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For Andrea, my strange attractor 


Vorwort

Physik ist wie Sex. Manchmal kommt etwas Nützliches 
dabei heraus. Aber deshalb betreiben wir sie nicht. 
Richard Feynman
 
Als ich nach dem Erfolg des Mathematikverführers gefragt wurde, welcher Disziplin ich mich denn als Nächstes widmen würde, musste ich nicht lange nachdenken – es war klar, dass es um Physik gehen würde. Mathematik habe ich studiert, und sie ist für mich immer noch die Königin der Wissenschaften (und ich würde auf sie das Eingangszitat von Feynman anwenden), aber die Physik fasziniert mich nicht weniger. Schafft die Mathematik aus quasi nichts als einem durch die Evolution geformten Säugetierhirn die komplexesten Gedankenwelten, so gehen die Physiker noch einen Schritt weiter und sagen: Wir können mit mathematischen Gleichungen und Modellen die Welt beschreiben, vielleicht sogar komplett. Denn die anderen Naturwissenschaften sind ja nichts als Fortschreibungen der Physik: Die Chemie beschäftigt sich mit den Reaktionen zwischen Molekülen, die von der Physik beschrieben werden, die Biologie ist die Wissenschaft vom Leben, das sich durch chemische Reaktionen beschreiben lässt, die wiederum auf die Physik zurückgehen. Damit will ich keinesfalls einem totalen Reduktionismus das Wort reden – ab einer gewissen Stufe der Komplexität hilft die Physik nicht mehr weiter, der Laplace’sche Dämon ist ja ein Fabelwesen (siehe Seite 191). Aber die Physik liegt eben tatsächlich jedem Phänomen in dieser Welt zugrunde, selbst der Entstehung des gesamten Universums.
Aber keine Sorge, um die physikalischen Modelle, mit denen die Urknall- oder Stringtheoretiker rechnen, geht es in diesem Buch nicht. Wie schon der Mathematikverführer, so befasst sich auch der Physikverführer vorwiegend mit jenen Grundlagen der Wissenschaft, die für Laien nachvollziehbar sind. Von den Kapiteln 8 und 14 abgesehen, in denen es um Relativitäts- und Quantentheorie geht, heißt das: Wir beschäftigen uns mit einer Welt, in der praktisch alle Phänomene auf die Kollision kleiner oder großer Massen zurückzuführen sind. Größen wie Kraft, Beschleunigung und Energie reichen aus, um diese Welt zu beschreiben, sei es im Makroskopischen – etwa wenn Autos zusammenstoßen – oder im Mikroskopischen: Temperatur ist die mittlere Bewegungsenergie von Teilchen, die wir uns wie kleine Gummibälle vorstellen, und Druck ist, wenn diese Gummibälle gegen die Wand eines Behälters knallen. Das Buch zeigt, wie weit ein solch naives physikalisches Modell reicht: Immerhin erklärt es, warum Flugzeuge fliegen und warum es unmöglich ist, ein Perpetuum mobile zu bauen. Das ließe sich noch ausdehnen auf elektrische und magnetische Phänomene, die ich in diesem Buch nur am Rande streife.
Aber Moleküle sind keine Gummibälle, sie bestehen aus Atomen, diese wiederum setzen sich aus kleineren Elementarteilchen zusammen. Und wenn Sie immer noch glauben, dass ein Atomkern ein brombeerartiger kleiner Knubbel aus Neutronen und Protonen ist, um den in einiger Entfernung Elektronen kreisen wie Mücken um eine Glühbirne – dann lassen Sie es sich gesagt sein: Auch das sind nur Hilfsvorstellungen, die unsere Phantasie anregen sollen. In der «wirklichen» Physik zerrinnen all diese Kügelchen irgendwann zu Wellenfunktionen, die durch den leeren Raum wabern und nur noch Wahrscheinlichkeiten beschreiben. Konkret vorstellen können sich das auch Physiker nicht mehr, und es gibt einen fast religiösen Streit darüber, wie man die – experimentell gut bestätigten – Resultate der Theorie interpretieren soll (siehe Kapitel 14).
Wie schon der mathematische Vorgänger, so enthält auch der Physikverführer Formeln. Ich glaube immer noch, dass eine gute mathematische und physikalische Formel einen Zusammenhang besser auf den Punkt bringt als ein blumiger Satz. Andererseits weiß ich, dass man Formeln nicht lesen kann wie einen unterhaltsamen Text, dass man Muße dazu braucht und manchmal sogar Papier und Bleistift zum Nachrechnen. Deshalb habe ich die Abschnitte, in denen gerechnet wird, noch deutlicher kenntlich gemacht. Sie können Sie überschlagen oder für später aufheben und trotzdem den Gedankengang des Kapitels verstehen. Absolut verzichtbar sind sie nicht – sonst hätte ich ja drauf verzichtet!
Der Physikverführer ist kein Lehrbuch und erhebt keinen Anspruch auf Vollständigkeit. Er soll dem Leser einige physikalische Begriffe anhand von amüsanten Geschichten vermitteln oder wieder ins Gedächtnis zurückrufen, und wenn Sie einen Bereich vermissen, dann liegt es wahrscheinlich daran, dass mir dazu keine amüsante Geschichte eingefallen ist oder das Buch schon voll war. Ich muss ja kein Curriculum abarbeiten, sondern freue mich, wenn ich bei dem einen oder anderen genug Spaß und Neugier auslöse, dass er die Lücken auf eigene Faust stopfen kann.
Danken möchte ich an dieser Stelle meiner Agentin Heike Wilhelmi und meinem Lektor Frank Strickstrock bei Rowohlt; Bernd Schuh und Max Rauner für das Gegenlesen des Manuskripts und einige wichtige physikalische Hinweise; Rüdiger Dammann von Booklett, der die Idee zum Mathematikverführer hatte, ohne den es keinen Physikverführer gäbe. Und meinem Sohn Lukas Engelhardt für die Überarbeitung der Grafiken in diesem Buch.
 
Hamburg, im Oktober 2010
Christoph Drösser


1 Zu früh gefreut

oder
Von wegen «heureka!»
 
