
		
			[image: Cover.png]
		

	
		
			AUTOSAR Fundamentals and Applications

			Establishing a solid foundation for automotive software design with AUTOSAR

			Hossam Soffar

			[image: ]

			AUTOSAR Fundamentals and Applications

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Preet Ahuja

			Publishing Product Manager: Surbhi Suman

			Book Project Manager: Ashwin Dinesh Kharwa

			Senior Editor: Apramit Bhattacharya

			Technical Editor: Nithik Cheruvakodan

			Copy Editor: Safis Editing

			Proofreader: Apramit Bhattacharya

			Indexer: Rekha Nair

			Production Designer: Nilesh Mohite

			DevRel Marketing Coordinator: Rohan Dobhal

			First published: December 2024

			Production reference: 1221124

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80512-087-2

			www.packtpub.com

			




This book is humbly dedicated to all the extraordinary individuals who have supported and inspired me throughout my journey. To my beloved family: your unwavering love and encouragement have been the foundation of all my endeavors. Thank you for your endless support and belief in me.

			To my colleagues, past and present, from Valeo Egypt, Elektrobit, FEV, and now Plus AI: your creativity, dedication, and collaboration have been invaluable. Working alongside such talented and innovative minds has been a true privilege, and I am grateful for every moment we have shared. You have taught me countless lessons and enriched my career in ways I could never have imagined.

			I also dedicate this book to all the unfortunate souls in the world. May you find peace and justice one day. Your resilience and strength inspire us to strive for a better, more equitable world.

			




Contributors

			About the author

			Hossam Soffar is a seasoned automotive embedded software engineer with over 12 years of experience in the automotive software industry. He has acquired substantial expertise in AUTOSAR through his roles in development and consulting for automotive ECUs, collaborating with an extensive network of OEMs and Tier 1 and Tier 2 suppliers. He has been involved in debugging embedded software, establishing software architectures, improving software performance, and managing software requirements and architectural design, with a particular focus on safety, security, and real-time performance. Committed to lifelong learning, Hossam values the opportunity to share his knowledge and insights with colleagues and peers in the field.

			




About the reviewers

			Shriram Gobichettipalayam Ramalingam is an automotive embedded software architecture specialist with 14+ years of experience in the automotive domain. He has contributed to designing in-vehicle network architecture, classic and adaptive AUTOSAR software stack configuration, and the development of various OEMs.

			I would like to thank my manager, Mr. Sandeep, who motivated me to expand my experience beyond work. Thank you for breaking stereotypes and being understanding and supportive in all activities.
 
			Dan Stroud is a senior solutions architect for AWS, specializing in the automotive sector. He gained his CEng in 2016 and has an MSc in systems engineering management (UCL) and a BSc in software engineering (University of Portsmouth). His 17+ years of experience in software development and architecture includes flight controls architecture (777x), leading the design of a new EV platform architecture for an automotive OEM, heavily focused around the AUTOSAR framework, and now specializing in helping automotive customers to deliver connected features and accelerate innovation through the cloud.

			The automotive industry has seen a fundamental shift, with innovation now being driven by software. With resources limited and expectations high, it’s technologies such as AUTOSAR that allow developers to focus on features, rather than re-inventing the platform wheel. I feel privileged to have experienced this as an OEM and I’m excited to see how connectivity and the power of the cloud drive the next cycle of innovation.
 
			Alaa Mahran is a senior embedded software engineer with over 10 years of experience in automotive software, specializing in AUTOSAR. He currently works at Webasto SE, where he leads software architecture and bootloader development, focusing on safety-critical and cybersecurity-compliant projects. Alaa has also worked with Valeo on ADAS applications, contributing to enhancing automotive safety and driver assistance features.

			I want to express my appreciation for my father, who taught me to keep an eye out for details and strive for excellence and continuous improvement.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction – The Genesis and Framework of AUTOSAR

			1

			Exploring the Genesis and Objectives of AUTOSAR

			Evolution of the automotive industry

			What is an ECU?

			Introducing automotive software development

			Understanding traditional software development

			Case study – Replacing an MCU and exchanging microcontroller drivers

			Introducing the AUTOSAR framework

			Impact on traditional software development

			How were these goals achieved?

