

 [image: cover]

 Python Textbook

 Manish Soni

 	

Preface

	

	Welcome to Your Python Journey!

	Python is not just a programming language; it's a tool that can empower you to do amazing things—whether it's automating repetitive tasks, analyzing large sets of data, building your own website, or even creating your own artificial intelligence models. Python's versatility and ease of Use make it one of the most beloved programming languages in the world.

	

	The Python Textbook aims to be your comprehensive guide on your Python programming journey. Whether you are a complete beginner or a seasoned developer looking to deepen your Python knowledge, we have something for everyone. With hands-on examples, real-world projects, and deep explorations of Python's features and capabilities, this book will serve as both a tutorial and a reference.

	

	What This Book Covers?

	Foundations: Learn the syntax, variables, and basic types that make up Python.

	Control Structures: Master the art of decision-making and repetition with if-else statements and loops.

	Data Structures: From lists and tuples to dictionaries and sets, understand how to effectively organize and manipulate data.

	Functions and OOP: Gain a strong understanding of modularity, functions, and object-oriented programming.

	Libraries and Frameworks: An introduction to the vast ecosystem of Python libraries, including NumPy for numerical operations, pandas for data manipulation, and frameworks like Django for web development.

	Advanced Topics: Dive into topics like decorators, context managers, metaclasses, and asynchronous programming.

	