Archimedes geht unruhig auf und ab. Eigentlich wollte er sich an diesem Nachmittag bei einem warmen Bad ausruhen, ist daher schon früher als sonst ins Badehaus eingekehrt. Die anderen Männer, die ebenfalls hergekommen sind, um der Hektik der Straßen von Syrakus und vielleicht auch dem häuslichen Regiment ihrer Ehefrauen zu entkommen, werfen ihm schon verstohlene Blicke zu. Wie soll man entspannen, wenn dieser Mann dort offenbar den Rat Homers missachtet, das Bad als «Mittel gegen geistesentkräftende Arbeit» zu nutzen? Mit einer Hand hält er das Tuch fest, das seine Blöße bedeckt, und geht schwitzend und schnaufend hin und her. Kein sehr schöner Anblick. Aber niemand wagt es, das laut zu sagen – schließlich ist dieser Archimedes nicht nur ein von allen bewunderter Denker, sondern auch ein guter Freund von König Hieron II.
Und der Gedanke an diesen König ist es, der Archimedes nicht zur Ruhe kommen lässt. Nein, es geht nicht um die phantastischen Kriegsmaschinen, die der Erfinder für Hieron bauen soll, zur Abwehr von Römern und Karthagern – die Konstruktionszeichnungen für die Katapulte und Spiegel sind weitgehend fertig. Sie müssen nur noch von Handwerkern in die Wirklichkeit umgesetzt werden, und Archimedes hat keinen Zweifel, dass seine revolutionären Erfindungen funktionieren werden. Nein, es geht um ein scheinbar simples Problem, vor das ihn der König am Morgen gestellt hat.
Hieron II., auch «der Jüngere» genannt, ist ein hochdekorierter Krieger und wittert hinter jedem Strauch einen Feind. Archimedes ist einer der wenigen, denen der König über den Weg traut – der Goldschmied Philippos, der seinen kleinen Laden in einer schäbigen Gasse der Altstadt hat, gehört gewiss nicht zu diesem Kreis. Diesem Philippos hatte Hieron zwei Minen (nach heutigen Einheiten etwa ein Kilogramm) reines Gold überlassen, mit dem Auftrag, daraus einen Kranz zu fertigen. Den will Hieron am berühmten Heiligtum des Apollon niederlegen, natürlich mit großem Brimborium, schließlich soll jeder Bürger von Syrakus sehen, was für ein gottesfürchtiger Mann der König ist.
Philippos hat einen wunderschönen Kranz gefertigt, einen recht bescheidenen Lohn für seine Arbeit kassiert, und der Kranz wiegt auch genau zwei Minen. So weit, so gut, alle könnten zufrieden sein – aber Hieron ist immer noch misstrauisch. Was, so hat der König heute Morgen zu Archimedes gesagt, wenn der Goldschmied heimlich einen Teil des Goldes abgezweigt und den Rest mit Silber gestreckt hätte? Schon eine zehntel Mine, also zehn Drachmen, würde den armen Schlucker zu einem reichen Mann machen. Und äußerlich könnte man dem Gold eine solche Beimischung nicht ansehen. «Ich traue diesem Philippos nicht», hat Hieron zu Archimedes gesagt. «Hier, nimm den Kranz mit in deine Werkstatt, untersuche ihn, so viel du willst – aber bitte lass ihn ganz, er ist wirklich prächtig geworden! Und sag mir morgen, ob er echt ist oder ob Philippos geschummelt hat!» Und als Beweis seines Vertrauens zu dem Gelehrten hat er ihm noch einen Goldbarren mitgegeben, der genauso viel wiegt wie der Kranz.
Dürfte Archimedes den Goldschmuck einschmelzen, dann wäre die Sache natürlich kein Problem. Jeder weiß, dass Gold schwerer ist als Silber, dass also ein Barren Silber bei gleichem Gewicht größer ist als ein Goldbarren beziehungsweise bei gleicher Größe leichter. Der Unterschied ist beträchtlich: Gold wiegt bei gleichem Volumen fast doppelt so viel wie Silber. Also müsste Archimedes nur den Kranz einschmelzen, zu einem Barren formen und das Volumen mit dem des Barrens vergleichen, den Hieron ihm mitgegeben hat. Archimedes hat schon schwierigere mathematische Probleme gelöst.
Aber er darf ja den schönen Kranz nicht zerstören, und dessen feinziselierte Form mit den angedeuteten Lorbeerblättern ist viel zu kompliziert, um dafür eine mathematische Formel zu entwickeln. Wie also kann man das Volumen des Kranzes mit dem des Goldbarrens vergleichen?
Ein Schmerzensschrei unterbricht Archimedes’ Gedankengang. «Beim Zeus, Archimedes, nun pass doch mal auf!» Der greise Dichter Theokrit hält sich den Fuß – offenbar ist ihm der grübelnde Gelehrte auf den kleinen Zeh getreten. «Seit zehn Minuten läufst du hier hektisch auf und ab», sagt Theokrit vorwurfsvoll, «du störst unsere Ruhe, und jetzt hast du mir auch noch auf den Fuß getreten. Wer ins Bad geht, der sollte seine Sorgen und Probleme draußen lassen! Deshalb sind wir hier nur unter Männern, und deshalb folgen wir den alten Regeln, die wir seit Hippokrates’ Zeiten beherzigen. Und dazu gehört: Im Bad herrscht Ruhe!»
Archimedes senkt schuldbewusst den Blick. Vor dem alten Dichter hat auch er Respekt. Und außerdem hat der durchaus recht mit seinem Verweis auf die alten Bräuche. Obwohl – die Sache mit der Geschlechtertrennung könnte man ja nochmal überdenken …
«Und wie siehst du überhaupt aus!», zetert der Alte weiter, der jetzt richtig in Rage zu kommen scheint. «Total verschwitzt, das Tuch klebt dir am Leib! Vielleicht solltest du mal das tun, wofür du hergekommen bist! Dort drüben hat ein Sklave gerade ein heißes Bad eingelassen – keiner hier wird es dir streitig machen!»
«Du hast recht, Theokritos», sagt Archimedes kleinlaut. «Und sicher wird das Bad nicht nur meinen Körper, sondern auch meine Gedanken reinigen.»
«Wollen wir hoffen», knurrt Theokrit, für den das Gespräch damit beendet ist.
Das Wasser dampft heiß in dem Marmorbecken, das bis eine Handbreit unter dem Rand gefüllt ist. Archimedes drückt einem Sklaven sein Tuch in die Hand und schwingt sich ins Becken, tunlichst darauf bedacht, dabei möglichst wenig Lärm zu machen. Dann lehnt er sich mit einem wohligen Seufzer zurück, schließt die Augen und taucht den ganzen Körper unter die Wasseroberfläche. Platsch! Alle Köpfe drehen sich um, als das Wasser über den Rand des Zubers und auf den Boden schwappt. Offenbar hat sich Archimedes verschätzt, und die Handbreit Luft über der Wasseroberfläche hat nicht gereicht, um die Körperfülle des Gelehrten aufzunehmen. Während er noch darüber nachsinnt, ob er in den letzten Monaten vielleicht ein paar Pfunde zugelegt hat, kommt Archimedes ein anderer Gedanke: Offenbar verdrängt sein Körper Wasser! So viel Wasser, wie sein eigenes Volumen beträgt. Wäre das Becken bis zum Rand gefüllt gewesen, dann wäre genau so viel Wasser über den Rand geschwappt, wie es dem Rauminhalt von Archimedes’ Körper entspricht …
«Heureka! Ich hab’s gefunden!», ruft Archimedes aus. Er steht im Becken auf, schwingt sich tropfnass, wie er ist, über den Rand und läuft splitternackt über den gefliesten Boden. «Heureka! Dass ich da nicht schon früher draufgekommen bin!» Erst als er den strafenden Blick des Theokrit bemerkt, greift Archimedes nach seinem Tuch und windet es notdürftig um seine Hüften. Sonst wäre er vielleicht noch splitternackt auf die Straße gelaufen. «Danke, Theokrit! Durch deinen Rat habe ich die Lösung des Problems gefunden! Danke! Und euch allen noch einen geruhsamen Nachmittag!» Und schon ist Archimedes aus der Tür. Die Männer im Bad schütteln nur den Kopf, dann ist erst einmal Ruhe.
Zurück in seiner Werkstatt, macht sich Archimedes gleich an die Arbeit, um seinen Geistesblitz in die Tat umzusetzen. Man kann, das hat ihn das Erlebnis in der Badeanstalt gelehrt, das Volumen eines Körpers messen, indem man ihn in ein Gefäß eintaucht, das randvoll mit Wasser gefüllt ist, und die überlaufende Menge auffängt und abmisst. Der Kranz und der Goldbarren wiegen beide gleich viel. Wenn sie beide aus reinem Gold sind, müssten sie auch gleich viel Wasser verdrängen. Ist das Gold im Kranz verunreinigt, müsste mehr Wasser überlaufen.
Archimedes stöbert im Regal mit seinen Gerätschaften und findet einen runden Tontopf, in dem sich der Kranz ganz versenken lässt, der Barren sowieso. Den Topf stellt er in eine flache Schüssel; sie soll das überlaufende Wasser aufnehmen. Nun füllt er den Topf bis zum Rand mit Wasser.
Als Erstes lässt er vorsichtig die goldene Krone hineinsinken. Der Wasserspiegel wölbt sich dabei wie eine Haut über der Öffnung des Topfes, und schließlich läuft das Wasser in einem kleinen Rinnsal auf einer Seite über, wie bei einem Blumentopf, in den man zu viel Wasser gegossen hat. Archimedes wartet, bis das Wasser zur Ruhe gekommen ist, und schüttet dann den Inhalt der flachen Schüssel in ein Weinglas. Erstaunlich, wie wenig Wasser das ist!
Dann fischt er den goldenen Kranz aus dem großen Gefäß und füllt das Wasser wieder bis zum Rand nach. Nun lässt er den Goldbarren hinein. Er erwartet, dass sich die Oberfläche wieder wölbt, aber diesmal schwappt das Wasser gleich über – durch die Welle, die der dicke Barren erzeugt hat, und weil der Rand ja schon nass war.
Das übergelaufene Wasser schüttet Archimedes in ein zweites Weinglas. Nun kann er die beiden Gläser nebeneinanderhalten und ihren Inhalt vergleichen. Tatsächlich, das erste Glas ist ein bisschen voller. Aber sind die beiden Versuche wirklich unter identischen Bedingungen gemacht worden?
Vor allem staunt Archimedes, wie wenig von dem Wasser überhaupt übergelaufen ist – ein verschwindender Anteil gegenüber dem Gesamtvolumen. Völlig überzeugt ist er von seinem Versuch selbst nicht. Er hat einfach zu viele Fehlerquellen, als dass man mit Gewissheit ein Urteil abgeben könnte. Und von diesem Urteil könnte immerhin das Leben des Goldschmieds Philippos abhängen.
«Von wegen heureka!», knurrt Archimedes. «Da hab ich mich wohl etwas zu früh gefreut. Aber es muss doch einen eleganteren Weg geben, den Unterschied zwischen echtem und falschem Gold zu bestimmen …»
Der Auftrieb bringt es an den Tag
Die oben erzählte Geschichte beruht auf dem Bericht, den uns der römische Schriftsteller Vitruv im ersten Jahrhundert hinterlassen hat. Als Architekt kannte er sich zwar mit der Wissenschaft seiner Zeit aus, aber die Beschreibung der «Heureka!»-Geschichte ist doch ein bisschen mager. Insbesondere erklärt die Handlung eben nicht die Entdeckung des sogenannten «Archimedischen Prinzips».
Was Archimedes in Vitruvs Geschichte angeblich so in Begeisterung versetzt, ist die recht simple Erkenntnis, dass Körper mit mehr Volumen mehr Wasser verdrängen, wenn man sie untertaucht. Wenn man weiß, dass Silber eine geringere Dichte als Gold hat und daher ein Körper aus Silber mehr Raum einnimmt als ein gleich schwerer Körper aus Gold, dann ist das fast schon banal. Das Archimedische Prinzip dagegen ist eine Aussage über die Auftriebskraft, die jeder Körper unter Wasser beziehungsweise in einem beliebigen Medium erfährt:
 
