LIBRARY

While programming in Microsoft Access you will need to rely on some functions that are general in nature. Functions that are available in the VBA Objects Library will allow you to manage files and folders, set the date and time, interact with users, convert data types, deal with text strings, or perform mathematical calculations. In the following exercise, you will see how to use one of these functions to create a new subfolder without leaving Access.

[image: image] Hands-On 2.4 Using Built-In VBA Functions

	In the Visual Basic Editor window with the Northwind 2007 database open, choose Insert | Module to create a new standard module.

	In the Properties Window, change the Name property of Module1 to VBA_Chap2.

	In the Code window, enter Sub NewFolder() as the name of the procedure and press Enter. Visual Basic will enter the ending keywords: End Sub.

	Press F2 to display the Object Browser.

	Click the drop-down arrow in the Project/Library listbox and select VBA.

	Enter file in the Search Text box and press Enter.

	Scroll down in the Members listbox and highlight the MkDir method.

	Click the Copy button in the Object Browser window to copy the selected method name to the Windows clipboard.

	Close the Object Browser and return to the Code window. Paste the copied instruction inside the NewFolder procedure.

	Now, enter a space, followed by “C:\Study”. Be sure to enter the name of the entire path and the quotation marks. Your NewFolder procedure should look like the following:

Sub NewFolder()

 MkDir "C:\Study"

End Sub

	Choose Run | Run Sub/UserForm to run the NewFolder procedure.

After you run the NewFolder procedure, Visual Basic creates a new folder on drive C called Study. To see the folder, activate File Explorer. After creating a new folder, you may realize that you don’t need it after all. Although you could easily delete the folder while in File Explorer, how about getting rid of it programmatically?

 The Object Browser contains many other methods that are useful for working with folders and files. The RmDir method is just as simple to use as the MkDir method. To remove the Study folder from your hard drive, replace the MkDir method with the RmDir method and rerun the NewFolder procedure. Or create a new procedure called RemoveFolder, as shown here:

Sub RemoveFolder()

 RmDir "C:\Study"

End Sub

When writing procedures from scratch, it’s a good idea to consult the Object Browser for names of the built-in VBA functions.

USING THE IMMEDIATE WINDOW

The Immediate window is a sort of VBA programmer’s scratch pad. Here you can test VBA instructions before putting them to work in your VBA procedures. It is a great tool for experimenting with your new language. Use it to try out your statements. If the statement produces the expected result, you can copy the statement from the Immediate window into your procedure (or you can drag it right onto the Code window if the window is visible).

To activate the Immediate window, choose View | Immediate Window in the Visual Basic Editor, or press Ctrl+G while in the Visual Basic Editor window.

The Immediate window can be moved anywhere on the Visual Basic Editor window, or it can be docked so that it always appears in the same area of the screen. The docking setting can be turned on and off from the Docking tab in the Options dialog box (Tools | Options).

To close the Immediate window, click the Close button in the top-right corner of the window.

The following hands-on exercise demonstrates how to use the Immediate window to check instructions and get answers.

[image: image] Hands-On 2.5 Experiments in the Immediate Window

	If you are not in the VBE window, press Alt+F11 to activate it.

	Press Ctrl+G to activate the Immediate window or choose View | Immediate Window.

	In the Immediate window, type the following instruction and press Enter:

DoCmd.OpenForm "Inventory List"

	If you entered the preceding VBA statement correctly, Visual Basic opens the Inventory List form, assuming the Northwind database is open.

	Enter the following instruction in the Immediate window:

Debug.Print Forms![Inventory List].RecordSource

When you press Enter, Visual Basic indicates that Inventory is the RecordSource for the Inventory List form. Every time you type an instruction in the Immediate window and press Enter, Visual Basic executes the statement on the line where the insertion point is located. If you want to execute the same instruction again, click anywhere in the line containing the instruction and press Enter. For more practice, rerun the statements shown in Figure 2.17. Start from the instruction displayed in the first line of the Immediate window. Execute the instructions one by one by clicking in the appropriate line and pressing Enter.

[image: image]
Figure 2.17.Use the Immediate window to evaluate and try Visual Basic statements.

So far you have used the Immediate window to perform some actions. The Immediate window also allows you to ask questions. Suppose you want to find out the answers to “How many controls are in the Inventory List form?” or “What’s the name of the current application?” When working in the Immediate window, you can easily get answers to these and other questions.

In the preceding exercise, you entered two instructions. Let’s return to the Immediate window to ask some questions. Access remembers the instructions entered in the Immediate window even after you close this window. The contents of the Immediate window are automatically deleted when you exit Microsoft Access. You can also clear the Immediate Window at any time by pressing Ctrl+A followed by the Delete key.

[image: image] Hands-On 2.6 Asking Questions in the Immediate Window

	Click in a new line of the Immediate window and enter the following statement to find out the number of controls in the Inventory List form:

?Forms![Inventory List].Controls.Count

When you press Enter, Visual Basic enters the number of controls on a new line in the Immediate window.

	Click in a new line of the Immediate window, and enter the following statement:

?Application.Name

When you press Enter, Visual Basic enters the name of the active application on a new line in the Immediate window.

	In a new line in the Immediate window, enter the following instruction:

?12/3

When you press Enter, Visual Basic shows the result of the division on a new line. But what if you want to know the result of 3 + 2 and 12 * 8 right away? Instead of entering these instructions on separate lines, you can enter them on one line as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you press the Enter key, Visual Basic displays the results 5 and 96 on separate lines in the Immediate window.

Here are a couple of other statements you may want to try out on your own in the Immediate window:

?Application.GetOption("Default Database Directory")

?Application.CodeProject.Name

Instead of using the question mark, you may precede the statement typed in the Immediate window with the Print command, like this:

Print Application.CodeProject.Name

To delete the instructions from the Immediate window, highlight all the lines and press Delete.

	In the Visual Basic Editor window, choose File | Close and Return to Microsoft Access.

	Close the Northwind 2007.accdb database.

NOTE

Recall that in Chapter 1 you learned how to run subroutine procedures and functions from the Immediate window. You will find other examples of running procedures and functions from this window in subsequent chapters.

SUMMARY

Programming in Access requires a working knowledge of objects and collections of objects. In this chapter, you explored features of the Visual Basic Editor window that can assist you in writing VBA code. Here are some important points:

	When in doubt about objects, properties, or methods in an existing VBA procedure, highlight the instruction in question and fire up the online help by pressing F1.

	When you need on-the-fly programming assistance while typing your VBA code, use the shortcut keys or buttons available on the Edit toolbar.

	If you need a quick listing of properties and methods for every available object, or have trouble locating a hard-to-find procedure, go with the Object Browser.

	If you want to experiment with VBA and see the results of VBA commands immediately, use the Immediate window.

In the next chapter, you will learn how you can remember certain values in your VBA procedures by using various types of variables and constants.

Access VBA
Fundamentals

C h a p t e r 3

In Chapter 2, you used the question mark to have Visual Basic return some information in the Immediate window. Unfortunately, when you write Visual Basic procedures outside the Immediate window, you can’t use the question mark. So how do you obtain answers to your questions in VBA procedures? To find out what a VBA instruction (statement) has returned, you must tell Visual Basic to memorize it. This is done by using variables. This chapter introduces you to many types of variables, data types, and constants that you can and should use in your VBA procedures.

INTRODUCTION TO DATA TYPES

When you create Visual Basic procedures, you have a purpose in mind: You want to manipulate data. Because your procedures will handle different kinds of information, you should understand how Visual Basic stores data.

The data type determines how the data is stored in the computer’s memory. For example, data can be stored as a number, text, date, object, etc. If you forget to tell Visual Basic the data type, it is assigned the Variant data type. The Variant type can figure out on its own what kind of data is being manipulated and then take on that type. The Visual Basic data types are shown in Table 3.1. In addition to the built-in data types, you can define your own data types; these are known as user-defined data types. Because data types take up different amounts of space in the computer’s memory, some of them are more expensive than others. Therefore, to conserve memory and make your procedure run faster, you should select the data type that uses the fewest bytes but at the same time can handle the data that your procedure has to manipulate.

Table 3.1VBA data types.

[image: image]

[image: image]

In addition to the above data types, Access 2021 introduces a new Date/Time Extended data type. This data type provides a larger date range, higher fractional precision, and compatibility with the SQL Server datetime2 data type. This data type is not compatible with previous versions of Microsoft Access. The versions of Access that do not include this feature will not be able to open the database. For more information on using the Date/Time Extended data type, see the following Microsoft Support link:

https://support.microsoft.com/en-us/office/using-the-date-time-extended-data-type-708c32da-a052-4cc2-9850-9851042e0024#

UNDERSTANDING AND USING VARIABLES

A variable is a name used to refer to an item of data. Each time you want to remember the result of a VBA instruction, think of a name that will represent it. For example, if you want to keep track of the number of controls on a form, you can make up a name such as NumOfControls, TotalControls, or FormsControlCount.

The names of variables can contain characters, numbers, and punctuation marks except for the following:

, # $ % & @ !

The name of a variable cannot begin with a number or contain a space. If you want the name of the variable to include more than one word, use the underscore (_) as a separator. Although a variable name can contain as many as 254 characters, it’s best to use short and simple names. Using short names will save you typing time when you need to reuse the variable in your Visual Basic procedure. Visual Basic doesn’t care whether you use uppercase or lowercase letters in variable names; however, most programmers use lowercase letters. When the variable name is composed of more than one word, most programmers capitalize the first letter of each word, as in the following: NumOfControls, First_Name.

[image: image] Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name except for the reserved words that VBA uses. Visual Basic function names and words that have a special meaning in VBA cannot be used as variable names. For example, words such as Name, Len, Empty, Local, Currency, or Exit will generate an error message if used as a variable name.

Give your variables names that can help you remember their roles. Some programmers use a prefix to identify the variable’s type. A variable name preceded with “str,” such as strName, can be quickly recognized within the procedure code as the variable holding the text string.

Declaring Variables

You can create a variable by declaring it with a special command or by just using it in a statement. When you declare your variable, you make Visual Basic aware of the variable’s name and data type. This is called explicit variable declaration.

[image: image] Advantages of Explicit Variable Declaration

Explicit variable declaration:

	Speeds up the execution of your procedure. Since Visual Basic knows the data type, it reserves only as much memory as is necessary to store the data.

	Makes your code easier to read and understand because all the variables are listed at the very beginning of the procedure.