Table of Contents

	Preface

	Chapter 1

	1.1 What is Python?

	1.2 History of Python

	1.3 Features of Python

	1.4 Python Language Advantages and Application

	1.5 Getting Started with Python

	1.5.1 Comments in Python

	1.5.2 Python Syntax

	1.6 Python framework

	Chapter 2

	2.1 Note on python version

	2.2 Installing Python on Windows

	2.3 Install Python on macOS

	2.4 Install Python on Ubuntu

	Chapter 3

	3.1 Variables

	3.1.1 Creating variables in Python:

	3.1.2 Casting Variable in Python:

	3.1.3 Get the type in Python?

	3.2 Python - Variable Names

	3.3 Python Variables - Assign Multiple Values

	3.4 Type of Variable in Python

	3.5 Delete variable in Python

	Chapter 4

	4.1 What are strings in Python?

	4.2. String slicing

	4.3 String Modifying

	4.4 String Method

	4.5. Concatinate String

	4.6. String Formatting:

	4.7. Escape Character

	4.8. Assigning a string to a variable

	4.9. Deleting Strings in Python

	4.10. Reassigning Strings

	4.11. Python string function

	Chapter 5

	5.1 Python Arithmetic Operators

	5.2 Python Assignment Operators

	5.3 Python Comparison Operators

	5.4 Python Logical Operators

	5.5 Python Identity Operators

	5.6 Python Membership Operators

	5.7 Python Bitwise Operators

	5.8 Operator Precedence

	Chapter 6

	6.1 List indexing and splitting

	6.1.1 Access elements

	6.1.2 Negative indexing

	6.1.3 Add elements

	6.2 Python Tuple

	6.3 Dictionary in Python

	6.4 Set in Python

	6.5 del statement in Python

	Chapter 7

	7.1 The if statement

	7.2 Using if-else:

	7.3 Nested if-else Statements

	7.4 if-elif-else statement

	7.5 Nested if-elif-else Statements

	7.6 Nested if Statements

	7.7 Short hand if statement

	7.8 Short hand if..else statement

	7.9 AND OR NOT statements

	Chapter 8

	8.1 For Loops

	8.1.1 range() function in python

	8.1.2 Using else statement with for loop

	8.1.3 Break statement

	8.1.4 Continue statement

	8.1.5 Else in for loop

	8.1.6 Nested Loop

	8.2 While loop in python

	8.2.1 Break statement

	8.2.2 Continue Statement

	8.2.3 Else in While loop

	8.3 Python Functions

	8.3.1 Function Parameters:

	8.3.2 Function Return Values:

	8.4 Scope and Lifetime of Variables:

	8.5 Yield and return in python

	Chapter 9

	9.1 Accessing Elements

	9.1.1 The Length of an Array

	9.2 Looping Array Elements in python

	9.3 Deleting array element in Python

	9.4 Array methods

	Chapter 10

	10.1 Object and classes

	10.2 Encapsulation

	10.3 Abstraction

	10.4 Inheritance

	10.5 Polymorphism

	10.6 Method overriding

	10.7 Class attributes and instance attributes

	10.8 Access modifiers

	10.9 Class or Static Variables in Python

	10.10 Static Methods:

	Chapter 11

	11.1 How recursion works?

	11.2 Python recursive function

	11.3 Recession vs iteration

	11.4 Binary search in Python

	11.5 Base Case and Recursive Case

	11.6 Stack Overflow in Python

	Chapter 12

	12.1 What is Modular Programming?

	12.2 Packages

	12.3 File Handling:

	12.4 Create the new directory

	12.5 Error and exception handling

	Chapter 13

	13.1 Installation

	13.2 matplotlib.pyplot in Python

	13.3 Line plots, pie chart, histograms, bar and scatter plots

	Chapter 14

	

	

Chapter 1

	Introduction to Python

	Python is a versatile and beginner-friendly programming language that has gained immense popularity for its simplicity and readability. It’s straightforward syntax and dynamic typing make it easy to learn and use, making it an excellent choice for individuals new to programming. Python's core philosophy, often referred to as the "Zen of Python," emphasizes readability and a clean, elegant coding style. This is evident through its use of indentation for defining code blocks and the absence of semicolons. Python supports various data types, including integers, floats, strings, and booleans, and its dynamic nature allows variables to change types during runtime. Control structures like if-elif-else statements and loops (for and while) guide program flow, while functions enable modular and reusable code. Python's extensive standard library, along with numerous third-party libraries, facilitates tasks ranging from web development and data analysis to machine learning and automation. Overall, Python's user-friendly nature and wide range of applications make it an ideal starting point for aspiring programmers.

	Python is a highly flexible and accessible programming language that has garnered widespread acclaim for its user-friendly design and code readability. Its uncluttered syntax and the lack of complex rules for structuring code make it an ideal choice for beginners venturing into the world of programming. One of the standout features of Python is its "Zen," a set of aphorisms that advocate for simplicity and clarity in code.

	Python is dynamically typed, allowing developers to change variable types on the fly, which adds to its ease of use. Its control flow mechanisms, such as if-else conditions and loop constructs like while and for, are straightforward, aiding in intuitive program design. Functions in Python facilitate code reusability, and its object-oriented nature makes it apt for complex application development.

	What sets Python apart is its enormous standard library that covers a wide array of tasks from file manipulation to network programming. Additionally, the language's ecosystem is enriched by an expansive range of third-party packages, which are instrumental in specialized fields like data science, machine learning, and web application development.

	In a nutshell, Python's clean syntax, comprehensive standard library, and its adaptability to various kinds of tasks make it a go-to language for developers of all skill levels.

	1.1 What is Python?

	Python is a high-level, readable programming language renowned for its versatility. It was created by Guido van Rossum in 1991 and has since gained immense popularity. Python's straightforward syntax makes it a favourite among beginners and experts, with a focus on readability through indentation. Its broad applications span web development, data analysis, AI, machine learning, and automation. The "Zen of Python" philosophy underlines its design principles, promoting clarity and simplicity. Python's rich standard library offers pre-built modules, further simplifying tasks. It’s whitespace-driven structure enhances code consistency. Overall, Python's adaptability, readability, and active community contribute to its widespread usage and appeal.

	The language is not just readable but also remarkably versatile, finding applications in various domains like web development, data analytics, artificial intelligence, and robotics. Python's expansive standard library offers modules for almost every conceivable task, making it a Swiss Army knife for programmers. The library's pre-existing modules make it easier for both newcomers and experienced coders to get things done efficiently.

	One of Python's standout features is its consistency in structure, attributed to its use of whitespace and indentation, which standardizes the look and feel of code across projects. This, along with an active global community and a plethora of third-party libraries, makes Python a highly adaptive and ever-evolving language, suitable for both novices and experts alike.