			Case study – Developing an ECU in the AUTOSAR framework

			Understanding the AUTOSAR standards

			Software architecture and design

			Layers

			Stacks

			Summary

			Questions

			2

			Introducing the AUTOSAR Software Layers

			Understanding layered software architecture in AUTOSAR

			Application layer

			Runtime environment

			Understanding the VFB concept

			Understanding the function of the RTE

			Basic software layer

			Service layer

			ECU abstraction layer

			Microcontroller abstraction layer

			Complex drivers

			Interfaces

			Case study – Developing a BMS ECU

			Application layer

			RTE

			BSW – Service layer

			BSW – ECU abstraction layer

			BSW – MCAL

			Summary

			Questions

			3

			AUTOSAR Methodology and Data Exchange Formats

			Introducing the AUTOSAR methodology

			Understanding the AUTOSAR methodology

			System Configuration

			ECU Configuration

			Code Generation

			Using templates for data exchange

			Conformance classes for AUTOSAR

			Summary

			Questions

			Part 2: Investigating the Building Blocks of AUTOSAR

			4

			Working with Software Components and RTE

			Understanding SWCs

			Example – Throttle controller

			Types of AUTOSAR SWCs

			Elements of SWC

			Exploring AUTOSAR datatypes

			Modeling an SWC

			What is an AUTOSAR authoring tool?

			Communication between the SWCs

			Introducing compositions

			Connector types

			Understanding the significance of the RTE

			Generation of RTE

			Summary

			Questions

			5

			Designing and Implementing Events and Interfaces

			Introducing the communication model

			Explaining the information flow

			Sender-receiver communication

			Client-server communication

			Rethinking temperature sensor design

			Understanding events in AUTOSAR

			How do ports, interfaces, and events interact with each other?

			Events for temperature monitoring example

			Summary

			Questions

			6

			Getting Started with the AUTOSAR Operating System

			A brief overview of the AUTOSAR OS

			Introduction to real-time operating systems

			Introduction to OSEK

			Configuring the AUTOSAR OS

			Exploring the AUTOSAR OS architecture

			Tasks

			Interrupts

			Events

			Scheduling

			Task trigger mechanisms

			OS resources

			Hooks

			Summary

			Questions

			7

			Exploring the Communication Stack

			What is the COM stack?

			COM stack overview

			An overview of basic COM concepts

			COM module

			PDU-Router (PduR) Module

			CAN modules

			Exploring an example of sending a CAN message

			Network management

			Key modules in network management

			Summary

			Questions

			Part 3: Beyond Fundamentals – Advanced AUTOSAR Concepts

			8

			Securing the AUTOSAR System with Crypto and Security Stack

			Introduction to automotive security

			Fundamentals of automotive security

			Security in AUTOSAR

			Differentiating between safety and security

			Security stack architecture in AUTOSAR

			Cryptographic techniques

			Crypto service manager module

			Crypto Interface module

			Crypto module

			Other helper modules to achieve security

			Crypto Stack use cases and examples

			Data encryption

			Secure communication

			Secure diagnostics

			Secure boot in AUTOSAR

			Summary

			Questions

			9

			Dealing with Memory and Mode Management

			Memory stack in AUTOSAR

			Significance of non-volatile memory in AUTOSAR

			Understanding the memory stack

			Storage objects

			Use case

			Mode management

			Role and functionality

			Use case for the BSWM – Vehicle shutdown process

			Summary

			Questions

			10

			Wrapping Up and Extending Knowledge with a Use Case

			Overview of diagnostics

			Diagnostic Communication Manager (DCM) in detail

			Diagnostic Event Manager

			Default Error Tracer (DET)

			Failure Management

			Overview of time synchronization

			Synchronized Time-Base Manager (StbM) module

			CAN Time Synchronization (CanTSyn)

			How to read the standards

			Key AUTOSAR documents

			What’s next?

			Case study – Development of an autonomous parking assist system

			Application layer (SWCs)

			AUTOSAR BSW modules

			Summary

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			Embedded software teams use the AUTOSAR framework to standardize interfaces between application software and basic vehicular functions. This standardization helps develop and deploy software rapidly and efficiently for automotive electronic control units (ECUs) and ensures more effective project management.