	Helps prevent errors caused by misspelling a variable name. Visual Basic automatically corrects the variable name based on the spelling used in the variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you are implicitly telling VBA that you want to create this variable. Implicit variables are automatically assigned the Variant data type (see Table 3.1 earlier in the chapter). Although implicit variable declaration is convenient (it allows you to create variables on the fly and assign values to them without knowing in advance the data type of the values being assigned), it can cause several problems.

[image: image] Disadvantages of Implicit Variable Declaration

	If you misspell a variable name in your procedure, Visual Basic may display a runtime error or create a new variable. You are guaranteed to waste some time troubleshooting problems that could easily have been avoided had you declared your variable at the beginning of the procedure.

	Since Visual Basic does not know what type of data your variable will store, it assigns it a Variant data type. This causes your procedure to run slower because Visual Basic must check the data type every time it deals with your variable. And because Variant variables can store any type of data, Visual Basic must reserve more memory to store your data.

You declare a variable with the Dim keyword. Dim stands for “dimension.” The Dim keyword is followed by the variable’s name and type.

Suppose you want the procedure to display the age of an employee. Before you can calculate the age, you must feed the procedure the employee’s date of birth. To do this, you declare a variable called dateOfBirth, as follows:

Dim dateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable (dateOfBirth). If you don’t like this name, you are free to replace it with another word, as long as the word you are planning to use is not one of the VBA keywords. You specify the data type the variable will hold by including the As keyword followed by one of the data types from Table 3.1. The Date data type tells Visual Basic that the variable dateOfBirth will store a date.

To store the employee’s age, you declare the variable as follows:

Dim intAge As Integer

The intAge variable will store the number of years between today’s date and the employee’s date of birth. Because age is displayed as a whole number, the intAge variable has been assigned the Integer data type. You may also want your procedure to keep track of the employee’s name, so you declare another variable to hold the employee’s first and last name:

Dim strFullName As String

Because the word Name is on the VBA list of reserved words, using it in your VBA procedure would guarantee an error. To hold the employee’s full name, we used the variable strFullName and declared it as the String data type because the data it will hold is text. Declaring variables is regarded as good programming practice because it makes programs easier to read and helps prevent certain types of errors.

[image: image] Informal (Implicit) Variables

Variables that are not explicitly declared with Dim statements are said to be implicitly declared. These variables are automatically assigned a data type called Variant. They can hold numbers, strings, and other types of information. You can create an informal variable by assigning some value to a variable name anywhere in your VBA procedure. For example, you implicitly declare a variable in the following way:

intDaysLeft = 100

Now that you know how to declare your variables, let’s write a procedure that uses them.

NOTE

All code files and figures for the hands-on projects may be found in the companion files.

[image: image] Hands-On 3.1 Using Variables

	Start Microsoft Access and create a new database named Chap03.accdb in your C:\ VBAAccess2021_ByExample_Primer folder.

	Once your new database is opened, press Alt+F11 to switch to the Visual Basic Editor window.

	Choose Insert | Module to add a new standard module, and notice Module1 under the Modules folder in the Project Explorer window.

	In the Module1 (Code) window, enter the following AgeCalc procedure.

Sub AgeCalc()

 ' variable declaration

 Dim strFullName As String

 Dim dateOfBirth As Date

 Dim intAge As Integer

 ' assign values to variables

 strFullName = "John Smith"

 dateOfBirth = #1/3/1967#

 ' calculate age

 IntAge = Year(Now()) - Year(dateOfBirth)

 ' print results to the Immediate window

 Debug.Print strFullName & " is " & intAge & " years old."

End Sub

Notice that in the AgeCalc procedure the variables are declared on separate lines at the beginning of the procedure. You can also declare several variables on the same line, separating each variable name with a comma, as shown here (be sure to enter this on one line):

Dim strFullName As String, dateOfBirth As Date, intAge As Integer

When you list all your variables on one line, the Dim keyword appears only once at the beginning of the variable declaration line.

	If the Immediate window is not open, press Ctrl+G or choose View | Immediate Window. Because the example procedure writes the results to the Immediate window, you should ensure that this window is open prior to executing Step 6.

	To run the AgeCalc procedure, click any line between the Sub and End Sub keywords and press F5.

[image: image] What Is the Variable Type?

You can find out the type of a variable used in your procedure by right-clicking the variable name and selecting Quick Info from the shortcut menu.

When Visual Basic executes the variable declaration statements, it creates the variables with the specified names and reserves memory space to store their values. Then specific values are assigned to these variables. To assign a value to a variable, you begin with a variable name followed by an equal sign. The value entered to the right of the equal sign is the data you want to store in the variable. The data you enter here must be of the type stated in the variable declaration. Text data should be surrounded by quotation marks and dates by # characters.

Using the data supplied by the dateOfBirth variable, Visual Basic calculates the age of an employee and stores the result of the calculation in the variable called intAge. Then, the full name of the employee and the age are printed to the Immediate window using the instruction

Debug.Print strFullName & " is " & intAge & " years old."

[image: image] Concatenation

You can combine two or more strings to form a new string. The joining operation is called concatenation. You saw an example of concatenated strings in the AgeCalc procedure in Hands-On 3.1. Concatenation is represented by an ampersand character (&). For instance, "His name is " & strFirstName will produce a string like: His name is John or His name is Michael. The name of the person is determined by the contents of the strFirstName variable. Notice that there is an extra space between “is” and the ending quotation mark: "His name is ". Concatenation of strings can also be represented by a plus sign (+); however, many programmers prefer to restrict the plus sign to numerical operations to eliminate ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up with the untyped variable. Untyped variables in VBA are always assigned the Variant data type. Variant data types can hold all the other data types (except for user-defined data types). This feature makes Variant a very flexible and popular data type. Despite this flexibility, it is highly recommended that you create typed variables. When you declare a variable of a certain data type, your VBA procedure runs faster because Visual Basic does not have to stop to analyze the variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer variables can hold only whole numbers from –32,768 to 32,767. Other types of numeric variables are Long, Single, Double, and Currency. The Long variables can hold whole numbers in the range –2,147,483,648 to 2,147,483,647. As opposed to Integer and Long variables, Single and Double variables can hold decimals.

String variables are used to refer to text. When you declare a variable of the String data type, you can tell Visual Basic how long the string should be. For instance, Dim strExtension As String * 3 declares the fixed-length String variable named strExtension that is three characters long. If you don’t assign a specific length, the String variable will be dynamic. This means that Visual Basic will make enough space in computer memory to handle whatever text length is assigned to it.

After a variable is declared, it can store only the type of information that you stated in the declaration statement.

Assigning string values to numeric variables or numeric values to string variables results in the error message “Type Mismatch” or causes Visual Basic to modify the value. For example, if your variable was declared to hold whole numbers and your data uses decimals, Visual Basic will disregard the decimals and use only the whole part of the number.

Let’s use the MyNumber procedure in Hands-On 3.2 as an example of how Visual Basic modifies the data according to the assigned data types.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up with the untyped variable. Untyped variables in VBA are always assigned the Variant data type. Variant data types can hold all the other data types (except for user-defined data types). This feature makes Variant a very flexible and popular data type. Despite this flexibility, it is highly recommended that you create typed variables. When you declare a variable of a certain data type, your VBA procedure runs faster because Visual Basic does not have to stop to analyze the variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer variables can hold only whole numbers from –32,768 to 32,767. Other types of numeric variables are Long, Single, Double, and Currency. The Long variables can hold whole numbers in the range –2,147,483,648 to 2,147,483,647. As opposed to Integer and Long variables, Single and Double variables can hold decimals.

String variables are used to refer to text. When you declare a variable of the String data type, you can tell Visual Basic how long the string should be. For instance, Dim strExtension As String * 3 declares the fixed-length String variable named strExtension that is three characters long. If you don’t assign a specific length, the String variable will be dynamic. This means that Visual Basic will make enough space in computer memory to handle whatever text length is assigned to it.

After a variable is declared, it can store only the type of information that you stated in the declaration statement.

Assigning string values to numeric variables or numeric values to string variables results in the error message “Type Mismatch” or causes Visual Basic to modify the value. For example, if your variable was declared to hold whole numbers and your data uses decimals, Visual Basic will disregard the decimals and use only the whole part of the number.

Let’s use the MyNumber procedure in Hands-On 3.2 as an example of how Visual Basic modifies the data according to the assigned data types.

[image: image] Hands-On 3.2 Understanding the Data Type of a Variable

This hands-on exercise uses the C:\VBAAccess2021_ByExample_Primer\ Chap03.accdb database that you created in Hands-On 3.1.

	In the Visual Basic Editor window, choose Insert | Module to add a new module.

	Enter the following procedure code for MyNumber in the new module’s Code window.

Sub MyNumber()

 Dim intNum As Integer

 intNum = 23.11

 MsgBox intNum

End Sub

	To run the procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm.

When you run this procedure, Visual Basic displays the contents of the variable intNum as 23, and not 23.11, because the intNum variable was declared as an Integer data type.

Using Type Declaration Characters

If you don’t declare a variable with a Dim statement, you can still designate a type for it by using a special character at the end of the variable name. For example, to declare the FirstName variable as String, you append the dollar sign to the variable name:

Dim FirstName$

This is the same as Dim FirstName As String. Other type declaration characters are shown in Table 3.2. Notice that the type declaration characters can be used only with six data types. To use the type declaration character, append the character to the end of the variable name.

Table 3.2Type declaration characters.

[image: image]

[image: image] Declaring Typed Variables

The variable type can be indicated by the As keyword or by attaching a type symbol. If you don’t add the type symbol or the As command, VBA will default the variable to the Variant data type.

[image: image] Hands-On 3.3 Using Type Declaration Characters in Variable Names

This hands-on exercise uses the Chap03.accdb database that you created in Hands-On 3.1.

	In the Visual Basic window, choose Insert | Module to add a new module.

	Enter the AgeCalc2 procedure code in the new module’s Code window.

Sub AgeCalc2()

 ' variable declaration

 Dim FullName$

 Dim DateOfBirth As Date

 Dim age%

 ' assign values to variables

 FullName$ = "John Smith"

 DateOfBirth = #1/3/1967#

 ' calculate age

 age% = Year(Now()) - Year(DateOfBirth)

 ' print results to the Immediate window

 Debug.Print FullName$ & " is " & age% & " years old."

End Sub

	To run the procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm.

Assigning Values to Variables

Now that you know how to correctly name and declare variables, it’s time to learn how to initialize them.

[image: image] Hands-On 3.4 Assigning Values to Variables

This hands-on exercise uses the C:\VBAAccess2021_ByExample_Primer\Chap03.accdb database that you created in Hands-On 3.1.