Ein Körper erfährt in einem Medium eine Auftriebskraft, die dem Gewicht des von dem Körper verdrängten Mediums entspricht. 
 
Wie diese Auftriebskraft zustande kommt, erkläre ich ausführlicher in Kapitel 6. Aus diesem Satz folgt zum Beispiel: Ein Schiff sinkt genau so tief ins Wasser ein, bis es so viel Wasser verdrängt hat, wie es selbst wiegt. Es bedeutet aber auch, dass ein Klumpen Silber im Wasser mehr Auftrieb bekommt als ein gleich schwerer Klumpen Gold – eben weil er mehr Wasser verdrängt. Genau genommen gilt das bereits in der Luft, nur wiegt die verdrängte Luft so wenig, dass man das in allen Rechnungen und Wägungen vernachlässigen kann.
Und diese Erkenntnis ist nicht banal. Sie widersprach damals ganz gewiss der Intuition, und sie bedeutete einen wissenschaftlichen Durchbruch, ohne den viele Erfindungen, bis hin zum modernen Flugzeug, nicht denkbar gewesen wären.
Aber schauen wir erst einmal, wie weit Archimedes mit seinem ersten Lösungsansatz gekommen wäre: Die goldenen Ehrenkränze, die im antiken Griechenland für die Götter geflochten wurden, hatten maximal einen Durchmesser von 20 Zentimetern. Wir gehen jetzt zu modernen Maßeinheiten über und nehmen an, dass der von König Hieron bestellte Kranz diese Größe hatte und eine Masse von 1000 Gramm. Um das Volumen zu berechnen, brauchen wir die Dichte der beiden Materialien. Gold hat eine Dichte von 19,3 g/​cm3, die Dichte von Silber ist 10,5 g/​cm3.

Das Volumen einer reinen Goldkrone ist leicht zu berechnen: Man teilt 1000 Gramm durch die Dichte und erhält 51,8 Kubikzentimeter.

Nehmen wir an, in der gefälschten Krone hätte der betrügerische Goldschmied 100 g des Goldes durch Silber ersetzt. Diese 100 g Silber haben ein Volumen von 100/​10,5 = 9,5 cm3. Das Gold, das dadurch ersetzt wurde, hatte ein Volumen von 5,2 cm3 – es bleibt ein Überschuss von 4,3 cm3, das ist der zusätzliche Rauminhalt der falschen Krone!