	1.2 History of Python

	Python was conceived by Guido van Rossum in the late 1980s and its development started in December 1989. Python 0.9.0 was released in February 1991, marking its official debut. The language's name was inspired by the British comedy group Monty Python. Python 1.0 was released in January 1994 with new features and improved capabilities.

	Python 2.0, released in 2000, brought list comprehensions and Unicode support. The subsequent years saw Python gaining popularity due to its readability and versatility. Python 3.0, released in 2008, introduced significant changes, including a redesigned print function and improved Unicode support.

	Despite initial resistance, Python 3 gradually gained adoption, leading to the coexistence of Python 2 and 3. In 2020, Python 2's official support ended, shifting focus entirely to Python 3.

	Python's success can be attributed to its active community, vast standard library, and adoption by tech giants like Google and NASA. It's used in diverse fields, including web development, data science, AI, and more. Python's evolution continues, with frequent updates and improvements, solidifying its position as a prominent programming language.

	1.3 Features of Python

	Readable and Clear Syntax: Python's simple and clean syntax emphasizes code readability, making it easy for both beginners and experienced programmers to understand and maintain code.

	Dynamic Typing: Python uses dynamic typing, allowing variables to change data types during runtime. This simplifies coding and makes the language more flexible.

	Whitespace Indentation: Python uses indentation to define code blocks, eliminating the need for braces or semicolons. This enforces consistent formatting and enhances code clarity.

	Large Standard Library: Python's extensive standard library offers a wide range of pre-built modules and functions that simplify various programming tasks, from file handling to web development.

	Cross-Platform Compatibility: Python is available on various platforms, including Windows, macOS, and Linux, ensuring that code can run consistently across different systems.

	Object-Oriented Programming (OOPs): Python supports object-oriented programming paradigms, allowing users to create reusable and structured code using classes and objects.

	Interpreted Language: Python is an interpreted language, meaning that code is executed line by line by the interpreter. This enables quick development and testing without the need for compiling.

	Extensive Third-Party Libraries: Python boasts a vast ecosystem of third-party libraries and frameworks that extend its capabilities, catering to different application domains such as web development (Django, Flask), data science (NumPy, Pandas), and more.

	Community and Support: Python has a vibrant and active community of developers, providing resources, tutorials, and assistance to fellow programmers. This community-driven environment contributes to Python's growth and improvement.

	Platform for Various Applications: Python is suitable for a wide range of applications, including web development, data analysis, scientific computing, artificial intelligence, machine learning, automation, and more.

	Portability: Python code can be easily ported between different platforms due to its interpreted nature and cross-platform compatibility.

	Scalability: While Python may not be as performant as some lower-level languages, it offers various ways to optimize and scale applications, including integration with compiled languages like C and using concurrency libraries.

	1.4 Python Language Advantages and Application

	Advantages of Python

	Readable and Clear Syntax: Python's simple and clean syntax emphasizes code readability, making it easy for both beginners and experienced programmers to understand and maintain code.

	Dynamic Typing: Python uses dynamic typing, allowing variables to change data types during runtime. This simplifies coding and makes the language more flexible.

	Whitespace Indentation: Python uses indentation to define code blocks, eliminating the need for braces or semicolons. This enforces consistent formatting and enhances code clarity.

	Large Standard Library: Python's extensive standard library offers a wide range of pre-built modules and functions that simplify various programming tasks, from file handling to web development.

	Cross-Platform Compatibility: Python is available on various platforms, including Windows, macOS, and Linux, ensuring that code can run consistently across different systems.

	Object-Oriented Programming (OOP): Python supports object-oriented programming paradigms, allowing users to create reusable and structured code using classes and objects.

	Interpreted Language: Python is an interpreted language, meaning that code is executed line by line by the interpreter. This enables quick development and testing without the need for compiling.