			Many engineers find AUTOSAR challenging due to its complexity owing to the difficulty of grasping its concepts at the beginning. The intricate architecture and extensive standards can lead to confusion, making it hard for beginners to see the full picture and understand how everything fits together. Additionally, beginner-friendly resources are limited. This book addresses these challenges with clear explanations, key concepts, and practical advice to help beginners and intermediate-level engineers confidently navigate the AUTOSAR landscape.

			 Automotive ECUs are safety-critical and hard real-time systems, and this book will provide you with the foundational knowledge and skills needed to participate in their development and manage AUTOSAR projects more effectively.

			With a focus on the practical application of AUTOSAR, this book dives deep into the AUTOSAR framework and architecture and shows how to implement it in the development of automotive electronic systems using best practices and real-world use cases.

			The book begins with an overview of the goals and objectives of AUTOSAR and then discusses its layered architecture, including the different AUTOSAR stacks, components and modules, and internal and external communication mechanisms. You’ll discover how to configure, design, and integrate AUTOSAR software components in a run-time environment (RTE) and understand the principles of diagnostics, security, and real-time operating system (RTOS) for developing high-quality, secure, and efficient ECUs.

			After reading this book, you’ll have detailed insights into AUTOSAR and be skilled in building, implementing, and managing complex automotive systems confidently and efficiently.

			Who this book is for

			This book is designed for embedded software engineers and any software developer or software architect who works with or plans to work with automotive systems but has minimal or no knowledge of AUTOSAR. It serves as a valuable reference for project managers, students, and researchers who seek to learn about AUTOSAR and its applications or understand its main concepts. A background knowledge of software development processes and C programming will be beneficial.

			What this book covers

			Chapter 1, Exploring the Genesis and Objectives of AUTOSAR, introduces the origins and goals of the AUTOSAR standard. It explains the foundational principles and motivations behind its development, offering a comprehensive understanding of its objectives.

			Chapter 2, Introducing the AUTOSAR Software Layers, explores the essential layers of AUTOSAR architecture, including the application layer, RTE, service layer, ECU abstraction layer, and MCAL. It highlights the design and implementation of modular and compatible software components, using a BMS ECU as a case study to illustrate practical applications. This chapter provides foundational knowledge for understanding how these layers interact and support automotive software development.

			Chapter 3, AUTOSAR Methodology and Data Exchange Formats, outlines the AUTOSAR development methodology, emphasizing the independence of software component implementation from ECU configuration. It introduces AUTOSAR templates for data exchange and covers system design, modeling, code generation, and configuration. The chapter also explains conformance classes, detailing the essential BSW modules required for compliance.

			Chapter 4, Working with Software Components and RTE, explores the structure, functionality, and types of AUTOSAR software components, including application software components and complex device drivers. It explains software component communication via ports, the role of runnable entities, and triggering conditions. The chapter also highlights the importance of the runtime environment and its connection with the virtual function bus (VFB), providing a foundation for developing complex automotive systems.

			Chapter 5, Designing and Implementing Events and Interfaces, unravels the complexities of events and interfaces in the AUTOSAR framework. It emphasizes their role in data transitions, real-time responses, and safety. The chapter covers advanced communication models, including sender-receiver and client-server interfaces, and synchronous versus asynchronous communication, using a car’s temperature monitoring system as an example.

			Chapter 6, Getting Started with the AUTOSAR Operating System, examines the AUTOSAR operating system (OS), its architecture, RTOS, and the OSEK standard. It highlights priority-based scheduling, fast interrupt processing, and inter-task communication. The chapter also covers task management, synchronization, and resource allocation, providing essential knowledge for developing efficient and reliable automotive software systems.

			Chapter 7, Exploring the Communication Stack, covers the COM module’s role in data exchange, the significance of signals, and the PDUR module’s function in routing and transforming data. Using the CAN stack as an example, it provides insights into the key components and mechanisms of AUTOSAR communication.

			Chapter 8, Securing the AUTOSAR System with Crypto and Security Stack, focuses on automotive cybersecurity within the AUTOSAR framework. It highlights the importance of security and potential risks. The chapter explores the AUTOSAR crypto stack, including its core components and their roles in cryptographic operations. It also covers Secure Onboard Communication (SecOC) for ensuring data confidentiality and integrity between ECUs, emphasizing the importance of secure coding practices and regulatory compliance.

