
  
    [image: Cover]
  



Functional Python Programming

Third Edition

Use a functional approach to write succinct, expressive, and efficient Python code

Steven F. Lott

[image: PIC]

BIRMINGHAM—MUMBAI

”Python” and the Python logo are trademarks of the Python Software Foundation.





Functional Python Programming

Third Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor – Peer Reviews: Gaurav Gavas

Project Editor: Parvathy Nair

Development Editor: Lucy Wan

Copy Editor: Safis Editing

Technical Editor: Karan Sonawane

Indexer: Hemangini Bari

Proofreader: Safis Editing

Presentation Designer: Sandip Tadge

First published: January 2015

Second edition: April 2018

Third edition: December 2022

Production reference: 1231222

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-257-7

www.packt.com







Foreword

Python is an incredibly versatile language that offers a lot of perks for just about every group. For the object-oriented programming fans, it has classes and inheritance. When we talk about functional programming, it has functions as a first-class type, higher-order functions such as map and reduce, and a handy syntax for comprehensions and generators. Perhaps best of all, it doesn’t force any of those on the user – it’s still totally OK to write a script in Python without a single class or function and not feel guilty about it.

Thinking in terms of functional programming, having in mind the goals of minimizing state and side effects, writing pure functions, reducing intermediary data, and what depends on what else will also allow you to see your code under a new light. It’ll also allow you to write more compact, performant, testable, and maintainable code, where instead of writing a program to solve your problem, you “write the language up”, adding new functions to it until expressing the solution you designed is simple and straightforward. This is an extremely powerful mind shift – and an exercise worth doing. It’s a bit like learning a new language, such as Lisp or Forth (or German, or Irish), but without having to leave the comfort of your Python environment.

Not being a pure functional language has its costs, however. Python lacks many features functional languages can use to provide better memory efficiency and speed. Python’s strongest point remains its accessibility – you can fire up your Python interpreter and start playing with the examples in this book right away. This interactive approach allows exploratory programming, where you test ideas easily, and only later need to incorporate them into a more complex program (or not – like I said, it’s totally OK to write a simple script).

This book is intended for people already familiar with Python. You don’t need to know much about functional programming – the book will guide you through many common approaches, techniques, and patterns used in functional programming and how they can be best expressed in Python. Think of this book as an introduction – it’ll give you the basic tools to see, think, and express your ideas in functional terms using Python.

Ricardo Bánffy

Software Engineer, Architect, Evangelist, and Passionate Pythonista
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Preface

Functional programming offers a variety of techniques for creating succinct and expressive software. While Python is not a purely functional programming language, we can do a great deal of functional programming in Python.

Python has a core set of functional programming features. This lets us borrow many design patterns and techniques from other functional languages. These borrowed concepts can lead us to create elegant programs. Python’s generator expressions, in particular, negate the need to create large in-memory data structures, leading to programs that may execute more quickly because they use fewer resources.

We can’t easily create purely functional programs in Python. Python lacks a number of features that would be required for this. We don’t have unlimited recursion, for example, we don’t have lazy evaluation of all expressions, and we don’t have an optimizing compiler.

There are several key features of functional programming languages that are available in Python. One of the most important ones is the idea of functions being first-class objects. Python also offers a number of higher-order functions. The built-in map(), filter(), and functools.reduce() functions are widely used in this role, and less obvious are functions such as sorted(), min(), and max().

In some cases, a functional approach to a problem will also lead to extremely high-performance algorithms. Python makes it too easy to create large intermediate data structures, tying up memory (and processor time). With functional programming design patterns, we can often replace large lists with generator expressions that are equally expressive but take up much less memory and run much more quickly.

We’ll look at the core features of functional programming from a Python point of view. Our objective is to borrow good ideas from functional programming languages and use those ideas to create expressive and succinct applications in Python.


Who this book is for

This book is for more experienced programmers who want to create succinct, expressive Python programs by borrowing techniques and design patterns from functional programming languages. Some algorithms can be expressed elegantly in a functional style; we can—and should—adapt this to make Python programs more readable and maintainable.

This is not intended as a tutorial on Python. This book assumes some familiarity with the language and the standard library. For a foundational introduction to Python, consider Learn Python Programming, Third Edition: https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093.

While we cover the foundations of functional programming, this is not a complete review of the various kinds of functional programming techniques. Having an exposure to functional programming in another language can be helpful.



What this book covers

We can decompose this book into two general kinds of topics:


	Essentials of functional programming in Python. This is the content of Chapters 1 through 7.


	Library modules to help create functional programs. This is the subject of the remaining chapters of the book. Chapter 12 includes both fundamental language and library topics.




Chapter 1, Understanding Functional Programming, introduces some of the techniques that characterize functional programming. We’ll identify some of the ways to map those features to Python. We’ll also address some ways that the benefits of functional programming accrue when we use these design patterns to build Python applications.