	In the Visual Basic window, choose Insert | Module to add a new module.

	Enter the code of the CalcCost procedure in the new module’s Code window.

Sub CalcCost()

 slsPrice = 35

 slsTax = 0.085

 cost = slsPrice + (slsPrice * slsTax)

 strMsg = "The calculator total is $" & cost & "."

 MsgBox strMsg

End Sub

	To run the procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm.

	Change the calculation of the cost variable in the CalcCost procedure as follows:

cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

	To run the modified procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm.

The CalcCost procedure uses four variables: slsPrice, slsTax, cost, and strMsg. Because none of these variables have been explicitly declared with the Dim keyword and a specific data type, they all have the same data type—Variant. The variables slsPrice and slsTax were created by assigning some values to the variable names at the beginning of the procedure. The cost variable was assigned the value resulting from the calculation slsPrice + (slsPrice * slsTax). The cost calculation uses the values supplied by the slsPrice and slsTax variables. The strMsg variable puts together a text message to the user. This message is then displayed with the MsgBox function.

When you assign values to variables, you follow the name of the variable with the equal sign. After the equal sign you enter the value of the variable. This can be text surrounded by quotation marks, a number, or an expression. While the values assigned to the variables slsPrice, slsTax, and cost are easily understood, the value stored in the strMsg variable is a little more involved.

Let’s examine the content of the strMsg variable:

strMsg = "The calculator total is $" & cost & "."

	The string "The calculator total is $" begins and ends with quotation marks. Notice the extra space before the ending quotation mark.

	The & symbol allows one string to be appended to another string or to the contents of a variable and must be used every time you want to append a new piece of information to the previous string.

	The cost variable is a placeholder. The actual cost of the calculator will be displayed here when the procedure runs.

	The & symbol attaches yet another string.

	The period (.) is a character and must be surrounded by quotation marks. When you require a period at the end of the sentence, you must attach it separately when it follows the name of a variable.

[image: image] Variable Initialization

Visual Basic automatically initializes a new variable to its default value when it is created. Numerical variables are set to zero (0), Boolean variables are initialized to False, string variables are set to the empty string (“”), and Date variables are set to December 30, 1899.

Notice that the cost displayed in the message box has three decimal places. To display the cost of a calculator with two decimal places, you need to use a function. VBA has special functions that allow you to change the format of data. To change the format of the cost variable you should use the Format function. This function has the following syntax:

Format(expression, format)

where expression is a value or variable you want to format, and format is the type of format you want to apply.

After having tried the CalcCost procedure, you may wonder why you should bother declaring variables if Visual Basic can handle undeclared variables so well. The CalcCost procedure is very short, so you don’t need to worry about how many bytes of memory will be consumed each time Visual Basic uses the Variant variable. In short procedures, however, it is not the memory that matters but the mistakes you are bound to make when typing variable names. What will happen if the second time you use the cost variable you omit the “o” and refer to it as cst?

strMsg = "The calculator total is " & "$" & cst & "."

And what will you end up with if, instead of slsTax, you use the word tax in the formula?

cost = Format(slsPrice + (slsPrice * tax), "0.00")

When you run the procedure with the preceding errors introduced, Visual Basic will not show the cost of the calculator because it does not find the assignment statement for the cst variable. And because Visual Basic does not know the sales tax, it displays the price of the calculator as the total cost. Visual Basic does not guess—it simply does what you tell it to do. This brings us to the next section, which explains how to make sure that errors of this sort don’t occur.

NOTE

Before you continue with this chapter, be sure to replace the names of the variables cst and tax with cost and slsTax.

Forcing Declaration of Variables

Visual Basic has an Option Explicit statement that you can use to automatically remind yourself to formally declare all your variables. This statement must be entered at the top of each of your modules. The Option Explicit statement will cause Visual Basic to generate an error message when you try to run a procedure that contains undeclared variables like the one in the previous Hands-On example.

[image: image] Hands-On 3.5 Forcing Declaration of Variables

	Return to the Code window where you entered the CalcCost procedure (see Hands-On 3.4).

	At the top of the module window (below the Option Compare Database statement), enter

Option Explicit

and press Enter. Visual Basic will display the statement in blue.

	Position the insertion point anywhere within the CalcCost procedure and press F5 to run it. Visual Basic displays this error message: “Compile error: Variable not defined.”

	Click OK to exit the message box. Visual Basic selects the name of the variable, slsPrice, and highlights in yellow the name of the procedure, Sub CalcCost(). The titlebar displays “Microsoft Visual Basic for Applications—Chap03 [break]—[Module4 (Code)].” The Visual Basic Break mode allows you to correct the problem before you continue. Now you must formally declare the slsPrice variable.

	Enter the declaration statement

Dim slsPrice As Currency

on a new line just below Sub CalcCost() and press F5 to continue. When you declare the slsPrice variable and rerun your procedure, Visual Basic will generate the same compile error as soon as it encounters another variable name that was not declared. To fix the remaining problems with the variable declaration in this procedure, choose Run | Reset to exit the Break mode.

	Enter the following declarations at the beginning of the CalcCost procedure:

' declaration of variables

Dim slsPrice As Currency

Dim slsTax As Single

Dim cost As Currency

Dim strMsg As String

	To run the procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm. Your revised CalcCost procedure looks like this:

' revised CalcCost procedure with variable declarations

Sub CalcCost_Revised()

 ' declaration of variables

 Dim slsPrice As Currency

 Dim slsTax As Single

 Dim cost As Currency

 Dim strMsg As String

 slsPrice = 35

 slsTax = 0.085

 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

 strMsg = "The calculator total is $" & cost & "."

 MsgBox strMsg

End Sub

The Option Explicit statement you entered at the top of the module Code window (see step 2) forced you to declare variables. Because you must include the Option Explicit statement in each module where you want to require variable declaration, you can have Visual Basic enter this statement for you each time you insert a new module.

To automatically include Option Explicit in every new module you create, follow these steps:

	Choose Tools | Options.

	Ensure that the Require Variable Declaration checkbox is selected in the Options dialog box (Editor tab).

	Choose OK to close the Options dialog box.

From now on, every new module you add to your database will have the Option Explicit statement. If you want to require variables to be explicitly declared in a module you created prior to enabling Require Variable Declaration in the Options dialog box, you must enter the Option Explicit statement manually by editing the module yourself.

[image: image] More about Option Explicit

Option Explicit forces formal (explicit) declaration of all variables in a module. One big advantage of using Option Explicit is that misspellings of variable names will be detected at compile time (when Visual Basic attempts to translate the source code to executable code). The Option Explicit statement must appear in a module before any procedures.

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. Scope defines the availability of a variable to the same procedure or other procedures.

Variables can have the following three levels of scope in Visual Basic for Applications:

	Procedure-level scope

	Module-level scope

	Project-level scope

Procedure-Level (Local) Variables

From this chapter you already know how to declare a variable using the Dim statement. The position of the Dim statement in the module determines the scope of a variable. Variables declared with the Dim statement within a VBA procedure have a procedure-level scope. Procedure-level variables can also be declared by using the Static statement (see “Using Static Variables” later in this chapter).

Procedure-level variables are frequently referred to as local variables, which can be used only in the procedure where they were declared. Undeclared variables always have a procedure-level scope.

A variable’s name must be unique within its scope. This means that you cannot declare two variables with the same name in the same procedure. However, you can use the same variable name in different procedures. In other words, the CalcCost procedure can have the slsTax variable, and the ExpenseRep procedure in the same module can have its own variable called slsTax. Both variables are independent of each other.

[image: image] Local Variables: With Dim or Static?

When you declare a local variable with the Dim statement, the value of the variable is preserved only while the procedure in which it is declared is running. As soon as the procedure ends, the variable dies. The next time you execute the procedure, the variable is reinitialized.

When you declare a local variable with the Static statement, the value of the variable is preserved after the procedure in which the variable was declared has finished running. Static variables are reset when you quit Access or when a runtime error occurs while the procedure is running.

Module-Level Variables

Often you want the variable to be available to other VBA procedures in the module after the procedure in which the variable was declared has finished running. This situation requires that you change the variable’s scope to module-level.

Module-level variables are declared at the top of the module (above the first procedure definition) by using the Dim or Private statement. These variables are available to all of the procedures in the module in which they were declared but are not available to procedures in other modules.

For instance, to make the slsTax variable available to any other procedure in the module, you could declare it by using the Dim or Private statement:

Option Explicit

Dim slsTax As Single ' module-level variable declared with

 ' Dim statement

Sub CalcCost()

...Instructions of the procedure...

End Sub

Notice that the slsTax variable is declared at the top of the module, just below the Option Explicit statement and before the first procedure definition. You could also declare the slsTax variable like this:

Option Explicit

Private slsTax As Single ' module-level variable declared with ' Private statement

Sub CalcCost()

 ...Instructions of the procedure...

End Sub

There is no difference between module-level variables declared with Dim or Private statements.

Before you can see how module-level variables work, you need to create another procedure that also uses the slsTax variable.

[image: image] Hands-On 3.6 Understanding Module-Level Variables

This hands-on exercise requires the prior completion of Hands-On 3.4 and 3.5.

	In the Code window, in the same module where you entered the CalcCost_Revised procedure, copy the declaration line Dim slsTax As Single and paste it at the top of the module sheet, below the Option Explicit statement.

	Comment the declaration line Dim slsTax As Single inside the CalcCost_Revised procedure.

	Enter the following code of the ExpenseRep procedure in the same module where the CalcCost_Revised procedure is located (see Figure 3.1).

Sub ExpenseRep()

 Dim slsPrice As Currency

 Dim cost As Currency

 slsPrice = 55.99

 cost = slsPrice + (slsPrice * slsTax)

 MsgBox slsTax

 MsgBox cost

End Sub

The ExpenseRep procedure declares two Currency type variables: slsPrice and cost. The slsPrice variable is then assigned a value of 55.99. The slsPrice variable is independent of the slsPrice variable declared within the CalcCost procedure.

 The ExpenseRep procedure calculates the cost of a purchase. The cost includes the sales tax. Because the sales tax is the same as the one used in the CalcCost_Revised procedure, the slsTax variable has been declared at the module level. After Visual Basic executes the CalcCost_Revised procedure, the contents of the slsTax variable equals 0.085. If slsTax were a local variable, the contents of this variable would be empty upon the termination of the CalcCost_Revised procedure. The ExpenseRep procedure ends by displaying the value of the slsTax and cost variables in two separate message boxes.