			Chapter 9, Dealing with Memory and Mode Management, covers the architecture and functionalities of the NVM stack, focusing on data storage and retrieval through the Non-Volatile Memory Manager (NVMM) module. It provides practical insights into configuring NVM, discussing storage objects, block management, and error handling. Additionally, it discusses Basic Software Mode Management (BSWM), illustrating its role in managing different operating modes within automotive ECUs to ensure seamless operation and reliability.

			Chapter 10, Wrapping Up and Extending Knowledge with a Use Case, concludes our exploration of AUTOSAR, emphasizing its importance in automotive software engineering. It recaps key concepts, including AUTOSAR architecture, SWS, TPS, RS, RTE, and BSW specifications, and presents a use case for designing a real-time control system within an automotive ECU. This chapter serves as a foundation, encouraging engineers to continue studying AUTOSAR specifications, gain hands-on experience, and stay updated with industry trends to master this powerful standard.

			To get the most out of this book

			You should have a basic understanding of automotive software development and embedded systems. Familiarity with RTOS and general software engineering principles will be beneficial. Additionally, a foundational knowledge of communication protocols and basic cybersecurity concepts will help in grasping the more advanced topics covered in the chapters.

			If you are using the digital version of this book, we advise you to type the code yourself. Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The function then reads a value and stores it in the receivedData variable.”

			A block of code is set as follows:

			
#include "Rte_Receiver.h"
void ReceiverCounterFunction(void) {
    UInt32 receivedData;
    Rte_Read_ReceiverInterface_ReceiverInput(&receivedData);     
// Process received data, e.g., control an actuator based on the input    
// In this example only odd counter value is sent if (receivedData % 2)  {
     Rte_Write_ReciverModule_CounterSig(receivedData)	
     }
}
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “AUTomotive Open System ARchitecture (AUTOSAR) is a standard for the development of automotive electronic systems. “

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com

			Share Your Thoughts

			Once you’ve read AUTOSAR Fundamentals and Applications, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below[image: ]


			

			 

			https://packt.link/free-ebook/978-1-80512-087-2

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1: Introduction – The Genesis and Framework of AUTOSAR

			This part provides a foundational understanding of AUTOSAR, its origins, and its layered architecture. It introduces the key principles, motivations, and methodologies that underpin the AUTOSAR framework, offering insights into how data exchange formats facilitate seamless communication within the system. You will gain a solid grasp of the fundamental concepts necessary for developing AUTOSAR-compliant automotive software.

			This part has the following chapters:

			
					Chapter 1, Exploring the Genesis and Objectives of AUTOSAR

					Chapter 2, Introducing the AUTOSAR Software Layers

					Chapter 3, AUTOSAR Methodology and Data Exchange Formats

			

		

		
			
			

		

		
			
			

		

	


		
			1

			Exploring the Genesis and Objectives of AUTOSAR

			AUTomotive Open System ARchitecture (AUTOSAR) is a standard for the development of automotive electronic systems. It provides a common software architecture for electronic control units (ECUs) in vehicles, allowing for the easier integration and development of new features. It is a partnership of major automotive manufacturers and suppliers, and its goal is to improve the overall efficiency and flexibility of the automotive software development process.

			In this first chapter, we will discuss the motivation behind the development of AUTOSAR, the organization of the partnership, and its aims and objectives. In this chapter, we will cover the following main topics:

			
					Evolution of the automotive industry

					Introducing the AUTOSAR framework

					Understanding the AUTOSAR standards

					Software architecture and design

			

			Evolution of the automotive industry

			Over the past few decades, the automobile industry has evolved from a simple means of transportation to a complex machine that resembles a smartphone on wheels. This transformation is due to the integration of advanced technologies and the adoption of a more sophisticated approach to design and development.

			The evolution of the car can be traced back to the early 20th century when the first automobiles were developed. These vehicles were simple and utilitarian, designed primarily for transportation from point A to point B. However, as technology advanced, so did the car. In the 1950s and 1960s, we saw the emergence of advanced safety features such as seat belts, airbags, and anti-lock brakes. By the 1980s, we began to see the introduction of onboard computers, which enabled more advanced engine management and diagnostics. In the 1990s, vehicles saw the integration of more sophisticated electronic systems, such as electronic stability control (ESC) and advanced driver assistance systems (ADAS).