Um den goldenen Kranz komplett ins Wasser eintauchen zu lassen, muss das runde Gefäß einen größeren Durchmesser haben, bequem passt der Kranz in einen Topf mit 25 Zentimeter Durchmesser. Der sei nun bis zum Rand mit Wasser gefüllt – um wie viel steigt der Wasserspiegel an?

Die Goldkrone hat ein Volumen V von 51,8 cm3, die nun auf die Wasseroberfläche A verteilt werden. Zunächst berechnen wir die Oberfläche mit Hilfe der Kreisformel aus dem Radius von 12,5 cm: 
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(Ich werde im ganzen Buch die Zahlen, die bei Rechnungen herauskommen, kräftig auf- und abrunden und trotzdem das Gleichheitszeichen verwenden – hier geht es nicht um mathematisch exakte Werte, sondern meistens um ungefähre Angaben!)

Auf diese Fläche werden nun die 51,8 cm3 Wasser verteilt, die die Krone verdrängt – das macht einen Anstieg von ziemlich genau einem Millimeter aus.


Es ergibt sich also ein winziger rechnerischer Anstieg der Oberfläche. Aber in der Praxis ist es noch schwieriger: Wie in der Geschichte beschrieben wurde, hat Wasser eine Oberflächenspannung, die dafür sorgt, dass sich eine «Haut» über dem Gefäß wölben kann. Unter Umständen kann es passieren, dass überhaupt kein Wasser überläuft, wenn man die Krone hineinlegt!
Aber selbst wenn – der Unterschied zwischen echter und falscher Krone ist ja noch viel geringer. Die mit Silber legierte Krone hatte ein zusätzliches Volumen von 4,3 cm3, und wenn man die auf die Fläche verteilt, dann stellt man fest: Der Wasserspiegel ist nur 0,09 Millimeter höher als bei der echten Krone – ein zehntel Millimeter! Und kein mathematisch gebildeter Richter dürfte das angesichts der Messungenauigkeiten dieser Methode als Beweis für den Betrug akzeptieren.
Nein, um den Golddiebstahl zu beweisen, muss schon ein feineres Messverfahren her. Und Archimedes hat mit seinem Archimedischen Prinzip eines an der Hand. Er muss nämlich nur den Auftrieb ausnutzen, den die verschiedenen Materialien unter Wasser erfahren.
Dazu balanciert er zunächst einmal mit einer einfachen, damals üblichen Balkenwaage die Krone mit dem Goldbarren aus, den ihm Hieron zusätzlich mitgegeben hat. Beide haben eine Masse von 1000 g, und den Auftrieb in der Luft können wir vernachlässigen. Die Waage müsste also ausgeglichen sein.
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Nun wird die Waage so in ein Becken mit Wasser eingetaucht, dass Krone und Goldbarren komplett unter Wasser sind. Wenn beide Teile aus purem Gold sind, sollten sie auch dasselbe Volumen haben und deshalb denselben Auftrieb erfahren. Die Waage bleibt also im Lot.
Was aber passiert, wenn der Kranz gefälscht ist? Dann hat er ein größeres Volumen, verdrängt mehr Wasser, erfährt laut Archimedischem Prinzip mehr Auftrieb, und die Waage neigt sich zu der Seite mit dem Goldbarren.
Funktioniert das auch praktisch? Um das auszurechnen, müssen wir von der Masse der Gegenstände aufs Gewicht umsteigen. Das ist eine der ersten Sachen, die man im Physikunterricht lernt und trotzdem im täglichen Leben gern wieder vergisst. Man sagt, jemand wiegt 80 Kilogramm, aber Kilogramm ist eine Einheit für die Masse. Diese Masse behält man auch, wenn man zum Beispiel auf dem Mond ist, aber die Waage zeigt dort nur ein Sechstel an. Sie misst nämlich eigentlich nicht die Masse, sondern die Kraft, die diese Masse auf eine Waage ausübt. Und die ist von örtlichen Gegebenheiten abhängig. Stellen Sie sich mal unter Wasser auf eine Waage – die zeigt da gar nichts an, weil der Auftrieb ziemlich genau dem Körpergewicht in der Luft entspricht.
Als ich in die Schule ging, war als Gewichtseinheit noch das Kilopond üblich – eine bequeme Sache, weil zumindest Körper mit hoher Dichte in der Luft pro Kilogramm Masse ziemlich genau ein Kilopond Gewicht auf die Waage brachten. Heute werden in der Physik alle Kräfte in Newton (N) angegeben, und vorerst reicht es hier aus, zu wissen, dass ein Kilogramm Gold, Silber oder Wasser auf der Erde etwa 9,8 Newton wiegt.
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Jetzt können wir rechnen:

Der Goldbarren und die falsche Krone wiegen jeweils 9,8 Newton. Unter Wasser bekommen sie aber jeweils unterschiedliche Auftriebskräfte: Der Goldbarren verdrängt 51,8 cm3 Wasser. Das hat eine Masse von 51,8 g (die physikalischen Einheiten orientieren sich häufig am Wasser!) und wiegt 0,5 N. Das heißt, die Gewichtskraft des untergetauchten Barrens ist nur noch 9,3 N.

Die falsche Krone nun hat ein um 4,3 cm3 größeres Volumen, also 56,1 cm3, das verdrängte Wasser wiegt 0,55 N. Entsprechend wiegt die eingetauchte Krone nur noch 9,25 N. Die Waage neigt sich zu der Seite mit dem Barren!


Ist dieser Unterschied nun tatsächlich messbar, insbesondere mit den Waagen aus Archimedes’ Zeit? Der Unterschied beträgt 0,05 Newton, das entspricht einer Masse von etwa fünf Gramm – und einen solchen Unterschied kann eine guttarierte Balkenwaage durchaus messen!
 
Diesen augenscheinlichen Beweis hätte auch ein Richter im antiken Syrakus akzeptiert.
Die elegante Methode hätte sogar funktioniert, wenn König Hieron knauseriger gewesen wäre und Archimedes nur einen 100-Gramm-Goldbarren als Referenz mitgegeben hätte. Mit dem überlaufenden Topf hätte der Gelehrte dann gar nichts mehr ermitteln können. Man kann aber ungleiche Gewichte durchaus miteinander ins Gleichgewicht bringen, wenn man eine Waage benutzt, deren Angelpunkt verstellbar ist. Es gilt dann nämlich – für eine ausgeglichene Waage – das Hebelgesetz: Kraft am rechten Hebelarm mal Länge des rechten Hebelarms ist gleich der Kraft am linken Hebelarm mal der Länge des linken Hebelarms. Oder in Formeln:
 
[image: ]
 
Dabei bezeichnen F1 und F2 die beiden Gewichtskräfte und l1 und l2 die Längen der beiden Arme der Waage.
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Wenn der Arm l1 die zehnfache Länge von l2 hat, dann bleibt die Waage im Lot – und taucht man sie ins Wasser ein, dann wird sich auch hier zeigen, ob die Krone echt ist oder nicht. Heureka! 