	Extensive Third-Party Libraries: Python boasts a vast ecosystem of third-party libraries and frameworks that extend its capabilities, catering to different application domains such as web development (Django, Flask), data science (NumPy, Pandas), and more.

	Community and Support: Python has a vibrant and active community of developers, providing resources, tutorials, and assistance to fellow programmers. This community-driven environment contributes to Python's growth and improvement.

	Platform for Various Applications: Python is suitable for a wide range of applications, including web development, data analysis, scientific computing, artificial intelligence, machine learning, automation, and more.

	Portability: Python code can be easily ported between different platforms due to its interpreted nature and cross-platform compatibility.

	Scalability: While Python may not be as performant as some lower-level languages, it offers various ways to optimize and scale applications, including integration with compiled languages like C and using concurrency libraries.

	Disadvantages of Python

	Performance: Python is an interpreted language, which can lead to slower execution speeds compared to compiled languages like C or C++.

	Global Interpreter Lock (GIL): Python's GIL restricts the execution of multiple threads in a single process, limiting true parallelism in some cases.

	Memory Consumption: Python's dynamic typing and memory management can lead to higher memory consumption compared to languages with more stringent memory control.

	Not Ideal for Mobile Development: While Python can be used for mobile app development, it's not as commonly used as languages like Swift or Kotlin.

	Limited in Mobile and Game Development: Python is less suitable for high-performance gaming or mobile apps that require resource-intensive operations.

	Less Suitable for Low-Level Programming: Python's high-level nature makes it less suitable for low-level programming tasks like developing operating systems or device drivers.

	Packaging and Distribution Challenges: Packaging and distributing Python applications can be challenging due to dependencies and version compatibility.

	Limited Browser Support: While Python can be used for web development, it's not as commonly used for front-end web development compared to languages like JavaScript.

	Applications Of Python

	Web Development: Python is widely used for building dynamic and interactive websites. Frameworks like Django and Flask provide tools for rapid development, secure handling of user data, and efficient database management. Platforms like Instagram, Pinterest, and Spotify utilize Python for their backend web development.

	Data Analysis and Visualization: Python's libraries such as Pandas, NumPy, and Matplotlib make it a popular choice for data analysis and visualization. Researchers, analysts, and data scientists use Python to clean, manipulate, and visualize data to extract valuable insights for decision-making. Companies like NASA and Netflix employ Python for data-driven insights.

	Machine Learning and Artificial Intelligence: Python's libraries like TensorFlow, Keras, and scikit-learn empower developers and researchers to create machine learning models and AI applications. Python's flexibility and extensive libraries facilitate tasks such as image recognition, natural language processing, and recommendation systems. Applications like self-driving cars and voice assistants utilize Python-based AI.

	Scientific Computing and Research:

	Python is popular in scientific communities for tasks like simulations, numerical analysis, and complex mathematical computations. Libraries like SciPy and SymPy are used in research fields like physics, biology, and astronomy. The Large Hadron Collider at CERN uses Python for analyzing particle physics data.

	Automation and Scripting:

	Python's simplicity and readability make it an excellent choice for automating repetitive tasks and writing scripts. It's commonly used for tasks such as data scraping, file manipulation, and process automation. System administrators use Python to manage and automate server tasks, while content creators might automate social media posts.

	1.5 Getting Started with Python

	The programming language you will be learning is Python. Python is an example of a high-level language; other high-level languages you might have heard of are C++, PHP, and Java. As you might infer from the name high-level language, there are also low-level languages, sometimes referred to as machine languages or assembly languages. Loosely speaking, computers can only execute programs written in low-level languages. Thus, programs written in a high-level language have to be processed before they can run. This extra processing takes some time, which is a small disadvantage of high-level languages. However, the advantages to high-level languages are enormous.

	First, it is much easier to program in a high-level language. Programs written in a high-level language take less time to write, they are shorter and easier to read, and they are more likely to be correct.

	Second, high-level languages are portable, meaning that they can run on different kinds of computers with few or no modifications. Low-level programs can run on only one kind of computer and have to be rewritten to run on another.