			In the 21st century, the car has undergone a massive transformation. Today’s vehicles are equipped with advanced features that were once reserved for high-end luxury cars.

			The percentage of car production costs attributed to electronic control systems and automotive software has been consistently rising over the years. This upward trend is clearly depicted in the Statista data (https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/) shown in the following figure, which has been monitoring this development since 1970:

			
				
					[image: Figure 1.1 – Electronics system as percent of total car cost]
				

			

			Figure 1.1 – Electronics system as percent of total car cost

			This increasing complexity of automotive systems has presented a challenge for the industry in terms of software development.

			The evolution of the car into a smart, connected, and autonomous machine is driven by several factors, which include the following:

			
					The growing demand for advanced safety features

					The need for more efficient and environmentally friendly transportation

					The desire for a more convenient and connected driving experience

			

			The adoption of advanced technologies such as sensors, software systems, and connectivity has enabled car manufacturers to deliver on these demands, creating a new era of smart, autonomous, and connected vehicles.

			With the integration of new technologies such as ADAS and connected car features, the amount of software that needs to be developed and integrated into vehicles has grown significantly.

			The comparison to the Apollo mission highlights the significant increase in complexity of modern cars. While the Apollo spacecraft had only a limited number of systems that needed to be managed, modern cars can contain up to 100 or more ECUs, sensors, and actuators, all of which need to communicate seamlessly within very tight time constraints with one another to ensure proper functioning. Additionally, modern cars are highly connected devices that require sophisticated software and networking capabilities, further adding to their complexity. This increased complexity allows modern cars to offer advanced features and functionality but also requires more sophisticated maintenance and repair processes.

			Having discussed the evolution and complexity of automotive software, let’s shift our focus to one of the essential components that enable modern cars to function effectively – the ECU.

			What is an ECU?

			Before we move any further, we need to understand what an automotive ECU is. This is a computer – comprising a printed circuit board (PCB) with a microcontroller and various electronic components – that controls various functions in a vehicle. These functions may include engine management, transmission control, climate control, power steering, and brakes. Here are some examples of automotive ECUs:

			
					Engine control module (ECM): The ECM is responsible for managing the engine’s performance, including fuel injection, ignition timing, and emissions control.

					Transmission control module (TCM): The TCM manages the operation of the transmission, including gear selection, shift timing, and torque converter lock-up.

					Body control module (BCM): The BCM controls various functions related to the vehicle’s body and interior, such as lighting, climate control, door locks, and audio systems.

					Anti-lock braking system (ABS) control module: The ABS control module manages the operation of the ABS, which helps to prevent skidding and maintain control of the vehicle during braking.

					Battery management system (BMS): The BMS’s primary function is to monitor, control, and optimize the performance of the vehicle’s battery pack. It also ensures all battery cells within the pack are charged and discharged uniformly, preventing the overcharging of certain cells and maximizing the overall battery capacity.

			

			Some examples of these components are shown in the following figure:

			
				
					[image: Figure 1.2 – Examples of ECUs in a vehicle]
				

			

			Figure 1.2 – Examples of ECUs in a vehicle

			Overall, automotive ECUs play a critical role in the operation of modern vehicles, providing precise control over various systems and ensuring optimal performance, efficiency, and safety. As automotive ECUs rely heavily on complex software to perform their functions, we first need to understand the software development aspect to comprehend the nuances of ECU operation and design.

			Introducing automotive software development

			Automotive software development is a critical component of the continued innovation and success of the automotive industry. It involves creating and maintaining software systems used in various types of automobiles, cars, trucks, buses, and other automobiles. These software systems are responsible for multiple tasks, such as engine management, navigation, entertainment, and safety features. Therefore, engineers in this field must have expertise in embedded systems, real-time programming, control systems, and communication protocols to create reliable and safe software systems.

			It is a highly specialized field that requires close collaboration with other members of the automotive development team, such as electrical and mechanical engineers and quality assurance specialists, to ensure seamless integration of the software systems into the vehicle and meet the end users’ needs. Clean software architecture principles can help address the challenges of this complex field by creating a system that is easy to maintain, modify, and evolve while being resilient to change.