Jetzt sind Sie dran: Es heißt immer, dass ein Siebtel eines Eisbergs aus dem Wasser schaut. Eis hat eine geringere Dichte als (Meer-)Wasser, deshalb schwimmt es auf dem Wasser und verdrängt genauso viel Wasser, wie seinem Gewicht entspricht. Aber ist das tatsächlich ein Siebtel, wenn man für die Dichte des Meerwassers 1,02 g/​cm3 ansetzt und für die Dichte von Eis 0,9 g/​cm3?




2 Die letzte Abfahrt

oder
Wieso Dicke schneller rutschen
 
Es ist ein großer Moment im Leben jedes Jungen, wenn er zum ersten Mal seinem Vater davonläuft. Endlich schneller! Ein Moment des Triumphs – nicht weil man den anderen besiegt hat, sondern weil dieser Sieg einen Übergang bedeutet, den Übergang von der Kindheit in eine Zeit, in der man jedenfalls körperlich für voll genommen wird.
Es ist ein sehr zwiespältiger Moment im Leben eines Mannes, wenn ihm zum ersten Mal der eigene Sohn davonläuft. Es ist nicht das Gefühl, ein Rennen verloren zu haben, schließlich gönnt man dem eigenen Nachwuchs alles, und das bedingungslos. Nein, aber diese Niederlage ist eine unumkehrbare – der Sohn wird auch jedes folgende Rennen gewinnen, und der Abstand wird wachsen. Auch für den Erwachsenen ist es ein Moment des Übergangs.
Diese Gedanken gehen Stefan Putzer durch den Kopf, als er am Abend zusammen mit seinem Sohn Marcel im Restaurant «Zur Sennerin» im österreichischen Skiort Sölden eine große Portion Kaiserschmarrn verspeist. Der Tag auf der Skipiste ist für beide anstrengend gewesen, beide werden von einem gehörigen Muskelkater geplagt, aber Stefan Putzer plagt zusätzlich noch die Einsicht: Sein Sohn fährt besser Ski als er, zumindest schneller.
Seit zwölf Jahren nun fahren Vater und Sohn schon gemeinsam zum Skilaufen. Einmal pro Jahr geht es für eine Woche vom Norddeutschen Tiefland in die Berge der Alpen, nach Österreich, nach Südtirol oder in die Schweiz. Putzer erinnert sich noch, wie er Marcel den ersten Schneepflug beibrachte, wie er mit dem Kind zwischen den Beinen den Hang hinunterkurvte.
Schon im dritten Skiurlaub war dem Kind das Fahren mit dem Vater zu langweilig geworden, es jagte lieber mit seinesgleichen die Pisten hinunter. Der Vater ging es zunehmend ruhig an, aber wenn man dann bei der letzten Abfahrt des Tages zusammen hinunter ins Tal fuhr, ließ er doch gern auf den steilen Stücken noch einmal sein Können aufblitzen. Schließlich musste doch klar sein, wer hier das erfahrenere Ski-Ass war.
Aber heute war es nichts gewesen mit dem Aufblitzen-Lassen. Marcel fuhr ihm auf der letzten Abfahrt einfach auf und davon. «Hey, fahr nicht so riskant!», rief ihm Stefan Putzer noch hinterher – aber er wusste, dass es gar nicht an Marcels Wagemut lag. Äußerst sicher und elegant stob der 16-Jährige die Piste hinunter, während der 45-Jährige bisweilen das Gefühl hatte, an seine Grenzen zu kommen.
«Was für eine Abfahrt!», schwärmt Marcel, noch immer berauscht von der Geschwindigkeit – und natürlich auch von der Tatsache, dass er als Erster an der Talstation angekommen ist. «Perfekter Schnee, super Wetter – so macht das Skifahren Spaß!»
«Genau», pflichtet der Vater ihm bei. Klang es auch begeistert genug? Putzer hofft es.
«Und morgen fahren wir ein kleines Rennen, abgemacht?», fordert ihn Marcel heraus. «Auf dem Slalomkurs, wo man für einen Euro die Zeit nehmen lassen kann, okay?»
«Abgemacht», sagt der Vater. «Ich zahle. Und der Verlierer gibt dem Gewinner einen Jagatee aus.»
«Den hab ich schon mal sicher», lacht Marcel. Der Vater lächelt nur.
In der Nacht schneit es, und am nächsten Tag ist das Wetter wieder so, wie es sich ein Skifahrer wünscht: blauer Himmel, frischer Pulverschnee, gutpräparierte Pisten. Die beiden fahren den ganzen Tag zusammen, machen nur eine kurze Mittagspause, und am Nachmittag geht es dann auf den Slalomparcours, der für die Touristen abgesteckt worden ist.
Und natürlich kommt es so, wie es beide vorhergesehen hatten: Stefan Putzer hat gegen seinen Sohn keine Chance. Die zwölf Lehrjahre machen sich bezahlt, behände schwingt der Sohn um die Slalomstangen herum und ist gut zwei Sekunden schneller unten als der Vater, der noch dazu im Ziel heftig keucht. Auch eine Wiederholung ändert nichts an der Wahrheit: Marcel hat seinen Vater endgültig abgehängt.
«So, damit wäre die Frage beantwortet, wer hier der bessere Skifahrer ist», sagt Marcel mit einer Spur zu viel Überheblichkeit in der Stimme. «Lass uns schnell runter ins Tal, ich möchte meinen Gewinn kassieren!»
«Du hast ja recht», antwortet der Vater, immer noch ein bisschen außer Atem. «Aber diesen Unterton kannst du dir sparen!» In seiner Stimme liegt eine Spur zu viel Nicht-verlieren-Können. «Aber lass uns nicht die schwarze Abfahrt nehmen, ich bin nach dem Tag doch ein bisschen groggy. Ich schlage vor, wir nehmen die langgezogene Schussfahrt durch den Wald!»
«Klar, können wir machen», antwortet sein Sohn. «Und, fahren wir das wieder als Rennen?»
In diesem Moment fährt ein Gedanke durch Stefan Putzers Kopf. Ein Gedanke, der von einem spielerischen Gefühl der Revanche begleitet ist. Putzer ist Physiklehrer, und der Physiker in ihm wittert hier eine letzte Chance, seine heutige Niederlage noch in einen Sieg zu wenden.
«Einverstanden, aber wir fahren nach folgenden Regeln: Wir stellen uns oben nebeneinander hin und lassen uns einfach den Hang runtergleiten – ohne Anschieben, ohne Hilfsschritte. Und wer zuerst unten ankommt, der hat nicht nur das Rennen gewonnen, sondern den ganzen Tag.»