	Due to these advantages, almost all programs are written in high-level languages. Low-level languages are used only for a few specialized applications. Two kinds of programs process high-level languages into low-level languages: interpreters and compilers. An interpreter reads a high-level program and executes it, meaning that it does what the program says. It processes the program a little at a time, alternately reading lines and performing computations.

	

	Interpreter

	Source code

	

	Output

	

A compiler reads the program and translates it completely before the program starts running. In this case, the high-level program is called the source code, and the translated program is called the object code or the executable. Once a program is compiled, you can execute it repeatedly without further translation.

	

Output

	Source code

	Executor

	Object code

	Compiler

	

	Soure code

	

Many modern languages use both processes. They are first compiled into a lower level language, called byte code, and then interpreted by a program called a virtual machine. Python uses both processes, but because of the way programmers interact with it, it is usually considered an interpreted language.

	For the core material in this book, you will not need to install or run Python natively on your computer. Instead, you’ll be writing simple programs and executing them right in your browser.

	At some point, you will find it useful to have a complete Python environment, rather than the limited environment available in this online textbook. To do that, you will either install Python on your computer so that it can run natively, or use a remote server that provides either a command line shell or a jupyter notebook environment.

	1.5.1 Comments in Python

	When you write code, it's important to explain why you're doing certain things in your script. This is where comments come in. Comments are like notes that you add to your code to help others (and yourself) understand what's going on. They're especially useful when you're dealing with complex ideas, formulas, or steps.

	When you run your code, the computer ignores the comments completely. It only pays attention to the actual code and follows the instructions you've written. So, comments are just there to help humans understand the code better, while the computer doesn't pay any attention to them. Python employs three types of comments: single-line comments, multi-line comments, and documentation strings. By incorporating comments into code, developers can enhance its comprehensibility and aid others in understanding the code's purpose and functionality.

	Types of comments in Python

	
		Single-Line Comment:

	Single-line comments are used to explain a single line of code. They start with the # symbol and continue until the end of the line.

	Example:

	# This is a single-line comment explaining the purpose of the following line

	age = 25 # Save the user's age.

	
		Multi-Line Comment:

	Multi-line comments are used to explain larger sections of code. They are enclosed within triple quotes (''' or """) and can span multiple lines.

	Example:

	'''

	This is a multi-line comment explaining

	the process of calculating the average.

	'''

	total = 0

	count = 0

	for num in numbers:

	 total += num

	 count += 1

	average = total / count

	
		Documentation String (Docstring):

	Docstrings are used to provide documentation for functions, classes, modules, and methods. They are enclosed within triple quotes and can be accessed using the help() function or various documentation tools.

	Example:

	def calculate_square(num):

	 """

	 This function calculates the square of a given number

	 :param num: The input number.

	 :return: The square of the input number.

	 """

	 return num ** 2

	These comments help explain the code's intent and functionality, making it easier for developers to understand and work with the code, especially when collaborating or revisiting the code at a later time.

	However, it's important to note that while humans find comments helpful, the computer doesn't care about them at all. When you run your code, the computer focuses only on the actual code instructions and ignores the comments completely. This separation between code and comments allows you to write code that's both understandable for humans and executable by computers.

	So, comments are like your way of adding helpful explanations to your code, ensuring that even if someone else reads it or you revisit it after a while, you'll still understand what's happening and why.

	1.5.2 Python Syntax

	In Python, the way you space things at the start of a line is super important. Most languages use spacing just to make code look nice, but Python takes it up a notch.

	In Python, the spaces you put at the start of a line actually mean something. They show which parts of the code belong together. So, when you put a bunch of lines with the same amount of space at the start, Python knows they're like a team working together. This makes your code organized and easy to read. Other languages use special symbols to do this job, but Python uses spaces to keep things neat and tidy.

	Example 1:

	if 8 > 1:

	 print("Eight is greater than one!")

	Output:

	Eight is greater than one!

	

	Example 2:

	if 8 > 1:

	print("Eight is greater than one!")