			Note

			Clean architecture in software design refers to a structured approach that prioritizes clarity, separation of concerns, and maintainability. It emphasizes the organization of code in a way that minimizes dependencies, allowing for easy modifications and testing. Clean architecture fosters systems that are adaptable, scalable, and easy to comprehend.

			It’s a challenging field but plays a critical role in the continuous success and innovation of the automotive industry. Before we discuss advancements in this field, let’s first understand traditional automotive software development.

			Understanding traditional software development

			Traditional automotive software development involves a wide variety of ECUs with different hardware and software, which can make it difficult to ensure that all components work together efficiently. Each supplier has its own software architecture definitions, development methodology, and interfaces for ECUs, resulting in fragmented and non-standardized software components (SWCs) across the automotive industry. This approach had several limitations, including the following:

			
					Limited reusability: SWCs developed for one vehicle or system may not be reusable in another, leading to increased development costs and a longer time to market, if a similar functionality is required on another platform.

					Integration time: The integration of different SWCs can be a time-consuming and expensive process, particularly if the components were not designed to work together from the beginning.

					Time to market: The time to market for new vehicles and features can be long and costly, particularly when traditional automotive software development methods are used. This can lead to missed opportunities and lost revenue for manufacturers and suppliers.

					Complex supply chain: The rising complexity of software implementations is closely linked to the increasing complexity of supply chains. In this context, software developers design their components based on the requirement definitions provided by original equipment manufacturers (OEMs) or Tier 1 suppliers, who are responsible for their integration at a later stage.

					Rigidity: Automotive software is often monolithic and inflexible. Also, it is very hard to adapt to changing requirements and technologies.

			

			Traditional automotive software development was fragmented, non-standardized, and costly, making it challenging to develop high-quality software and meet the growing demands of the automotive industry. An example of this type of non-standardized architecture is shown in the following figure:

			
				
					[image: Figure 1.3 – Example of non-standardized software architecture]
				

			

			Figure 1.3 – Example of non-standardized software architecture

			Thus, AUTOSAR was introduced to address these limitations and promote more efficient, effective, and standardized automotive software development. In the following section, we discuss a case study to illustrate this point.

			Note on the evolution of automotive software standardization

			There were early efforts to standardize automotive software both within individual companies and through collaborations between various entities, such as OSEK/VDX and HIS. These initiatives aimed to address specific aspects of software architecture, such as operating systems and diagnostics. Despite these efforts, they were often narrow in focus and lacked the integration needed for modern vehicle systems. This led to the development of AUTOSAR, a comprehensive standard that addresses all layers of automotive software architecture, enabling better scalability, interoperability, and reusability across different manufacturers and vehicle platforms.

			Case study – Replacing an MCU and exchanging microcontroller drivers

			Let’s consider an example of a company wanting to upgrade an ECU, which was typically designed and implemented using proprietary software and hardware architectures, with little or no standardization across different car manufacturers. The microcontroller deployed in an ECU was typically bespoke and tailored to the car manufacturer and the specific model, and any alteration to it would necessitate extensive modifications to both the hardware and software aspects.

			Suppose the company wants to replace the microcontroller of the ECU with a more advanced microcontroller. In that case, they would need to design a new hardware board that is compatible with the new microcontroller, which would likely involve changing the pin assignments and other circuitry.

			With a similar architecture to that shown in Figure 1.3, most of the software would need to be rewritten or modified to adapt to the new microcontroller’s peripheral interfaces, and architecture. This would require a significant investment in time, money, and resources, depending on the complexity of the ECU.

			In summary, prior to the advent of AUTOSAR, altering the microcontroller of an automotive ECU represented a formidable task, necessitating considerable technical knowledge and regulatory expertise. The lack of standardization across automotive manufacturers compounded the issue, making it difficult to devise a universal solution. Moreover, the intricate nature of the software and hardware involved rendered any attempts to upgrade or modify an ECU a substantial challenge, requiring significant effort and resources. With the advent of AUTOSAR, there was a paradigm shift as it allowed software to be abstracted from not just the microcontroller but the entirety of the ECU and vehicle architecture. This enables developers to write applications that communicate with other software, fully abstracted from aspects such as the ECU architecture, endianness, bus architecture, signal packing and protocol, and vehicle gateways.