 After running the CalcCost_Revised procedure, Visual Basic erases the contents of all the variables except for the slsTax variable, which was declared at a module level. As soon as you attempt to calculate the cost by running the ExpenseRep procedure, Visual Basic retrieves the value of the slsTax variable and uses it in the calculation.

[image: image]
Figure 3.1. The slsTax variable is declared as a module-level variable so it can be accessed by other procedures in the same module.

	Click anywhere inside the revised CalcCost_Revised procedure and press F5 to run it.

	As soon as the CalcCost_Revised procedure finishes executing, run the ExpenseRep procedure.

Project-Level Variables

In the previous sections, you learned that declaring a variable with the Dim or Private keyword at the top of the module makes it available to other procedures in that module. Module-level variables that are declared with the Public keyword (instead of Dim or Private) have a project-level scope. This means that they can be used in any Visual Basic for Applications module. When you want to work with a variable in all the procedures in all the open VBA projects, you must declare it with the Public keyword—for instance:

Option Explicit

Public gslsTax As Single

Sub CalcCost()

...Instructions of the procedure...

End Sub

Notice that the gslsTax variable declared at the top of the module with the Public keyword will now be available to any VBA modules that your code references. This type of variable is called a global variable. It is customary to use the prefix “g” to indicate its global scope.

When using global variables, it’s important to keep in mind the following:

	The value of the global variable can be changed anywhere in your program. An unexpected change in the value of a variable is a common cause of problems. Be careful not to write a block of code that modifies a global variable. If you need to change the value of a variable within your application, make sure you are using a local variable.

	Values of all global variables declared with the Public keyword are cleared when Access encounters an error. Since the release of the Access 2007 database format (ACCDB), you can use the TempVars collection for your global variable needs (see “Using Temporary Variables” later in this chapter).

	Don’t put your global variable declaration in a form class module. Variables in the code module behind the form are never global even if you declare them as such. You must use a standard code module (Insert | Module) to declare variables to be available in all modules and forms. Variables declared in a standard module can be used in the code for any form.

	Use constants as much as possible whenever your application requires global variables. Constants are much more reliable because their values are static. Constants are covered later in this chapter.

[image: image] Public Variables and the Option Private Module Statement

Variables declared using the Public keyword are available to all procedures in all modules across all applications. To restrict a public module-level variable to the current database, include the Option Private Module statement in the declaration section of the standard or class module in which the variable is declared.

Understanding the Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable determines how long a variable retains its value. Module-level and project-level variables preserve their values as long as the project is open. Visual Basic, however, can reinitialize these variables if required by the program’s logic. Local variables declared with the Dim statement lose their values when a procedure has finished. Local variables have a lifetime while a procedure is running, and they are reinitialized every time the program is run. Visual Basic allows you to extend the lifetime of a local variable by changing the way it is declared.

Using Temporary Variables

In the previous section, you learned that you could declare a global variable with the Public keyword and use it throughout your entire application. You also learned that these variables can be quite problematic, especially when you or another programmer accidentally changes the value of the variable, or your application encounters an error and the values of the variables you have initially set for your application to use are completely wiped out. To avoid such problems, many programmers resort to using separate global variables form to hold their global variables. And if they need certain values to be available the next time the application starts, they create a separate database table to store these values. A global variables form is simply a blank Access form where you can place both bound and unbound controls. Bound controls are used to pull the data from the table where global variables have been stored. You can use unbound controls on a form to store values of global variables that are not stored in a separate table. Simply set the ControlSource property of the unbound control by typing a value in it or use a VBA procedure to set the value of the ControlSource. The form set up as a global variables form must be open while the application is running for the values of the bound and unbound controls to be available to other forms, reports, and queries in the database. A global variables form can be hidden if the values of the global variables are pulled from a database table or set using VBA procedures or macro actions.

If your database is in the ACCDB format, instead of using a database table or global variables, you can use the TempVars collection to store the Variant values you want to reuse. TempVars stands for temporary variables. Temporary variables are global. You can refer to them in VBA modules, event procedures, queries, expressions, add-ins, and in any referenced databases. Access .ACCDB databases allow you to define up to 255 temporary variables at one time. These variables remain in memory until you close the database (unless you remove them when you are finished working with them). Unlike public variables, temporary variable values are not cleared when an error occurs.

Creating a Temporary Variable with a TempVars Collection Object

Let’s look at some examples of using the TempVars collection first introduced in Access 2007. Assume your application requires three variables named gtvUserName, gtvUserFolder, and gtvEndDate.

To try this out, open the Immediate window and type the following statements. The variable is created as soon as you press Enter after each statement.

TempVars("gtvUserName").Value = "John Smith"

TempVars("gtvUserFolder").Value = Environ("HOMEPATH")

TempVars("gtvEndDate").Value = Format(now(),"mm/dd/yyyy")

Notice that to create a temporary variable, all you must do is specify its value. If the variable does not already exist, Access adds it to the TempVars collection. If the variable exists, Access modifies its value.

You can explicitly add a global variable to the TempVars collection by using the Add method, like this:

TempVars.Add "gtvCompleted", "true"

Retrieving Names and Values of TempVar Objects

Each TempVar object in the TempVars collection has Name and Value properties that you can use to access the variable and read its value from any procedure. By default, the items in the collection are numbered from zero (0), with the first item being zero, the second item being one, the third two, and so on. Therefore, to find the value of the second variable in the TempVars you have entered (gtvUserFolder), type the following statement in the Immediate window:

?TempVars(1).Value

When you press Enter, you will see the location of the user’s private folder on the computer. In this case, it is your private folder. The folder information was returned by passing the “HOMEPATH” parameter to the built-in Environ function. Functions and parameter passing are covered in Chapter 4.

You can also retrieve the value of the variable from the TempVars collection by using its name, like this:

?TempVars("gtvUserFolder").Value

You can iterate through the TempVars collection to see the names and values of all global variables that you have placed in it. To do this from the Immediate window, you need to use the colon operator (:) to separate lines of code. Type the following statement all on one line to try this out:

For Each gtv in TempVars : Debug.Print gtv.Name & ":"

& gtv.Value : Next

When you press Enter, the Debug.Print statement will write to the Immediate window a name and value for each variable that is currently stored in the TempVars collection:

gtvUserName:John Smith

gtvUserFolder:\Users\Julitta

gtvEndDate:11/30/2021

gtvCompleted:true

The For Each. . .Next statement, a popular VBA programming construct, is covered in detail in Chapter 6. The “gtv” is an object variable used as an iterator. An iterator allows you to traverse through all the elements of a collection. You can use any variable name as an iterator provided it is not a VBA keyword. Object variables are discussed later in this chapter. For more information on working with collections, see Chapter 8.

Using Temporary Global Variables in Expressions

You can use temporary global variables anywhere expressions can be used. For example, you can set the value of the unbound text box control on a form to display the value of your global variable by activating the property sheet and typing the following in the ControlSource property of the text box:

=[TempVars]![gtvCompleted]

You can also use a temporary variable to pass selection criteria to queries:

SELECT * FROM Orders WHERE Order_Date = TempVars!gtvEndDate

Removing a Temporary Variable from a TempVars Collection Object

When you are done using a variable, you can remove it from the TempVars collection with the Remove method, like this:

TempVars.Remove "gtvUserFolder"

To check the number of the TempVar objects in the TempVars collection, use the Count property in the Immediate window:

?TempVars.Count

Finally, to quickly remove all global variables (TempVar objects) from the TempVars collection, simply use the RemoveAll method, like this:

TempVars.RemoveAll

[image: image] The TempVars Collection Is Exposed to Macros

The following three macros allow macro users to set and remove TempVar objects:

	SetTempVar—Sets a TempVar to a given value. You must specify the name of the temporary variable and the expression that will be used to set the value of this variable. Expressions must be entered without an equal sign (=).

	RemoveTempVar—Removes the TempVar from the TempVars collection. You must specify the name of the temporary variable you want to remove.

	RemoveAllTempVars—Clears the TempVars collection.

The values of TempVar objects can be used in the arguments and in the condition columns of macros.

Using Static Variables

A variable declared with the Static keyword is a special type of local variable. Static variables are declared at the procedure level. Unlike the local variables declared with the Dim keyword, static variables remain in existence and retain their values when the procedure in which they were declared ends.

The CostOfPurchase procedure (see Hands-On 3.7) demonstrates the use of the static variable allPurchase. The purpose of this variable is to keep track of the running total.

[image: image] Hands-On 3.7 Using Static Variables

This hands-on exercise uses the C:\VBAAccess2021_ByExample_Primer\Chap03.accdb database that you created in Hands-On 3.1.

	In the Visual Basic window, choose Insert | Module to add a new module.

	Enter the following CostOfPurchase procedure code in the new module’s Code window.

Sub CostOfPurchase()

 ' declare variables

 Static allPurchase

 Dim newPurchase As String

 Dim purchCost As Single

 newPurchase = InputBox("Enter the cost of a purchase:")

 purchCost = CSng(newPurchase)

 allPurchase = allPurchase + purchCost

 ' display results

 MsgBox "The cost of a new purchase is: " & newPurchase

 MsgBox "The running cost is: " & allPurchase

End Sub

This procedure begins with declaring a static variable named allPurchase and two local variables named newPurchase and purchCost. The InputBox function is used to get a user’s input while the procedure is running. As soon as the user inputs the value and clicks OK, Visual Basic assigns the value to the newPurchase variable. Because the result of the InputBox function is always a string, the newPurchase variable was declared as the String data type. You cannot use strings in mathematical calculations, so the next instruction uses a type conversion function (CSng) to translate the text value into a numeric value, which is stored as a Single data type in the variable purchCost. The CSng function requires only one argument: the value you want to translate. Refer to Chapter 4 for more information about converting data types.

 The next instruction, allPurchase = allPurchase + purchCost, adds the new value supplied by the InputBox function to the current purchase value. When you run this procedure for the first time, the value of the allPurchase variable is the same as the value of the purchCost variable. During the second run, the value of the static variable is increased by the new value entered in the dialog box. You can run the CostOfPurchase procedure as many times as you want. The allPurch variable will keep the running total for as long as the project is open.

	To run the procedure, position the insertion point anywhere within the CostOfPurchase procedure and press F5.

	When the dialog box appears, enter a number. For example, type 100 and press Enter. Visual Basic displays the message “The cost of a new purchase is: 100.”

	Click OK in the message box. Visual Basic displays the second message “The running cost is: 100.”