	Output:

	IndentationError: expected an indented block

	1.6 Python framework

	Python frameworks are pre-built collections of code and tools that help developers create web applications, software, and other projects more efficiently. These frameworks provide a structured foundation and guidelines for building applications, which can save a lot of time by handling common tasks and implementing best practices. Here are some popular Python frameworks:

	Django: A high-level web framework that encourages rapid development and clean, pragmatic design. It provides a lot of built-in features like authentication, database management, URL routing, and more. Django is commonly used for building robust web applications.

	Flask: A lightweight web framework that gives you more flexibility to choose your tools and libraries. It's great for smaller projects and offers the basics without imposing too many constraints on your development style.

	FastAPI: A modern, fast, web framework for building APIs with Python 3.7+ based on standard Python type hints. It's known for its speed and automatic generation of API documentation.

	Pyramid: A flexible and modular framework that allows you to choose the components you need for your project. It's suitable for both small and large applications.

	Bottle: A micro web framework that is minimalistic and easy to use. It's designed for simple applications and prototyping.

	CherryPy: Another minimalistic framework that provides tools for building web applications in a more object-oriented manner.

	Tornado: A web framework and asynchronous networking library that's particularly good for handling real-time applications like chat rooms or streaming.

	Web2py: A full-stack framework that includes an integrated development environment (IDE), making it easier to develop, debug, and deploy web applications.

	

	Summary

	Key Features:

	Clear and elegant syntax.Dynamically typed: Variable types are determined during runtime.Interpreted language: Code is executed line by line without compilation.Versatile and cross-platform: Runs on various operating systems.Extensive standard library: Pre-built modules for various tasks.

	Application Areas:

	Web development: Frameworks like Django, Flask.Data analysis: Libraries like Pandas, NumPy, and Matplotlib. Scientific computing: Used in research and simulations. Artificial Intelligence (AI) and Machine Learning (ML): Libraries like TensorFlow, PyTorch. Automation and scripting: Automate repetitive tasks. Game development, IoT, and more.

	Community and Ecosystem:

	Strong and active community of developers. Abundance of third-party libraries and frameworks. Package management using tools like pip. Open-source nature encourages collaboration and innovation.

	Readability and Productivity:

	Indentation-based syntax enforces code structure. Reduces complexity and enhances code readability. Promotes efficient collaboration among developers.

	Learning and Accessibility:

	Beginner-friendly language. Suitable for both novice and experienced programmers. Learning resources: Documentation, tutorials, online courses.

	

	Exercise 1:

	Multiple-choice questions (MCQs):

	Question 1: What type of programming language is Python?

	a) Compiled language

	b) Low-level language

	c) Interpreted language

	d) Assembly language

	Question 2: Which of the following statements about Python is true?

	a) Python is only used for web development.

	b) Python code is always executed line by line.

	c) Python is not suitable for scientific computing.

	d) Python emphasizes code readability and simplicity.

	Question 3: Which of the following is a correct way to declare a variable in Python?

	a) newVariable = 42

	b) 42 = newVariable

	c) variable newVariable = 42

	d) variable = newVariable(42)

	Question 4: What is the purpose of the "print()" function in Python?

	a) To display a message on the console.

	b) To create a new variable.

	c) To perform mathematical calculations.

	d) To define a function.

	Question 5: Which of the following data types is used to store a sequence of characters in Python?

	a) integer

	b) float

	c) string

	d) boolean

	Question 6: What is the result of the following code snippet?

	x = 5

	y = 2

	result = x ** y

	a) 7

	b) 25

	c) 10

	d) 8

	Question 7: In Python, which keyword is used to create a conditional statement?

	a) loop

	b) for

	c) while

	d) if

	Question 8: What is the purpose of a "list" in Python?

	a) To store only integers.

	b) To perform mathematical operations.

	c) To store a collection of items, which can be of different data types.

	d) To store a single value.

	Answer

	1. c 2. d 3. a 4. a 5. c 6. b 7. d 8. c

	

	Exercise 2:

	True/False Questions:

	Question 1: In Python, variables must be declared with a specific data type.