			It’s worth noting that our focus has primarily been on the benefits of AUTOSAR in relation to microcontroller replacement in this context. However, the benefits of AUTOSAR are far more comprehensive. Beyond facilitating microcontroller substitution, AUTOSAR’s broad reach positively affects numerous other aspects of automotive software and hardware, making it a more efficient and flexible solution in the realm of automotive technology.

			Introducing the AUTOSAR framework

			AUTOSAR is an open and standardized software architecture for the automotive industry. It was developed by a consortium of automotive manufacturers, suppliers, and tool developers. The aim is to create an industry standard for automotive software architectures that is open and accessible to all. The standard is designed to meet the technical goals of the automotive software industry: modularity, scalability, transferability, and function reusability.

			The main objective of AUTOSAR is to develop a standard architecture that can be used across different automotive domains, such as powertrain, chassis control, body, and safety. This standardization aims to enable SWCs from different suppliers to work together seamlessly, reduce development costs, and facilitate the reusability of SWCs. It also helps in managing the increasing complexity of electrical and electronic systems, as well as ensuring their quality and reliability.

			Here’s how the different components of the ecosystem work:

			
					OEMs: They are responsible for setting ECU software requirements and choosing Tier 1 suppliers to deliver the hardware and SWCs. By adopting AUTOSAR, OEMs ensure compliance with safety and regulatory standards while promoting modular, reusable, and scalable software development for seamless integration and compatibility across various automotive systems and suppliers.

					Tier 1 suppliers: A Tier 1 supplier is a company that directly supplies components or systems. It can be hardware or software to an OEM for use in vehicle production. These suppliers are considered at the top of the automotive supply chain and are responsible for providing high-quality and reliable components that meet the OEM’s specifications and requirements. Examples of Tier 1 suppliers in the automotive industry include companies that provide engines, transmissions, braking systems, steering systems, and electronics components such as infotainment systems and ECUs.

					Standard software vendors: Standard software vendors provide AUTOSAR-compliant software modules, such as communication stacks and diagnostic services, that can be easily integrated and interchanged with other SWCs. The standard software is developed following the AUTOSAR standards and can be used by Tier 1 suppliers to build more complex software modules.

					Semiconductor manufacturers: Semiconductor manufacturers in the automotive industry provide the electronic components. They ensure that future hardware and software needs of the automotive industry are met.

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	


		
		Contents

			
					AUTOSAR Fundamentals and Applications

					Contributors

					About the author

					About the reviewers

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Conventions used

							Get in touch

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Part 1: Introduction – The Genesis and Framework of AUTOSAR

					Chapter 1: Exploring the Genesis and Objectives of AUTOSAR
					
							Evolution of the automotive industry
							
									What is an ECU?

									Introducing automotive software development

									Understanding traditional software development

									Case study – Replacing an MCU and exchanging microcontroller drivers

							

						

							Introducing the AUTOSAR framework
							
									Impact on traditional software development

									How were these goals achieved?

									Case study – Developing an ECU in the AUTOSAR framework

							

						

							Understanding the AUTOSAR standards

							Software architecture and design
							
									Layers

									Stacks

							

						

							Summary

							Questions

					

				

					Chapter 2: Introducing the AUTOSAR Software Layers
					
							Understanding layered software architecture in AUTOSAR

							Application layer

							Runtime environment
							
									Understanding the VFB concept

									Understanding the function of the RTE

							

						

							Basic software layer
							
									Service layer

									ECU abstraction layer

									Microcontroller abstraction layer

									Complex drivers

							

						

							Interfaces

							Case study – Developing a BMS ECU
							
									Application layer

									RTE

									BSW – Service layer

									BSW – ECU abstraction layer

									BSW – MCAL

							

						

							Summary

							Questions

					

				

					Chapter 3: AUTOSAR Methodology and Data Exchange Formats
					
							Introducing the AUTOSAR methodology

							Understanding the AUTOSAR methodology
							
									System Configuration

									ECU Configuration

									Code Generation

							

						

							Using templates for data exchange

							Conformance classes for AUTOSAR

							Summary

							Questions

					

				

					Part 2: Investigating the Building Blocks of AUTOSAR

					Chapter 4: Working with Software Components and RTE
					
							Understanding SWCs
							
									Example – Throttle controller

									Types of AUTOSAR SWCs

									Elements of SWC

							

						

							Exploring AUTOSAR datatypes

							Modeling an SWC
							
									What is an AUTOSAR authoring tool?