	Rerun the same procedure.

	When the input box appears, enter another number. For example, type 50 and press Enter. Visual Basic displays the message “The cost of a new purchase is: 50.”

	Click OK in the message box. Visual Basic displays the second message “The running cost is: 150.”

	Run the procedure a couple of times to see how Visual Basic keeps track of the running total.

[image: image] Type Conversion Functions

To learn more about the CSng function, position the insertion point anywhere within the word CSng and press F1.

Using Object Variables

The variables we’ve introduced so far are used to store data, which is the main reason for using “normal” variables in your procedures. There are also special variables that refer to the Visual Basic objects. These variables are called object variables. Object variables don’t store data; they store the location of the data. You can use them to reference databases, forms, and controls as well as objects created in other applications. Object variables are declared in a similar way as the variables you’ve already seen. The only difference is that after the As keyword, you enter the type of object your variable will point to—for instance:

Dim myControl As Control

This statement declares the object variable called myControl of type Control.

Dim frm As Form

This statement declares the object variable called frm of type Form.

You can use object variables to refer to objects of a generic type, such as Application, Control, Form, or Report, or you can point your object variable to specific object types, such as TextBox, ToggleButton, CheckBox, CommandButton, ListBox, OptionButton, Subform or Subreport, Label, BoundObjectFrame or UnboundObjectFrame, and so on. When you declare an object variable, you also must assign it a specific value before you can use it in your procedure. You assign a value to the object variable by using the Set keyword followed by the equal sign and the value that the variable refers to—for example:

Set myControl = Me!CompanyName

The preceding statement assigns a value to the object variable called myControl. This object variable will now point to the CompanyName control on the active form. If you omit the word Set, Visual Basic will display the error message “Runtime error 91: Object variable or With block variable not set.”

Again, it’s time to see a practical example. The HideControl procedure in Hands-On 3.8 demonstrates the use of two object variables frm and myControl.

[image: image] Hands-On 3.8 Working with Object Variables

	Close the currently open Access database Chap03.accdb. When prompted to save changes in the modules, click OK. Save the modules with the suggested default names Module1, Module2, and so on.

	Copy the HandsOn_03_8.accdb database from the companion files to your C:\VBAAccess2021_ByExample_Primer folder. This database contains a Customer table and a simple Customer form imported from the Northwind.mdb sample database that shipped with an earlier version of Access.

	Open Access and load the C:\VBAAccess2021_ByExample_Primer\ HandsOn_03_8.accdb database file.

	Open the Customers form in Form view.

	Press Alt+F11 to switch to the Visual Basic Editor window.

	Choose Insert | Module to add a new module.

	Enter the following HideControl procedure code in the new module’s Code window.

Sub HideControl()

 Dim frm As Form

 Dim myControl As Control

 Dim strFormName As String

 strFormName = "Customers"

 'Open the specified form

 DoCmd.OpenForm strFormName, acNormal

 ' set an object variable pointing to the form

 Set frm = Forms!Customers

 ' set an object variable pointing to the CompanyName control

 Set myControl = frm.CompanyName

 ' manipulate the visibility of the form control

 myControl.Visible = False

End Sub

	To run the procedure, click any line between the Sub and End Sub keywords and press F5 or choose Run | Run Sub/UserForm.

The procedure begins with the declaration of two object variables called frm and myControl. The object variable frm is set to reference the Customers form. For the procedure to work, the referenced form must be open. We can open the form using this statement:

 DoCmd.OpenForm strFormName, acNormal

Next, the myControl object variable is set to point to the CompanyName control located on the Customers form.

 Instead of using the object’s entire address, you can use the shortcut—the name of the object variable. For example, the statement

Set myControl = frm.CompanyName

is the same as

Set myControl = Forms!Customers.CompanyName

The purpose of this procedure is to hide the control referenced by the object variable myControl. After running the HideControl procedure, switch to the Access window containing the open Customers form. The CompanyName control should not be visible on the form. Change the visibility of the control to bring it back by changing the Visible property of myControl to True and rerun the procedure. To programmatically close the open form, use the following statement:

DoCmd.Close acForm, strFormName, acSaveYes

[image: image] Advantages of Using Object Variables

The advantages of object variables are:

	They can be used instead of the actual object.

	They are shorter and easier to remember than the actual values they point to.

	You can change their meaning while your procedure is running.

Disposing of Object Variables

When the object variable is no longer needed, you should assign Nothing to it. This frees up memory and system resources:

Set frm = Nothing

Set myControl = Nothing

Finding a Variable Definition

When you find an instruction that assigns a value to a variable in a VBA procedure, you can quickly locate the definition of the variable by selecting the variable name and pressing Shift+F2. Alternately, you can choose View | Definition. Visual Basic will jump to the variable declaration line. To return your mouse pointer to its previous position, press Ctrl+Shift+F2 or choose View | Last Position. Let’s try it out.

[image: image] Hands-On 3.9 Finding a Variable Definition

This hands-on exercise requires prior completion of Hands-On 3.8.

	Locate the code of the procedure HideControl you created in Hands-On 3.8.

	Locate the statement myControl.Visible = .

	Right-click the myControl variable name and choose Definition from the shortcut menu.

	Press Ctrl+Shift+F2 to return to the previous location in the procedure code (myControl.Visible =).

Determining the Data Type of a Variable

Visual Basic has a built-in VarType function that returns an integer indicating the variable’s type. Let’s see how you can use this function in the Immediate window.

[image: image] Hands-On 3.10 Asking Questions about the Variable Type

	Open the Immediate window (View | Immediate Window) and type the following statements that assign values to variables:

age = 28

birthdate = #1/1/1981#

firstName = "John"

	Now, ask Visual Basic what type of data each variable holds:

?varType(age)

When you press Enter, Visual Basic returns 2. The number 2 represents the Integer data type, as shown in Table 3.3.

?varType(birthdate)

Now Visual Basic returns 7 for Date. If you make a mistake in the variable name (let’s say you type birthday instead of birthdate), Visual Basic returns zero (0).

?varType(firstName)

Visual Basic tells you that the value stored in the firstName variable is a String (8).

Table 3.3Values returned by the VarType function.

[image: image]

USING CONSTANTS IN VBA PROCEDURES

The value of a variable can change while your procedure is executing. If your procedure needs to refer to unchanged values repeatedly, you should use constants. A constant is like a named variable that always refers to the same value. Visual Basic requires that you declare constants before you use them.

You declare constants by using the Const statement, as in the following examples:

Const dialogName = "Enter Data" As String

Const slsTax = 8.5

Const Discount = 0.5

Const ColorIdx = 3

A constant, like a variable, has a scope. To make a constant available within a single procedure, you declare it at the procedure level, just below the name of the procedure—for instance:

Sub WedAnniv()

 Const Age As Integer = 25

 ...instructions...

End Sub

If you want to use a constant in all the procedures of a module, use the Private keyword in front of the Const statement—for instance:

Private Const dsk = "B: " As String

The Private constant must be declared at the top of the module, just before the first Sub statement.

If you want to make a constant available to all modules in your application, use the Public keyword in front of the Const statement—for instance:

Public Const NumOfChar As Integer = 255

The Public constant must be declared at the top of the module, just before the first Sub statement.

When declaring a constant, you can use any one of the following data types: Boolean, Byte, Integer, Long, Currency, Single, Double, Date, String, or Variant.

Like variables, constants can be declared on one line if separated by commas—for instance:

Const Age As Integer = 25, PayCheck As Currency = 350

Using constants makes your VBA procedures more readable and easier to maintain. For example, if you need to refer to a certain value several times in your procedure, use a constant instead of using a value. This way, if the value changes (e.g., the sales tax rate goes up), you can simply change the value in the declaration of the Const statement instead of tracking down every occurrence of the value.

Intrinsic Constants

Both Access and Visual Basic for Applications have a long list of predefined (intrinsic) constants that do not need to be declared. These built-in constants can be looked up using the Object Browser window, which was discussed in detail in Chapter 2.

Let’s open the Object Browser to look at the list of constants in Access.

[image: image] Hands-On 3.11 Exploring Access Constants

	In the Visual Basic Editor window, choose View | Object Browser.

	In the Project/Library list box, click the drop-down arrow and select the Access library.

	Enter constants as the search text in the Search Text box and either press Enter or click the Search button. Visual Basic shows the results of the search in the Search Results area. The right side of the Object Browser window displays a list of all built-in constants available in the Microsoft Access Object Library (see Figure 3.2). Notice that the names of all the constants begin with the prefix “ac.”

	To look up VBA constants, choose VBA in the Project/Library list box. Notice that the names of the VBA built-in constants begin with the prefix “vb.”

[image: image]
Figure 3.2. Use the Object Browser to look up any intrinsic constant.

SUMMARY

This chapter has introduced you to several important VBA concepts such as data types, variables, and constants. You learned how to declare various types of variables and define their types. You also saw the difference between a variable and a constant.

In the next chapter, you will expand your knowledge of Visual Basic for Applications by writing procedures and functions with arguments. In addition, you will learn about built-in functions that allow your VBA procedures to interact with users.