	Question 2: Python uses braces {} to define code blocks within loops and conditional statements.

	Question 3: The "elif" keyword is used in Python for defining a block of code that executes only if the preceding if and elif conditions are False.

	Question 4: The "for" loop in Python is used exclusively for iterating over numerical ranges.

	Question 5: Python is not suitable for handling and manipulating strings.

	Answer

	1.False 2. False 3. True 4. False 5. False

	

	Exercise 3:

	Review questions:

	Question 1: What is Python and who is its creator?

	Question 2: What are some key features that make Python unique compared to other programming languages?

	Question 3: Explain the concept of indentation in Python. Why is it important?

	Question 4: Name three commonly used libraries and explain their uses.

	Question 5: What is the difference between Python 2 and Python 3?

	Question 6: How do you write comments in Python and why are comments useful?

	Question 7: What is the significance of the print() function? Provide an example.

	Question 8: Describe the basic data types available in Python.

	Question 9: How do you create a variable in Python? Give an example.

	Question 10: What is the difference between a list and a tuple? Provide examples.

	Question 11: Explain how to perform basic arithmetic operations in Python.

	Question 12: What is typecasting and how can you use it in Python?

	Question 13: Explain the concept of loops in Python, and differentiate between a for loop and a while loop.

	Question 14: Describe what a function is in Python and how to define one.

	Question 15: What is the purpose of conditional statements like if, elif, and else? Provide an example.

	Question 16: How are dictionaries different from lists in Python?

	Question 17: What is the None type used for in Python?

	Question 18: Describe how to read from and write to files in Python.

	Question 19: What is PEP 8 and why is it important for Python developers?

	Question 20: How do you import modules in Python and what is the significance of the import statement?

	

	

	

	

Chapter 2

	Setting up Python

	Setting up Python on your computer is the first step to unlock its coding capabilities. Python is a versatile and widely-used programming language that caters to various applications.

	Setting up Python on your computer is an essential but straightforward task that marks the beginning of your programming journey with this versatile language. The process essentially involves downloading the appropriate installer from the Python official website and running it on your system. The installer is generally self-explanatory and guides you through the necessary steps, including the option to add Python to your system PATH, making it easily accessible from the command line.

	After installation, you can confirm that Python was installed correctly by invoking it from the command line, terminal, or PowerShell, depending on your operating system. A successful installation will allow you to check the installed version with a simple command, ensuring that the system recognizes Python as an installed application.

	It's also worth mentioning that Python often releases new versions with additional features, optimizations, and security fixes. Therefore, keeping your Python installation updated is advisable to benefit from the latest improvements and patches.

	In summary, setting up Python is a simple but crucial step that unlocks a wide range of programming capabilities, from web development to data analysis and beyond. The installation not only provides the core language but also includes various tools and utilities that make coding in Python a more efficient and organized endeavour.

	2.1 Note on python version

	Many operating systems, including macOS and Linux, come with Python preinstalled. The version of Python that comes with your operating system is called the system Python. The system Python is used by your operating system and is usually out of date. It’s essential that you have the most recent version of Python so that you can successfully follow along with the examples in this book.

	Installing Python is a straightforward process that allows you to set up the programming language on your computer, enabling you to write and run Python code.

	Here's a straightforward guide to get you started:

	Begin by heading to the official Python website at www.python.org. Once there, locate the "Downloads" section. You'll need to select the appropriate version of Python based on the operating system you're using – whether it's Windows, macOS, or Linux. It's recommended to opt for the latest stable version for the best experience.

	This chapter is split into three sections: Windows, macOS, and Ubuntu Linux. Find the section for your operating system and follow the steps to get set up, then skip ahead to the next chapter.

	2.2 Installing Python on Windows

	Download Python Installer:

	Visit the official Python website at https://www.python.org/downloads/windows/ and download the latest version of Python for Windows. Make sure to download the installer that corresponds to your system architecture (32-bit or 64-bit).

	Run the Installer:

	Once the installer executable (.exe) is downloaded, double-click on it to run it. You might need administrative privileges to install software on your system.