«Alles oder nichts, was?», lacht der Sohn. «Und mit Können oder gar Sport hat das dann ja überhaupt nichts mehr zu tun, wir lassen uns einfach nur von der Schwerkraft ins Tal ziehen.» Dann denkt er kurz nach. «Also du verstehst mehr von Physik als ich, aber wir haben vor zwei Jahren die schiefe Ebene in der Schule durchgenommen. Und da kam heraus, dass auf der alles ähnlich passiert wie im freien Fall – alle Körper rutschen oder rollen gleich schnell ins Tal, vorausgesetzt, die Reibung ist dieselbe. Da wir die gleichen Skier haben, sollte das so sein, also müsste ein Dicker wie du genau gleichzeitig mit einem Dünnen wie mir unten ankommen!»
«Wenn du meinst», sagt der Vater und kann ein leichtes Grinsen nicht vermeiden. «Und das mit dem Dicken möchte ich überhört haben. Ich bin größer als du und ein bisschen kräftiger gebaut. Lass es uns ausprobieren!»
Die beiden stellen sich Skispitze an Skispitze am Beginn der langgezogenen Piste auf und stützen sich mit den Skistöcken ab. Auf «Los!» nehmen sie die Stöcke hoch, die Skier setzen sich fast grotesk langsam in Bewegung. Aber schon nach ein paar Metern nehmen Vater und Sohn Fahrt auf. Die Piste ist blau gekennzeichnet, sie wird nie so steil, dass ein geübter Skifahrer gezwungen wäre, Schwünge zu machen – man kann die Ski einfach «laufen lassen», ohne die Kontrolle zu verlieren.
Und schon nach wenigen hundert Metern muss Marcel einsehen, dass sein Vater zwar nicht mehr der bessere Skifahrer ist, aber immer noch der bessere Physiker: Zentimeter für Zentimeter schiebt sich der Alte an ihm vorbei, nach der Hälfte der zwei Kilometer langen Strecke hat er schon einen Vorsprung von zehn Metern. Marcel geht in die Hocke, aber das tut Stefan Putzer auch. Was der Junge auch probiert, extreme Rückenlage oder Kanten der Skier – es nutzt nichts, der Vater ist schneller und schwingt mit 25 Meter Vorsprung an der Talstation der Gondel ein.
«Was für ein Rennen!», ruft Stefan Putzer aus, der seinen letzten Sieg offenbar genießt.
«Na ja, dick gewinnt», brummt Marcel. «Lass uns einkehren und den Jagatee trinken – und dann erklär mir, warum ein schwerer Skifahrer schneller unten ankommt als ein leichter!»
Die Zeche hat dann übrigens doch der Vater bezahlt.
Die Luft bremst
Fährt ein schwerer Skifahrer unter ansonsten gleichen Bedingungen tatsächlich schneller als ein leichter? Bevor wir uns den Skifahrern zuwenden, betrachten wir einen einfacheren Fall: den einer unendlich großen Steigung, also den freien senkrechten Fall von Objekten. Fallen schwerere Dinge langsamer als leichtere? Das war für die Menschen früher so sonnenklar, dass man gar nicht daran dachte, es einmal experimentell zu überprüfen. Der Legende nach soll Galileo Galilei die Fallgesetze bewiesen haben, indem er unterschiedlich schwere Kugeln gleicher Größe vom Schiefen Turm von Pisa warf – und beide Kugeln kamen gleichzeitig unten an.
Aber die Geschichte ist wohl tatsächlich nur eine Legende. Gleich aus mehreren Gründen: Erstens gab es damals gar nicht die Uhren, um derart schnelle Bewegungen exakt zu messen. Galilei benutzte deshalb schiefe Ebenen, auf denen er Kugeln rollen ließ.
Und zweitens war Galileo lange selbst auf dem falschen Dampfer. In seinem Frühwerk De Motu, das um 1590 entstand, versuchte er, die (falsche) These von Aristoteles zu widerlegen, dass die Fallgeschwindigkeit eines Körpers von seinem Gewicht abhängt. Der junge Galilei entwickelte eine komplizierte, leider ebenfalls falsche Theorie, nach der nicht das Gewicht, sondern die Dichte eines Körpers die Fallgeschwindigkeit bestimmt.
Aber Galileo war offen für Experimente und sah ein, dass die Wirklichkeit mit seiner Theorie nicht übereinstimmte: «Denn wenn man zwei unterschiedliche Körper nimmt, die solche Eigenschaften haben, dass der erste zweimal so schnell fallen sollte wie der zweite, und lässt sie von einem Turm fallen, dann erreicht der erste den Boden nicht wesentlich schneller als der zweite.» Eine schmerzliche Einsicht, die ihn nicht ruhen ließ, bis er Jahre später das tatsächliche Fallgesetz entdeckte, nach dem alle Körper gleich schnell fallen – zumindest, wenn man die Reibungskräfte vernachlässigt.
Woran liegt das? Es hat mit der Trägheit von Massen zu tun. Alle Massen sind träge, das heißt, sie wollen ihren aktuellen Zustand beibehalten und sträuben sich gegen seine Änderung. Das gilt für Massen in Ruhe, aber auch für Massen, die sich mit konstanter Geschwindigkeit bewegen. Man muss also eine Kraft aufwenden, um diese Trägheit zu überwinden, und die Kraft ist proportional zur Masse – für eine doppelte Masse ist die Kraft doppelt so groß.
Im Schwerkraftfeld der Erde wirkt ständig eine Kraft auf jeden Körper die Gewichtskraft. Da Masse und Gewicht proportional sind, werden sie oft verwechselt. Früher gab es die Einheit Kilopond fürs Gewicht, und ein Kilopond entsprach weitgehend dem Gewicht einer Masse von einem Kilogramm. Die Werte auf der Skala einer Waage zum Beispiel dürften eigentlich nicht in Kilogramm angegeben sein – man misst ja die Kraft, die der Körper auf die Waage ausübt, und nicht seine Masse.

Wenn man Kraft (F) und Masse (m) kennt, kann man die Beschleunigung (a) ausrechnen, die ein Körper erfährt, wenn er in einem Schwerefeld losgelassen wird. Das macht man mit der Formel 
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oder, aufgelöst nach a: 
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Weil aber F und m zueinander proportional sind, hat der Bruch auf der rechten Seite für alle Massen denselben Wert – jeder Körper erfährt dieselbe Beschleunigung!