Contents

	Cover page

	Opening Page

	License and Disclaimer

	Title page

	Copyright

	Dedication

	Contents

	Acknowledgments

	Introduction

	PART I ACCESS VBA PRIMER

	Chapter 1 Getting Started with Access VBA

	Chapter 2 Getting to Know Visual Basic Editor (VBE)

	Chapter 3 Access VBA Fundamentals

	Chapter 4 Access VBA Built-In and Custom Functions

	Chapter 5 Adding Decisions to Your Access VBA Programs

	Chapter 6 Adding Repeating Actions to Your Access VBA Programs

	Chapter 7 Keeping Track of Multiple Values Using Arrays

	Chapter 8 Keeping Track of Multiple Values Using Collections

	Chapter 9 Getting to Know Built-In Tools for Testing and Debugging

	PART II ACCESS VBA PROGRAMMING WITH DAO AND ADO

	Chapter 10 Data Access Technologies in Microsoft Access

	Chapter 11 Creating and Manipulating Databases with DAO

	Chapter 12 Creating and Manipulating Databases with ADO

	PART III ACCESS STRUCTURED QUERY LANGUAGE (SQL)

	Chapter 13 Creating, Modifying, and Deleting Tables and Fields

	Chapter 14 Enforcing Data Integrity and Relationships between Tables

	Chapter 15 Defining Indexes and Primary Keys

	Chapter 16 Views and Stored Procedures

	PART IV IMPLEMENTING DATABASE SECURITY

	Chapter 17 Implementing Database Security with DDL

	Chapter 18 Implementing User-Level and Share-Level Security

	PART V VBA PROGRAMMING IN ACCESS FORMS AND REPORTS

	Chapter 19 Enhancing Access Forms

	Chapter 20 Using Form Events

	Chapter 21 Events Recognized by Form Controls

	Chapter 22 Enhancing Access Reports and Using Report Events

	PART VI ENHANCING THE USER EXPERIENCE

	Chapter 23 Customizing the Menu System in Access

	PART VII ADVANCED CONCEPTS IN ACCESS VBA

	Chapter 24 Creating Classes in VBA

	Chapter 25 Advanced Event Programming

	PART VIII VBA AND MACROS

	Chapter 26 Macros and Templates

	PART IX WORKING TOGETHER: VBA, XML, AND RESTAPI

	Chapter 27 XML Features in Access 2021

	Chapter 28 Access and REST API

	Appendix: Installing Internet Information Services (IIS)

	Index

OEBPS/images/Chap02_Acc21_Fig05.jpg
@ Microsoft Visual Basic for Applications - [Form_Order Details (Code)]

gfile Edit View Insert Debug Run Tools Add-Ins Window Help

= - Bl (=]

(General)

(Declarations) v

&5 Northwind (Northwind 2007)

-5 Microsoft Access Class Objects
8 Form_inventory List
[Form_Order Details
[B Form_Order Subform for Order Details
[8 Form_Purchase Order Details
B Form_Purchases Subform for Purchase Order Details
[B Form_Receving Subform for Purchase Order Details
B Form_sales Reports Dialog
B Report_Monthly Sales Report
B Report_Quarterly Sales Report
B Report_Yearly Sales Report

E-E5 Modules
2 customerorders
2 DomainFunctionWrappers

Properties - E-mail Address

E-mail Address TextBox

Alphabetic Categorized

((Name) E-mail Address
Afterupdate

AllowAutoCorrect True

AutoTab False
BackColor 16777215
Backshade 100

Backstyle 1
BackThemeColorindex -1

BackTint 100
BeforeUpdate

((General)

‘Auto_Logod

(Auto_Titie0

BoxOrderHeader
boxShippingAddress
boxShippingData
lcmdClearAddress

lcmdClose
lcmdClose_LayoutLabel
lcmdCompleteOrder
lcmdCompleteOrder_LayoutLabel
lcmdCreatelnvoice
cmdCreatelnvoi
lcmdDeleteOrder
lcmdDeleteOrder_LayoutLabel
lcmdShipOrd
lcmdShipOrder_LayoutLabel
(Customer_ID

_LayoutLabel

FormFooter
FormHeader
Label92

Label93

Notes

(Order_Date
(Order_Details_Page
Paid_Date

) Then

etWrapper
Customers Extended”, "[ID] = "

! [Contact Name]

ss] = ![Address]
= 1[City]
/Province] = ![State/Province]

ostal Code] ! [ZIP/Postal Code
ry/Region] = ![Country/Region]

Beep

Private Sub cmdDeleteOrder_Click()
If IsNull (Me![Order ID]) Then

OEBPS/images/Chap02_Acc21_Fig08.jpg
1 Options

~ Editor Editor Format General Docking
Dockable
Immediate Window
Locals Window
Watch Window
Project Explorer
Properties Window

(C) object Browser

Help

OEBPS/css/page-template.xpgt

	
		
	

	
		
	

	
		
	

	
		
	

	
		
				
			
				
		
	

	

OEBPS/images/Chap02_Acc21_Fig09.jpg
~ Northwind - Project Properties

General Protection

Project Name:
Northwind

Project Description:

Project Help
Help File Name: Context ID:
0
Conditional Compilation Arguments:

OEBPS/images/Chap02_Acc21_Fig06.jpg
Private Sub Form_Current ()
SetFormState
End Sub

Current

Beforelnsert
BeforeQuery
BeforeRender
BeforeScreenTip

Private Sub Form Load()
SetFormState
End Sub

BeforeUpdate
Click

Close
CommandBeforeExecute
CommandChecked
CommandEnabled
CommandExecute

Function GetDefaultSalesPerson
GetDefaultSalesPersonID
End Function

DataChange
DataSetChange
DbIClick
Deactivate
Delete

Ditty

Function ValidateShipping() As
If IsNull (Me! [Shipper ID])
If Nz (Me! [Ship Name]) e
If Nz (Me! [Ship Address])
If Nz (Me![Ship City])
If Nz (Me! [Ship State/Provi
If Nz (Me![Ship ZIP/Postal

ValidateShipping = True
End Function

Error

Filter
GotFocus
KeyDown
KeyPress
KeyUp
Load
LostFocus
MouseDown
MouseMove
MouseUp
MouseWheel

OEBPS/images/Chap02_Acc21_Fig07.jpg
Private Sub Form Current()
SetFormState
End Sub

Private Sub Form Load()
SetFormState
End Sub

Private Sub Form Current()
I SetFormState

End Sub

Private Sub Form Load()
SetFormState
End Sub

Function GetDefaultSalesPersonID() As Long
GetDefaultSalesPersonID = GetCurrentUserID()
End Function

OEBPS/images/pub.jpg
(V)

MERCURY LEARNING AND INFORMATION

Dulls, Virginia
Boston, Massachusetts
‘New Delhi

OEBPS/images/QuickInfoButton.jpg

OEBPS/images/View-Code-button.jpg

OEBPS/images/PropertiesMethodsButton.jpg

OEBPS/images/ViewCodeButton.jpg

OEBPS/images/ListConstantsButton.jpg
[o0]

OEBPS/images/ObjectBrowserButton.jpg

OEBPS/images/OutdentButton.jpg

OEBPS/images/UncommentBlockButton.jpg

OEBPS/images/ParameterInfoButton.jpg

OEBPS/images/UserForm-button.jpg

OEBPS/images/IndentButton.jpg

OEBPS/images/Chap02_Acc21_Fig01.jpg
@ = ||G

;A Northwind (Northwind 2007)
-5 Microsoft Access Class Objects

E8 Form_Inventory List

8 Form_order Details

E8 Form_order Subform for Order Details

F8 Form_Purchase Order Details

F8 Form_Purchases Subform for Purchase Order Details
[8 Form_Receiving Subform for Purchase Order Details
E8 Form_Sales Reports Dialog

4B Report_Monthly Sales Report

4B Report_Quarterly Sales Report

4B Report_Yearly Sales Report

-5 Modules

' ¥4 CustomerOrders

é{ DomainFunctionWrappers

\4{ Inventory

w4 Privileges

4% PurchaseOrders

¢ utilities

&5 Class Modules

) ErrorHandling

) RecordsetWrapper

OEBPS/images/Chap02_Acc21_Fig02.jpg
ﬁ Microsoft Visual Basic for Applications
File Edit View Insert Debug Run Tools Add-Ins Window Help
PEvd| s @Al e 0 RISSY » 0] o

Project Explorer (Ctrl+R)

OEBPS/images/Chap01_Acc21_Fig20.jpg
Trust Center

Trusted Publishers

Trusted Documents

Trusted Add-in Catalogs
Addins

ActiveX Settings

Macro Settings

Message Bar

Privacy Options

Form-based Sign-in

Trusted Locations

Warning: All these locations are treated as trusted sources for opening files. If you change or add a location, make
sure that the new location is secure.

Path De:
User Locations
CAVBAACcess2021_ByExample_Primer\ Trusted folder to be used for Hands-On exe.. 12/3/2021 630 PM
CAVBAACcess2021_ByExample\ 11/12/2021 1206 PM|
CAVBAACcess2021 XML\ 10/26/2021 827 PM
C\.icrosoft Office\root\Office 6\ACCWIZ\ Access default location: Wizard Databases
Policy Locations.

Pati CAVBAACcess2021_ByExample_Primer\

Description: Trusted folder to be used for Hands-On exercises in Chapters 1 through 9.

Date Modified: 12/3/2021 6:30 PM
Sub Folders: Disallowed

Add new location... | | Remove | | Modify..

Allow Trusted Locations on my network (not recommended)
Disable all Trusted Locations

oK Cancel

OEBPS/images/Chap02_Acc21_Fig03.jpg
Toggle Folders

View Object

View Code

OEBPS/images/Chap02_Acc21_Fig04.jpg
= =1 [=|

=-&% Northwind (Northwind 2007)

& {55 Microsoft Access Class Objects
E Form_Inventory List
=
E Form_Order Subform for Order Details
E Form_Purchase Order Details
E Form_Purchases Subform for Purchase Order Details
E Form_Receiving Subform for Purchase Order Details
E Form_Sales Reports Dialog
E -] Report_Monthly Sales Report
4B Report_Quarterly Sales Report
B Report_Yearly Sales Report

=425 Modules

| d{ CustomerOrders
é{ DomainFunctionWrappers
4{ Inventory
43{ Privileges
¥4% PurchaseOrders
i utilities

-5 Class Modules
@) ErrorHandling

Properties - E-mail Address

E-mail Address TextBox v
Alphabetic ~ Categorized

(Name) E-mail Address

|AfterUpdate I
AllowAutoCorrect True

AutoTab False

BackColor 116777215

BackShade 100

BackStyle 1

BackThemeColorIndex -1

BackTint 100

BeforeUpdate |

BorderColor 12632256

BorderShade 100

BorderStyle 1

BorderThemeColorindex -1

BorderTint 1100

BorderWidth 0

OEBPS/images/Chap01_Acc21_Fig18.jpg
Trust Center

Trusted Publishers.

Trusted Documents.
Trusted Add-in Catalogs
Addins

ActiveX Settings

Macro Settings
Message Bar

Privacy Options
Form-based Sign-in

Trusted Locations

Warning: Al these locations are treated as trusted sources for opening files. If you change or 26d a location, make
sute that the new location s secure.

User Locations
I 21_ByBrample\
(CAVBAACcess2021 XML\
(CAicrosoft Office\0ONOffice IACCWIZ\ Access default location: Wizard Databases

Policy Locations

path: CAVBAACcess2021_ByExample\
Description:

Date Modified: 11/12/202112:06 PM
SubFolderss Allowed

Addnewlocation-. | Remove | [Modiy.. |
() Allog Trusted Locations on my network (not recommended)
] Disable all Trusted Locations

OEBPS/images/Chap01_Acc21_Fig19.jpg
 Microsoft Office Trusted Location 2 X

' Warning: This location will be treated as a trusted source for opening files. If you
change or add a location, make sure that the new location is secure.