							

						

							Communication between the SWCs
							
									Introducing compositions

									Connector types

							

						

							Understanding the significance of the RTE
							
									Generation of RTE

							

						

							Summary

							Questions

					

				

					Chapter 5: Designing and Implementing Events and Interfaces
					
							Introducing the communication model
							
									Explaining the information flow

									Sender-receiver communication

									Client-server communication

									Rethinking temperature sensor design

							

						

							Understanding events in AUTOSAR
							
									How do ports, interfaces, and events interact with each other?

									Events for temperature monitoring example

							

						

							Summary

							Questions

					

				

					Chapter 6: Getting Started with the AUTOSAR Operating System
					
							A brief overview of the AUTOSAR OS
							
									Introduction to real-time operating systems

									Introduction to OSEK

									Configuring the AUTOSAR OS

							

						

							Exploring the AUTOSAR OS architecture
							
									Tasks

									Interrupts

									Events

									Scheduling

									Task trigger mechanisms

									OS resources

									Hooks

							

						

							Summary

							Questions

					

				

					Chapter 7: Exploring the Communication Stack
					
							What is the COM stack?

							COM stack overview
							
									An overview of basic COM concepts

									COM module

									PDU-Router (PduR) Module

									CAN modules

									Exploring an example of sending a CAN message

							

						

							Network management
							
									Key modules in network management

							

						

							Summary

							Questions

					

				

					Part 3: Beyond Fundamentals – Advanced AUTOSAR Concepts

					Chapter 8: Securing the AUTOSAR System with Crypto and Security Stack
					
							Introduction to automotive security

							Fundamentals of automotive security
							
									Security in AUTOSAR

									Differentiating between safety and security

							

						

							Security stack architecture in AUTOSAR
							
									Cryptographic techniques

									Crypto service manager module

									Crypto Interface module

									Crypto module

									Other helper modules to achieve security

							

						

							Crypto Stack use cases and examples
							
									Data encryption

									Secure communication

									Secure diagnostics

									Secure boot in AUTOSAR

							

						

							Summary

							Questions

					

				

					Chapter 9: Dealing with Memory and Mode Management
					
							Memory stack in AUTOSAR
							
									Significance of non-volatile memory in AUTOSAR

									Understanding the memory stack

									Storage objects

									Use case

							

						

							Mode management
							
									Role and functionality

									Use case for the BSWM – Vehicle shutdown process

							

						

							Summary

							Questions

					

				

					Chapter 10: Wrapping Up and Extending Knowledge with a Use Case
					
							Overview of diagnostics
							
									Diagnostic Communication Manager (DCM) in detail

									Diagnostic Event Manager

									Default Error Tracer (DET)

									Failure Management

							

						

							Overview of time synchronization
							
									Synchronized Time-Base Manager (StbM) module

									CAN Time Synchronization (CanTSyn)

							

						

							How to read the standards
							
									Key AUTOSAR documents

							

						

							What’s next?

							Case study – Development of an autonomous parking assist system
							
									Application layer (SWCs)

									AUTOSAR BSW modules

							

						

							Summary

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/image/B19854_01_01.jpg
% 15% 35%

00000¢

1970 1980 1990 2000 2010 2030
(predicted)






OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/Fonts/MyriadPro-LightIt.otf


OEBPS/image/B19854_01_02.jpg
Driver
Alertness Monitoring

Head-Up

Displ Battery
Isplay Management
Airbag
Deployment
Adaptive
Cruise Control > _—
Electric .
Power Steering Hill-Hold
Control

Seat
Position Control





OEBPS/image/Clubbe_QR_Free_PDF.jpg





OEBPS/image/Packt_Logo_New.png
<PACKD





OEBPS/image/B19854_01_03.jpg
Module_XX

App1
Algo_XXX
Comh ModeManager
Text Communication
Handler
A
Drv 1 Drv 2 Drv 3

Microcontroller Drivers






OEBPS/Fonts/CourierStd.otf


OEBPS/image/Cover.png
AUTOSAR Fundamentals
and Applications

Establishing a solid foundation for automotive
software design with AUTOSAR

<> HOSSAM SOFFAR