Für die im Schwerefeld der Erde konstante Beschleunigung hat sich die Bezeichnung g eingebürgert, die sogenannte Erdbeschleunigung. Sie hat einen Wert von ungefähr 9,8 m/​s2.
Dazu zwei Anmerkungen: Erstens ist es sehr praktisch, wenn auch vollkommen zufällig, dass dieser Wert sehr nahe bei 10 liegt, das macht viele physikalische Rechnungen erheblich einfacher. Zum Beispiel hat eine Masse von einem Kilogramm ein Gewicht von 9,8 oder rund 10 Newton.
Zweitens: Bei der Einheit m/​s2 setzt für viele das physikalische Verständnis aus – was zum Teufel soll man sich unter einer «Quadratsekunde» vorstellen? Eine Zeitfläche? Nein. Beschleunigung ist ein Maß für die Änderung von Geschwindigkeit. 9,8 m/​s2 bedeutet «9,8 Meter pro Sekunde pro Sekunde». Die Geschwindigkeit wächst jede Sekunde um 9,8 m/​s. Lässt man eine Masse fallen, dann hat sie nach einer Sekunde die Geschwindigkeit 9,8 m/​s, nach zwei Sekunden 19,6 m/​s und so weiter.
Dass die Erdbeschleunigung für alle Körper dieselbe ist, finden viele Menschen nicht plausibel. Es widerspricht ja auch einer ganzen Reihe von Erfahrungen, die wir täglich machen. Zum Beispiel fällt ein mit Luft gefüllter Ballon langsamer als eine Stahlkugel, und eine Feder gleitet langsamer zu Boden als eine Münze. In beiden Fällen ist der Grund für den langsameren Fall der Widerstand, den die Luft der Masse entgegensetzt. Lässt man zum Beispiel die Luft aus dem Ballon, so erfährt er einen viel geringeren Luftwiderstand und fällt fast wie ein Stein zu Boden. Und was die Feder angeht: So gut wie jeder Schüler kennt aus dem Physikunterricht den Versuch, bei dem eine Feder und eine Münze in einem großen Glasrohr zu Boden fallen. Zunächst schwebt die Feder langsam nach unten. Pumpt man aber die Luft aus dem Rohr, fallen Feder und Münze tatsächlich gleich schnell.
Um beim Beispiel der Feder zu bleiben: Fällt eine kleine Feder genauso schnell wie eine große? Stellen Sie sich eine winzige Daunenfeder vor und dann eine große Gänsefeder, wie sie früher zum Schreiben verwendet wurde. Während die kleine Feder regelrecht in der Luft tanzt und manchmal vielleicht sogar von einer Strömung wieder höher getragen wird, fällt die große ziemlich unbeeindruckt von der Luft zu Boden. Ihr scheint der Luftwiderstand irgendwie weniger auszumachen. Und ganz ähnlich ist es bei den unterschiedlich schweren Skifahrern – dem leichteren setzt der Fahrtwind mehr zu.
 
Das alles kann man auch quantifizieren. Dazu begeben wir uns jetzt erst einmal von der Vertikalen auf die schiefe Ebene – auf den Hang, den unsere Skifahrer hinunterdüsen.
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Im freien Fall wirkt die gesamte Gewichtskraft eines Körpers beschleunigend, auf der schiefen Ebene nur ein Teil – je flacher der Hang, umso kleiner ist diese sogenannte Hangabtriebskraft.
Das System Skifahrer (Mensch plus Ski) hat einen Schwerpunkt, der sogar außerhalb des Skifahrer-Körpers liegen kann, und an dem greifen alle Kräfte an, die wir nun betrachten. Da ist zunächst einmal die Gewichtskraft FG, die direkt zum Erdmittelpunkt weist. Kräfte haben die schöne Eigenschaft, dass man sie mit einem Parallelogramm fast beliebig in Teilkräfte zerlegen kann. In diesem Fall interessiert uns die Kraft FH, die parallel zum Hang wirkt. Deshalb zerlegen wir den Gewichtskraft-Pfeil in zwei Komponenten: die Hangabtriebskraft FH sowie die Kraft FS, die auf den Skiern lastet.
Was hindert die Skifahrer daran, auf ihrer Abfahrt immer schneller zu werden? Da sie sich vorschriftsmäßig wie ein Sack Kartoffeln zu Tal gleiten lassen und selbst keine Kräfte einsetzen, gibt es nur zwei Kräfte, die der Talfahrt entgegenwirken: die Reibung der Skier auf dem Schnee sowie den Luftwiderstand.

Die Reibungskraft nennen wir FR, den Luftwiderstand FL. Dann gilt für die Gesamtkraft F, die den Skifahrer zu Tal zieht:
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Und die Beschleunigung a berechnet sich dann aus der schon weiter oben stehenden Gleichung
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Um die drei Einzelkräfte zu berechnen, braucht man ein bisschen Trigonometrie, also die Rechnung mit Sinus und Cosinus. Hier reicht es aber, zu wissen, dass der Sinus eines Winkels im rechtwinkligen Dreieck der Quotient aus der gegenüberliegenden Seite und der Hypotenuse (der langen Seite) ist. Der Winkel a, der die Hangneigung beschreibt, findet sich auch in dem Kräfte-Parallelogramm, sodass gilt:
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Hier kommen also die Masse des Skifahrers und die Erdbeschleunigung ins Spiel!


Wie stark bremst die Reibung den Skifahrer? Das hängt von einer Menge Faktoren ab – etwa dem Zustand des Schnees und der Außentemperatur. Bei manchen Schneeverhältnissen entsteht ein Wasserfilm unter dem Ski, sodass er sehr schnell gleitet. Wird die Sache aber zu nass, dann bremst das Wasserpolster den Skifahrer wieder.