Path:
C:\VBAACcess2021_ByExample_Primer\ ‘

Browse...

3 Subfolders of this location are also trusted
Description:
Trusted folder to be used for Hands-On exercises in Chapters 1 through QI

Date and Time Created: 12/3/2021 6:30 PM

OK Cancel

OEBPS/images/Chap01_Acc21_Fig16.jpg
AssetTracking : Database- C:\VBAAccess2021_ByExample_Primer\AssetTracking.accdb (Access 2007 - 2016 file f...

© Info

(n) Home
AssetTracking
[New C:» VBAACCess2021_ByExample._Primer
5 Open @ Copy path | | > Open file location
@ Security Warning
Active content might contain viruses and other security hazards. The following
Enable content has been disabled:
Content v = VBAMacros
You should enable content only if you trust the contents of the file.
Trust Center Settings
N More ive ntent
ﬁ Compact & Repair
13 Help prevent and correct database file problems by using Compact and Repair.

Compact &
Repair Database

Encrypt with Password

Use a password to restrict access to your database. Files that use the 2007
Encrypt with Microsoft Access file format or later are encrypted.
Password

Account

Feedback

Options

OEBPS/images/Chap01_Acc21_Fig17.jpg
i
Access Options

X
General
Help keep your documents safe and your computer secure and healthy.

Current Database
Datasheet Security & more
Object Designers Visit Office.com to learn more about protecting your privacy and security.
Froofing Microsoft Trust Center
Language

N . Microsoft Access Trust Center
Client Settings
c ize Ribb The Trust Center contains security and privacy settings. These settings help keep your =

astomize Ribbon computer secure. We recommend that you do not change these settings. Trust Center Settings...
Quick Access Toolbar
Add-ins

o

OEBPS/images/sidebar.jpg
SIDEBAR

OEBPS/images/RGB_Colors.jpg
RGB Colors

Color values are combinations of red, green, and blue components. The
RGB function has the following syntax:

RGB(red, green, blue)

The intensity of red, green, and blue can range from 0 to 255. Here are
some frequently used colors:

White 255, 255,255 Dark Green 0,128,0
Black 0,0,0 Cyan 0;255)255
Gray 192,192,192 Dark Cyan 0,128,128
Red 255,0,0 Blue 0,0, 255
Dark Red 128,0,0 Dark Blue 0,0,128
Yellow 255, 255,0 Magenta 255707255
Dark Yellow 128, 128, 0 Dark Magenta 128, 0, 128

Green 0,255,0

OEBPS/images/SearchButton.jpg

OEBPS/images/Chap01_Acc21_Fig11.jpg
X | 53] Asset Details X

+ Property Sheet

Selection type: Text ox 8l

Manufacturer v

Event other Al

On Dirty

On Change
On Got Focus
e Ontst Focus
Asset Details Comments 06 b Clek
On Mouse Down
On Mouse Up
On Mouse Move

_____________ On Key Down
[Category Category v ments oneyup

Oney

Manufacturer || Manufacturer oy 1
onest

Model Model onem

JAcquired Date | Acquired Date

E urrent Value
Ecndi(ion

Current Value

|
|
|
[Purchase Price Purchase Price |
]
|
|
|

Condition

scolitock [FE N

OEBPS/images/Chap01_Acc21_Fig12.jpg
Choose Builder ? X

Macro Builder

areskm Builder

Cancel

OEBPS/images/Chap01_Acc21_Fig09.jpg
Property Sheet

Selection type: Form

Form

Format Data Event Other All

On Current

On Load

On Click

After Update

Before Update

Before Insert

After Insert

Before Del Confirm

On Delete

After Del Confirm

On Dirty

On Got Focus

On Lost Focus

On Dbl Click

On Mouse Down

On Mouse Up

On Mouse Move

On Key Up

On Key Down

On Key Press
On Undo

On Open

On Close

On Resize

On Activate
On Deactivate
On Unload

On Error

On Mouse Wheel
On Filter

On Apply Filter
On Timer

Timer Interval 0

On Selection Change

Before Render

After Final Render

After Render

After Layout

On Connect

On Disconnect

Before Query

On Query

On Data Change

On Data Set Change

On Cmd Execute

On Cmd Before Execute

On Cmd Enabled

On Cmd Checked

On View Change

On PivotTable Change

Before Screen Tip

Key Preview No

OEBPS/images/Chap01_Acc21_Fig10.jpg
accdb (Access 2007 - 2016 file format)

Access

file Home Create External Data Database Tools Help
TEp YLD
< %~ ™~ Bsove
View | Paste Refresh
v v Allv X Delete
Undo | Views | Clipboard 15 Sortiter Records

() SECURITY WARNING Some actve content has been disabled, ik for more detals,

£ Tell me what you want to do

=0
= S
- B [Y
find
Enable Content

All Access ... @ «
seorh.

Tables A A
B ases

B conaas

B siters

B setings

Queries

) Asets Brended

B asets Retired

B Contacs brended

Forms 2
B assetoesis

B assertin

B comactssesOaa.. w

 Form View

B

st %

Asset List

Text Formatting

1l

=) New Asset (2] E-mail List [a7] Contact List /] Show/Hide Fields () Show Retired
Open - Item ~ Category - Condition ~ Location - Purchase Price - | Current Value - Owner - |Acquire
(New) (1) Category (2) Good $0.00 5000
hssen i A Tvar1 [vive [1S7rRered] search D
swotose @ B N

OEBPS/images/Chap01_Acc21_Fig15.jpg
Manufacturer v | |LostFocus

Option Compare Database

Private Sub Manufacturer_ GotFocus ()
Me.Manufacturer.BackColor = RGB(0, 255, 0)
End Sub

Private Sub Manufacturer_ LostFocus ()
Me.Manufacturer.BackColor = RGB(255, 255, 255)
End Sub

OEBPS/images/Chap01_Acc21_Fig13.jpg
£ Microsoft Visual Basic for Applications - [Form_Asset Details (Code)]

B-d
Bk
Project - Assets
o3

(2] Modules

Properties - Manufacturer

na ¥ ¥FE »|@|nacll !
% % % [y LI e W X - R
X| [Manufacturer ~ | [GotFocus ~

@ File Edit View Inset Debug Run Tools Add-Ins Window Help

& Assets (Assetracking)

=45 Microsoft Access Class Objects
[B Form_Asset Details
[B Form_asset List

Manufacturer Textgox

<J|x

Alphabetic Categorized

(ame)

Afterupdate
AlowAutoCorrect
AutoTab

BackColor

Backshade

Backstyle
BackThemeColorindex
BackTint

Manufacturer

True
False
16777215
100

1

1

100

=;

Option Compare Database

Private Sub Manufacturer_GotFocus ()

End Sub

OEBPS/images/Chap01_Acc21_Fig14.jpg
Property Sheet

Selection type: Text Box

Manufacturer v

Format Data Event Other All

On Click

Before Update
After Update

On Dii

On Change

On Got Focus [Event Procedure]
On Lost Focus
On Dbl Click

On Mouse Down
On Mouse Up
On Mouse Move
On Key Down
On Key Up

On Key Press
On Enter

On Exit

On Undo

OEBPS/images/tbl3.2.jpg
Data Type Character
Integer %
Long &
Single !
Double #
Currency @
String $

OEBPS/images/Chap01_Acc21_Fig07.jpg
[12) Chap01 : Database- C:\VBAAccess2021_ByExample_Primer\Chap01.accdb (Access 2007 - 2016 file form... Julitta Korol

File Home Create External Data Database Tools Help Form Layout Design Arrange Format L Tellme

F= 2] Themes~ 8 (ogo

A = == El | d

view | B0 oot nsen | L) Tite AddExmmg Property
Sheet

v A] Fonts v ¥ Image¥ 3 Date and Time Fields
Views Themes Controls. Header / Footer Tools il
Table\ Fom\l X

All Access ... @ « + Property Sheet

Search.. L0 Selection type: Form sl
Tables S
B3 Tabler Fos =

Data Event Other Al
No
No
Al Records

Modules
& Modulel

»

Ribbon Name

Menu Bar__

cut Menu Bar

Help Context Id

Has Module

Use Default Paper Size
Fast Laser Printing
Tag

JRecorgi 1 <liofr | wr [SZn Search

Layout View ; scolitock [FE N

OEBPS/images/tbl3.3.jpg
Constant Value Description

vbEmpty 0 Empty (uninitialized)

vbNull 1 Null (no valid data)

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency value

vbDate 7 Date value

vbString 8 String

vbObject 9 Object

vbError 10 Error value

vbBoolean 11 Boolean value

vbVariant 12 Variant (used only with arrays of variants)
vbDataObject 13 Data access object

vbDecimal 14 Decimal value

vbByte 17 Byte value

vbLongLong 20 Long Long integer (on 64-bit platform only)
vbUserDefined Type 36 Variants that contain user-defined types
vbArray 8192 Array

OEBPS/images/Chap01_Acc21_Fig08.jpg
I Report_Reportl

y Modules
i 63{ Modulel
=25 Class Modules

) Class

OEBPS/images/Chap01_Acc21_Fig06.jpg
Immediate n

ShowMessage2 "I'm learning VBA."
ShowMessage3 "Keep on learning.", "John"
Call ShowMessage3("Keep on learning.", "John")
?addTwoNumbers

5

2addTwoNumbers2 (56, 24)

80
MsgBox ("Total:" & addTwoNumbers2 (34, 80))

OEBPS/images/tbl3.1.jpg
Data Type

Storage Size

Range

Byte 1 byte A number in the range of 0 to 255.
Boolean 2 bytes Stores a value of True (0) or False (-1).
Integer 2 bytes A number in the range of -32,768 to 32,767.
The type declaration character for Integer is the percent sign
(%).
Long 4 bytes A number in the range of -2,147,483,648 to 2,147,483,647.
(long integer) The type declaration character for
Long is the ampersand (&).
LongLong 8 bytes Stored as a signed 64-bit (8-byte) number rang-
ing in value from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.
The type declaration character for LongLong is the caret (7).
LongLong is a valid declared type only on 64-bit platforms.
LongPtr 4 bytes on Numbers ranging in value from -2,147,483,648 to
(Long integer on | 32-bit; 2,147,483,647 on 32-bit systems; -9,223,372,036,854,775,808
32-bit systems; 8 bytes on 10 9,223,372,036,854,775,807 on 64-bit systems. Using LongPtr
LongLong integer | 64-bit enables writing code that can run in both 32-bit and 64-bit
on 64-bit sys- environments.
tems)
Single 4 bytes Single-precision floating-point real number ranging in value
(single-precision from -3.402823E38 to -1.401298E-45 for negative values and
floating-point) from 1.401298E-45 to 3.402823E38 for positive values.
The type declaration character for Single is the exclamation
point (!).
Double 8 bytes Double-precision floating-point real number in the range
(double-precision of —1.79769313486231E308 to —4.94065645841247E-324
floating-point) for negative values and 4.94065645841247E-324 to
1.79769313486231E308 for positive values.
The type declaration character for Double is the number sign
(#).
Currency 8 bytes Monetary values used in fixed-point calculations:

(scaled integer)

-922,337,203,685,477.5808 to 922,337,203,685,477.5807.
The type declaration character for Currency is the at sign (@).