	Customize Installation (Optional):

	The installer will give you the option to customize the installation. You can choose to add Python to the PATH, which is recommended as it allows you to run Python from the Command Prompt without specifying the full path. You can also choose the installation location and select optional features.

	Install Python:

	Click the "Install Now" button to start the installation process. The installer will copy the necessary files and set up Python on your system.

	Installation Complete:

	Once the installation is complete, you will see a screen indicating that Python has been successfully installed. You can also access the Python documentation, browse the Python website, or disable the path length limit. You can also exit the installer.

	Verify Installation:

	To verify that Python has been installed correctly, open the Command Prompt and type python --version. This should display the version of Python that you installed.

	Using Python:

	You can now use Python by running scripts or opening an interactive Python shell (REPL) from the Command Prompt. To open the interactive shell, simply type Python in the Command Prompt and press Enter.

	That's it! You have successfully installed Python on your Windows system. You can start writing and running Python scripts or experimenting with the Python interactive shell.

	

	[image: Image]

	2.3 Install Python on macOS

	Check Existing Python Version (Optional):

	Open the Terminal and type python --version to check if Python is already installed. macOS typically comes with a pre-installed version of Python 2.x.

	Install Homebrew (Optional but Recommended):

	Homebrew is a package manager for macOS that makes it easier to install and manage software. To install Homebrew, paste the following command in the Terminal and press Enter:

	/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

	Install Python 3:

	After installing Homebrew (or if you choose not to use it), you can install Python 3 using the following commands:

	
		For Homebrew users:

	 brew install Python

	
		Without Homebrew:

	Visit the official Python website at https://www.python.org/downloads/macos/ and download the latest version of Python for macOS. Run the installer and follow the prompts.

	[image: How to Install Python 3 on Mac | OSXDaily]

	Verify Installation:

	After the installation is complete, open a new Terminal window and type python3 --version to verify that Python 3 has been installed. You use python3 to explicitly run Python 3, as macOS typically links the Python command to the pre-installed Python 2.

	Using Python:

	You can now use Python by running scripts or opening an interactive Python shell in the Terminal. To open the interactive shell, type python3 and press Enter. You can exit the interactive shell by typing exit() or pressing Ctrl + D.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

OEBPS/images/image.jpeg
2 Python 3.8.4 (64-bit) Setup - [m]

Install Python 3.8.4 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\damos\AppData\Local\Programs\Python\Python38-32
Includes IDLE, pip and documen_lat_ion

Creates shortcuts and file associations

—> Customize installation

Choose location and features
& Install launcher for all users (recommended)
Wi nd [J Add Python 3.8 to PATH Cancel

OEBPS/images/image-1.jpeg
L X°) ‘¢ Install Python a

Important Information

‘This package wil install Python 3.6.5 for macOS 10.6 or later for the,
e Intoditon following architecture(s): i386, xB6_64.

© Read M Which installer

t should | use? [CHANGED in 3.6.5

License ““NEW"* With Python 3.6.5, the python org website now provides two
instalervariants for downioad: one that nstals a 64-bit-only Python
capable of running on macOS 10.9 (Mavericks) orlater; and one that
installs a 64-bi/32-biItel Python capable of running on mac0S 10.6
(Snow Leopard) or iater. (Tris ReadMe was inslalled with the 10.6 or
latervariant) Previous Python 3.6.x releases only provided the 10.6
or later instaler. Ifyou are runing on macOS 10.9 o later and i you
have no need for compatibily with older systems, use the 10.9 variant.
Use the 10.6 variant if you are running on macOS 10,6 through 10., if
You need 10 maintain compatbilty with previous 3.6.x releases, or if
You want to produce standalone applications that can run on systems
rom 10.6. The Pythons installed by these installrs are built with
private copies of some thirc-party braries notincluded with or newer
than those in macOS tsell. The lstof thes lbraries vares by installer
Variant and i included at the end of the License.t i

Certificate verification and OpenSSL

Print. Save GoBack || Continue

OEBPS/cover.jpg