Hängt die Reibung von der Masse ab? Das ist unter Skifahrexperten umstritten. Wir nehmen aber hier an, dass eine größere Masse auch eine entsprechend höhere Reibung erfährt, wie es bei trockener Reibung an der schiefen Ebene auch der Fall ist. Alle Umweltumstände gehen in einen Faktor m ein, den Reibungskoeffizienten. Vom Gewicht des Skifahrers wird nur der Anteil FS berücksichtigt, der senkrecht auf den Ski drückt.
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Der Ski rutscht nur, wenn die Hangabtriebskraft größer ist als die Reibungskraft! Schaut man sich die beiden Kräfte an, so sieht man, dass sie (bei konstanter Neigung und gleich bleibenden Schneeverhältnissen) beide proportional zur Masse sind und sich nur um einen konstanten Faktor unterscheiden. Die resultierende Kraft ist immer noch proportional zur Masse und bleibt während der ganzen Fahrt gleich – und das heißt, beide Skifahrer erfahren dieselbe konstante Beschleunigung, und ihre Geschwindigkeit würde über alle Maßen steigen!
Vor allem diese immer währende Beschleunigung widerspricht aber der Erfahrung. Insbesondere auf flachen Hängen hört die Beschleunigung irgendwann auf – der Fahrer erreicht eine Grenzgeschwindigkeit, danach wird er nicht mehr schneller. Auf steilen Hängen mag es sein, dass er irgendwann so schnell wird, dass er sich nicht mehr auf den Brettern halten kann, aber zumindest theoretisch gibt es auch dort eine Grenzgeschwindigkeit. Und selbst im freien Fall wird ein Körper nicht immer schneller – das kann jeder Fallschirmspringer bestätigen.
Der Grund dafür ist, dass die zweite bremsende Kraft, der Luftwiderstand, mit zunehmender Geschwindigkeit stark ansteigt. Den Luftwiderstand konkret zu berechnen ist eine sehr schwierige Aufgabe, die Kräfte hängen von vielen Faktoren ab, unter anderem davon, ob der Körper eine strömungsgünstige Form hat. Diese geht in den sogenannten «Luftwiderstandsbeiwert» cw ein, mit dem manchmal für windschnittige Autos geworben wird. Ermitteln kann man diesen Wert nur experimentell im Windkanal.
Wenn man ihn kennt, dann gilt für die Luftwiderstandskraft:
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Dabei ist v die Geschwindigkeit und A die «im Wind stehende» Fläche des Skifahrers. Die darf man sich vorstellen als den Schatten, den der Skifahrer wirft, wenn er von vorn angestrahlt wird. Eine größere Fläche bedeutet: Der Fahrtwind hat mehr Angriffsfläche, er kann entsprechend mehr bremsen. Das ist das Wirkprinzip eines Fallschirms!
Der Gleichung sieht man an, dass die Luftwiderstandskraft mit der Geschwindigkeit stark wächst. Verdoppelt sich das Tempo, so wird der Luftwiderstand vervierfacht! Weil die Hangabtriebskraft (abzüglich der Gleitreibung) aber während der ganzen Fahrt konstant bleibt, gilt selbst für den windschnittigsten Fahrer, der sich ganz zusammenkauert, um seine Fläche A zu minimieren: Irgendwann wird der Luftwiderstand so groß, dass Hangabtriebskraft und Reibung genau ausgeglichen werden. Dann wirkt überhaupt keine Kraft auf den Fahrer – und seine träge Masse bewegt sich mit konstanter Geschwindigkeit zu Tal.

Mathematisch ausgedrückt, ergibt sich für die Beschleunigung:
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Und was ist nun mit den beiden unterschiedlich schweren Fahrern? Menschen gibt es in allen möglichen Größen und Dicken. Wir nehmen für die Rechnung einmal an, dass der Vater 10 Prozent größer ist als der Sohn und dass er eine maßstabsgerechte Vergrößerung des Jugendlichen ist. Das ist eine ziemliche Vergröberung, schließlich sind kleine Menschen aus vielerlei Gründen nicht proportional verkleinerte große Menschen. (Insbesondere bei Babys fällt das auf: Auf alten Gemälden wird das Jesuskind oft als winziger Erwachsener dargestellt, und das finden wir heute unfreiwillig komisch.) Aber die Rechnung erleichtert es ungemein.
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Man bemerke, dass bei einer maßstabsgerechten Vergrößerung alle Maße um 10 Prozent zunehmen – nicht nur die Höhe, sondern auch Breite und Tiefe. Das ist ja auch in der Wirklichkeit so: Erwachsene haben ein breiteres Kreuz und dickere Oberschenkel als Kinder.
Wenn der Vater in diesem Sinne 10 Prozent größer ist als der Sohn, dann wiegt er auch 10 Prozent mehr, oder? Das ist ein verbreiteter Fehlschluss. Die 10 Prozent werden ja in allen drei Raumrichtungen draufgeschlagen. Das sieht man leichter bei regelmäßigen Körpern ein, etwa einem Würfel: Ein Würfel mit einer Kantenlänge von 1 Meter hat ein Volumen von 1 Kubikmeter – ein Würfel mit einer Kantenlänge von 1,10 Metern hat ein Volumen von 1,1 × 1,1 × 1,1 = 1,33 Kubikmetern.
Bei unregelmäßigen Körpern wie unseren idealisierten Skifahrern ist es nicht anders, und das Volumen und damit die Masse des Vaters ist 1,33-mal so groß wie beim Sohn.

Wenn m die Masse des Sohnes ist und m' die Masse des Vaters, dann gilt also:
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Entsprechend können wir nun auch die Beschleunigung des Vaters im Vergleich zum Sohn berechnen. Es ist
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Die Größe von m' ist bekannt, wie sieht es mit A' aus? A und A' sind ja die Querschnittsflächen, die der Sohn beziehungsweise der Vater dem Fahrtwind bieten. Ein Blick auf die Strichmännchen zeigt: Um das Verhältnis der Flächen zu berechnen, müssen wir 1,1 mit 1,1 malnehmen: A' ist also das 1,21-Fache von A. 

Die Formel sieht jetzt so aus:
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In der Gleichung steckt immer noch der Faktor v'2, und den bekommt man auch nicht so leicht da raus (für Fortgeschrittene: Dazu muss man Differentialgleichungen lösen können). Man kann sich aber überlegen, dass für jede beliebige Geschwindigkeit v gilt: Wenn der Vater mit diesem Tempo fährt, dann hat er eine größere Beschleunigung als der Sohn beim selben Tempo, weil von dem linken Ausdruck (der ungebremsten Beschleunigung durch die Schwerkraft) weniger abgezogen wird. Das ist schon am Anfang so, bei v=0, und gilt für jede Geschwindigkeit – der Sohn kann einfach nicht schneller werden als der Vater.

Man kann aus den Gleichungen auch die Grenzgeschwindigkeit der beiden Skifahrer berechnen – die ist nämlich dann erreicht, wenn die Beschleunigung zu null wird. Für den Sohn bedeutet das:
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Aufgelöst nach vgrenz:
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Die entsprechende Gleichung für den Vater:
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Und das heißt: Tatsächlich erreicht der 10 Prozent schwerere Vater eine um 5 Prozent höhere Grenzgeschwindigkeit!


Um nun konkret auszurechnen, mit welchem Vorsprung der Vater im Ziel ankommt, müsste man noch ein bisschen höhere Mathematik auf diese Formeln loslassen. Der Mathematiker Norbert Herrmann aus Meißen hat es (mit etwas anderen Gleichungen) getan und für zwei Skifahrer von 80 und 110 Kilogramm Gewicht ausgerechnet, dass der dicke gegenüber dem dünnen auf einer Strecke von einem Kilometer etwa 16 Meter Vorsprung herausfährt. Ein paar Kilo mehr können also bei der Skiabfahrt durchaus von Vorteil sein!

Jetzt sind Sie dran: Sicher haben Sie das auch schon mal gemacht: Wenn man auf einem Stuhl sitzt, kann man sich ruckelnd durch den Raum bewegen, ohne sich mit den Füßen vom Boden abzustoßen. Es wird also eine Masse in Bewegung versetzt, dazu ist eine von außen wirkende Kraft nötig – aber alle Kräfte, die Sie aufwenden, sind ja innere Kräfte des Systems Mensch – Stuhl. Woher kommt die äußere Kraft, die Sie durch den Raum befördert?
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