OEBPS/images/tbl3.1a.jpg
Data Type

Storage Size

Range

Decimal

14 bytes

96-bit (12-byte) signed integer scaled by a variable power

of 10. The power of 10 scaling factor specifies the num-

ber of digits to the right of the decimal point, and ranges
from 0 to 28. With no decimal point (scale of 0), the larg-

est value is +/-79,228,162,514,264,337,593,543,950,335.

With 28 decimal places, the largest value is +/-
7.9228162514264337593543950335. The smallest nonzero
value is +/-0.0000000000000000000000000001.

You cannot declare a variable to be of type Decimal. You must
use the Variant data type. Use the CDec function to convert a
value to a decimal number:

Dim numDecimal As Variant

numDecimal = CDec(0.02 * 15.75 * 0.0006)

Date

8 bytes

Date from January 1, 100, to December 31, 9999, and times
from 0:00:00 to 23:59:59. Date literals must be enclosed within
number signs (#); for example: #January 1, 2011#

Object

4 bytes

Any Object reference.
Use the Set statement to declare a variable as an Object.

String
(variable-length)

10 bytes +
string length

A variable-length string can contain up to approximately 2
billion characters.
The type declaration character for String is the dollar sign ($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approximately 65,400
characters.

Variant
(with numbers)

16 bytes

Any numeric value up to the range of a Double.

Variant
(with characters)

22 bytes +
string length

Any valid nonnumeric data type in the same range as for a
variable-length string.

User-defined
(using Type)

One or more
elements

A data type you define using the Type statement. User-defined
data types can contain one or more elements of a data type, an
array, or a previously defined user-defined type. For example:

Type custInfo
custFullName as String
custTitle as String
custBusinessName as String
custFirstOrderDate as Date
End Type

OEBPS/images/Cover.jpg
ACCESS 2021 / MICROSOFT 365
PROGRAMMING BY EXAMPLE

] JULITTA KoROL

OEBPS/images/Chap01_Acc21_Fig01.jpg
Blank database
File Name
Chap01.accdb

CAVBAACcess2021 ByExample_Primer\

B

Create

=4

OEBPS/images/bho.jpg

OEBPS/images/Chap01_Acc21_Fig04.jpg
#3 Microsoft Visual Basic for Applications - [Module1 (Code)] - o X
FEile Edit View Insert Debug Run Tools Add-Ins Window Help -l X
BE~G| % D@aad9c »aaR §FY *|@|wm2co1

B RBL|FF OS2 (o222l a3 OD0F«
Project - Chap01 X|

o=@ B

| &% chapo1 (chapo1)
-5 Modules
44 Module1

(General) + | [(Dectarations)

Option Compare Database

Properties - Module1
Module1 Module
Alphabetic Categorized
(Name) Module1

OEBPS/images/Chap01_Acc21_Fig05.jpg
|(Geneml) v | | DisplayResult v

Option Compare Database

Sub ShowMessage ()
MsgBox "This is a message box in VBA."
End Sub

Sub ShowMessage2 (strMessage As String)
MsgBox strMessage

End Sub

Sub ShowMessage3 (strMessage As String, strUserName As String)
MsgBox strUserName & ", your message is: " & strMessage

End Sub

Function addTwoNumbers ()
Dim numl As Integer
Dim num2 As Integer

numl = 3

num2 = 2

addTwoNumbers = numl + num2
End Function

Function addTwoNumbers2 (numl As Integer, num2 As Integer)
addTwoNumbers2 = numl + num2
End Function

Sub DisplayResult ()
MsgBox ("Total=" & addTwoNumbers2 (34, 80))
End Sub

OEBPS/images/Chap01_Acc21_Fig02.jpg
File Home

Gy

Compact and
Repair Database

Tools
All Access ...
Search..

Tables

B3 Tabler

Julitta Korol

Help Table Fields Table £ Tell me what you want to do

=

[T Database Documenter

1=\ iheies feriomiance Access SharePoint | Add-
Analyze Table Database ins v
Analyze Move Data Add-ins

Create External Data Database Tools
E [ms]

i N =g =5
Visual Run Relationships Object
Basic | Macro Dependencies
Macro Relationships
Visual Basic (Alt+F11)

Open the Visual Basic editor. \dd -
—paar v —

OEBPS/images/Chap01_Acc21_Fig03.jpg
¢] Microsoft Visual Basic for Applications
File Edit View | Insert | Debug Run Tools Add-Ins Window Help
B~ d| %8 Procedue. FRART-)

n @y E(C

&% chapo1 (Chapo1)

Alphabetic Categorized

OEBPS/images/Chap02_Acc21_Fig15.jpg
Options

i
i Editor Editor Format General Docking

Code Settings

8 Auto Syntax Check 8 Auto Indent
Require Variable Declaration
Auto List Members

8 Auto Quick Info

. Auto Data Tips

Tab Width: 4

Window Settings
@ 0rag-and-Drop Text Editing
& pefault to Full Module View
Procedure Separator

OEBPS/images/Chap02_Acc21_Fig16.jpg
Project/ Library
Listbox = Northwind 2007

Search Box. Form

Search Results

Member
B3 AllowFormView
Search Results P i i
are shown here “ AllowFormView
AllowFormView
Classes Members of ‘Form_Inventory List
@ <globals> IS ActiveControl
& CustomerOrders AfterDelConfirm
=F CustomerOrderStatusEnum AfterFinalRender
=¥ DomainFunctionWrapperEnum Afterinsert
! DomainFunctionWrappers AfterLayout
& ErrorHandling AfterRender
A Form_InventoryList | AfterUpdate
& Form_Order Details AllowAdditions
&) Form_Order Subform for Order Details AllowDatasheetView
& Form_Purchase Order Details AllowDeletions
Code Template | Private Class Form_Inventory List

Member of Northwind 2007

OEBPS/images/Chap03_Acc21_Fig02.jpg
} Access

SRR

[E—r Y

@) AutoCorrect
&) BoundObjectFr:
@) Chart

@) ChartAxis

@) ChartAxisCollec
@) ChartSeries
@) ChartSeriesColl
& Chartvalues
) ChartValuesCol
@) CheckBox

@) CodeData

&) CodeProject
&) ComboBox I

A

ontrol

& Controls

&) CurrentData

@) CurrentProject

£ CustomControl

@3 Dependencyinfc

&3 DependencyOb

& DoCmd

Module Constants
Member of Access
Predefined constants

IPEEEEPENPEEEEREEEREEERE

Search Results
Library Class Member
. Access #F AcCommand (& acCmdListConstants
Access Constants
. Access 3 OldConstants
Classes Members of 'Constants'

acAltMask
acApplyFilter
acApplyServerFilter
acCloseFilterWindow
acCloseServerFilterWindow
acCopy

acCtriMask

acCut
acDataErrAdded
acDataErrContinue
acDataErrDisplay
acDelete
acDeleteCancel
acDeleteOK
acDeleteUserCancel
acEditMenu
acEffectChisel
acEffectEtched
acEffectNormal
acEffectRaised
acEffectShadow
acEffectSunken
acExit

OEBPS/images/Chap02_Acc21_Fig17.jpg
DoCmd.OpenForm "Inventory List"
Debug.Print Forms! [Inventory List].RecordSource |

OEBPS/images/Chap03_Acc21_Fig01.jpg
‘(Geneml) v ‘ ’ExpenseRep

Option Compare Database
Option Explicit

Dim slsTax As Single

' revised CalcCost procedure with variable declarations

Sub CalcCost_Revised()
' declaration of variables
Dim slsPrice As Currency
'Dim slsTax As Single
Dim cost As Currency
Dim strMsg As String

slsPrice

=3
slsTax = 0.0

5
85

cost = Format (slsPrice + (slsPrice * slsTax), "0.00")
strMsg = "The calculator total is $" & cost & "."

MsgBox strMsg
End Sub

Sub ExpenseRep ()
Dim slsPrice As Currency
Dim cost As Currency

slsPrice = 55.99
cost = slsPrice + (slsPrice * slsTax)

MsgBox slsTax
MsgBox cost
End Sub

=[] —

OEBPS/images/CompleteWordButton.jpg
A2

OEBPS/images/CommentBlockButton.jpg

OEBPS/images/Chap02_Acc21_Fig12.jpg
(General)

OpenAForm

<

Option Compare Database
Option Explicit

Sub OpenAForm()

DoCmd.OpenForm

End Su,AsAcWindowMode = acWindowNormal], [OpenArgs])

OpenForm(FormName, [View As AcFormView = acNormal], [FilterName), [WhereCondition), [DataMode As AcFormOpenDataMode = acFormPropertySettings], [WindowMode

OEBPS/images/Chap02_Acc21_Fig13.jpg
|(General) | |OpenAForm

Option Compare Database
Option Explicit

Sub OpenAForm()

DoCmd.OpenForm "Products”,

OpenForm(FormName, [View As. @ [acDesign _lterName), [WhereCondition), [DataMode As AcFormOpenDataMode = acFormPropertySettings],
End SulWindowMode As AcWindowMode () acFormDS

® acFormPivotChart
® acFormPivotTable
® aclayout

@ acNormal
® acPreview

OEBPS/images/Chap02_Acc21_Fig10.jpg
Complete Word

Parameter Info

Quick Info

Toggle
Breakpoint

List
Constants
List
Properties/Methods

OEBPS/images/Chap02_Acc21_Fig11.jpg
(General)

OpenAForm

<

Option Compare Database
Option Explicit

Sub OpenAForm()
DoCmd.

End

=& Close

OEBPS/images/Chap02_Acc21_Fig14.jpg
| (General) \d

Option Compare Database
Option Explicit

Sub OpenAForm()

.OpenForm "Products", acNormal

DoCmd As DoCmd

End Sub