Chapter 2, Introducing Essential Functional Concepts, delves into central features of the functional programming paradigm. We’ll look at each in some detail to see how they’re implemented in Python. We’ll also point out some features of functional languages that don’t apply well to Python. In particular, many functional languages have complex type-matching rules required to support compiling and optimizing.

Chapter 3, Functions, Iterators, and Generators, will show how to leverage immutable Python objects, and how generator expressions adapt functional programming concepts to the Python language. We’ll look at some of the built-in Python collections and how we can leverage them without departing too far from functional programming concepts.

Chapter 4, Working with Collections, shows how you can use a number of built-in Python functions to operate on collections of data. This chapter will focus on a number of relatively simple functions, such as any() and all(), which reduce a collection of values to a single result.

Chapter 5, Higher-Order Functions, examines the commonly used higher-order functions such as map() and filter(). It also shows a number of other higher-order functions as well as how we can create our own functions that work with functions or return functions.

Chapter 6, Recursions and Reductions, teaches how to design an algorithm using recursion and then optimize it into a high-performance for statement. We’ll also look at some other reductions that are widely used, including collections.Counter().

Chapter 7, Complex Stateless Objects, showcases a number of ways that we can use immutable tuples, typing.NamedTuple, and the frozen @dataclass instead of stateful objects. We’ll also look at the pyrsistent module as a way to create immutable objects. Immutable objects have a simpler interface than stateful objects: we never have to worry about abusing an attribute and setting an object into some inconsistent or invalid state.

Chapter 8, The Itertools Module, examines a number of functions in the itertools standard library module. This collection of functions simplifies writing programs that deal with collections or generator functions.

Chapter 9, Itertools for Combinatorics – Permutations and Combinations, covers the combinatoric functions in the itertools module. These functions are more specialized than those in the previous chapter. This chapter includes some examples that illustrate ill-considered use of these functions and the consequences of combinatoric explosion.

Chapter 10, The Functools Module, focuses on how to use some of the functions in the functools module for functional programming. A few functions in this module are more appropriate for building decorators, and they are left for Chapter 12, Decorator Design Techniques.

Chapter 11, The Toolz Package, covers the toolz package, a number of closely related modules that help us write functional programs in Python. The toolz modules parallel the built-in itertools and functools modules, providing alternatives that are often more sophisticated and make better use of curried functions.

Chapter 12, Decorator Design Techniques, covers how we can look at a decorator as a way to build a composite function. While there is considerable flexibility here, there are also some conceptual limitations: we’ll look at ways that overly complex decorators can become confusing rather than helpful.

Chapter 13, The PyMonad Library, examines some of the features of the PyMonad library. This provides some additional functional programming features. It also provides a way to learn more about monads. In some functional languages, monads are an important way to force a particular order for operations that might get optimized into an undesirable order. Since Python already has strict ordering of expressions and statements, the monad feature is more instructive than practical.

Chapter 14, The Multiprocessing, Threading, and Concurrent.Futures Modules, points out an important consequence of good functional design: we can distribute the processing workload. Using immutable objects means that we can’t corrupt an object because of poorly synchronized write operations.

Chapter 15, A Functional Approach to Web Services, shows how we can think of web services as a nested collection of functions that transform a request into a reply. We’ll see ways to leverage functional programming concepts for building responsive, dynamic web content.

Chapter 16, A Chi-Squared Case Study, is a bonus, online-only case study applying a number of functional programming techniques to a specific exploratory data analysis problem. We will apply a χ2 statistical test to some complex data to see if the results show ordinary variability, or if they are an indication of something that requires deeper analysis. You can find the case study here: https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition/blob/main/Bonus_Content/Chapter_16.pdf.



To get the most out of this book

This book presumes some familiarity with Python 3 and general concepts of application development. We won’t look deeply at subtle or complex features of Python; we’ll avoid much consideration of the internals of the language.

Some of the examples use exploratory data analysis (EDA) as a problem domain to show the value of functional programming. Some familiarity with basic probability and statistics will help with this. There are only a few examples that move into more serious data science.

Python 3.10 is required. The examples have also been tested with Python 3.11, and work correctly. For data science purposes, it’s often helpful to start with the conda tool to create and manage virtual environments. It’s not required, however, and readers should be able to use any available Python.

Additional packages are generally installed with pip. The command looks like this:







 
 % python -m pip install toolz pymonad pyrsistent beautifulsoup4






Complete the exercises

Each chapter includes a number of exercises that help the reader apply the concepts in the chapter to real code. Most of the exercises are based on code available from the book’s repository on GitHub: https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition.

In some cases, the reader will notice that the code provided on GitHub includes partial solutions to some of the exercises. These serve as hints, allowing the reader to explore alternative solutions.

In many cases, exercises will need unit test cases to confirm they actually solve the problem. These are often identical to the unit test cases already provided in the GitHub repository. The reader should replace the book’s example function name with their own solution to confirm that it works.

In some cases, the exercises suggest writing a response document to compare and contrast multiple solutions. It helps to find a mentor or expert who can help the reader by reviewing these small documents for clarity and completeness. A good comparison between design approaches will include performance measurements using the timeit module to show the performance advantages of one design over another.



Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/OV1CB.




Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: ”Python has other statements, such as global or nonlocal, which modify the rules for variables in a particular namespace.”

Bold: Indicates a new term, an important word, or words you see on the screen, such as in menus or dialog boxes. For example: ”The base case states that the sum of a zero-length sequence is 0. The recursive case states that the sum of a sequence is the first value plus the sum of the rest of the sequence.”

A block of code is set as follows:

print("Hello, World!")

Any command-line input or output is written as follows:



 
 % conda create -n functional3 python=3.10








Warnings or important notes appear like this.










Tips and tricks appear like this.







Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.
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 1

Understanding Functional Programming

Functional programming defines a computation using expressions and evaluation; often, they are encapsulated in function definitions. It de-emphasizes or avoids the complexity of state change and mutable objects. This tends to create programs that are more succinct and expressive. In this chapter, we’ll introduce some of the techniques that characterize functional programming. We’ll identify some of the ways to map these features to Python. Finally, we’ll also address some ways in which the benefits of functional programming accrue when we use these design patterns to build Python applications.

This book doesn’t contain a tutorial introduction to the Python language. We assume the reader knows some Python. In many cases, if the reader knows a functional programming language, then that knowledge can be applied to Python via the examples in this book. For background information on Python, see Python in a Nutshell, 4th Edition, or any of the Python introductions from Packt Publishing.

Python has a broad variety of programming features, including numerous ways to support functional programming. As we will see throughout this book, Python is not a purely functional programming language; instead, it relies on a mixture of features. We’ll see that the language offers enough of the right kinds of features to provide the benefits of functional programming. It also retains all the optimization power of an imperative programming language. Further, we can mix the object-oriented and functional features to make use of the best aspects of both paradigms.

We’ll also look at a problem domain that we’ll use for many of the examples in this book. We’ll try to stick closely to Exploratory Data Analysis (EDA). For more information, see https://www.itl.nist.gov/div898/handbook/eda/eda.htm. The idea of ”exploratory” means doing data collection followed by analysis, with a goal of inferring what model would be appropriate to describe the data. This is a helpful domain because many of the algorithms are good examples of functional programming. Furthermore, the benefits of functional programming accrue rapidly when exploring data to locate trends and relationships.

Our goal is to establish some essential principles of functional programming. The more serious Python code will begin in Chapter 2, Introducing Essential Functional Concepts.

In this chapter, we’ll focus on the following topics:


	Comparing and contrasting the functional paradigm with other ways of designing software. We’ll look at how Python’s approach can be called a ”hybrid” between functional programming and object-oriented programming.


	We’ll look in depth at a specific example extracted from the functional programming literature.


	We’ll conclude with an overview of EDA and why this discipline seems to provide numerous examples of functional programming.







We’ll focus on Python 3.10 features in this book. This includes the new match statement.





Throughout this book, we’ll include Python 3 type hints in the examples. Type hints can help a reader visualize the essential purpose behind a function definition. Type hints are analyzed with the mypy tool. As with unit testing, mypy can be part of a tool chain to produce high-quality software.







1.1  The functional style of programming

We’ll define functional programming through a series of examples. The distinguishing feature between these examples is the concept of state, specifically the state of the computation.

Python’s strong imperative traits mean that the state of a computation is defined by the values of the variables in the various namespaces. Some kinds of statements make a well-defined change to the state by adding, changing, or removing a variable. We call this imperative because specific kinds of statements change the state.

In Python, the assignment statement is the primary way to change the state. Python has other statements, such as global or nonlocal, which modify the rules for variables in a particular namespace. Statements such as def, class, and import change the processing context. The bulk of the remaining statements provide ways to choose which assignment statements get executed. The focus of all these various statement types, however, is on changing the state of the variables.

In a functional language, we replace the state—the changing values of variables—with a simpler notion of evaluating functions. Each function evaluation creates a new object or objects from existing objects. Since a functional program is a composition of functions, we can design lower-level functions that are easy to understand, and then create compositions of functions that can also be easier to visualize than a complex sequence of statements.

Function evaluation more closely parallels mathematical formalisms. Because of this, we can often use simple algebra to design an algorithm that clearly handles the edge cases and boundary conditions. This makes us more confident that the functions work. It also makes it easy to locate test cases for formal unit testing.

It’s important to note that functional programs tend to be relatively succinct, expressive, and efficient compared to imperative (object-oriented or procedural) programs. The benefit isn’t automatic; it requires careful design. This design effort for functional programming is often smaller than for procedural programming. Some developers experienced in imperative and object-oriented styles may find it a challenge to shift their focus from stateful designs to functional designs. 



1.2  Comparing and contrasting procedural and functional styles

We’ll use a tiny example program to illustrate a non-functional, or procedural, style of programming. This example computes a sum of a sequence of numbers. Each of the numbers has a specific property that makes it part of the sequence.

def sum_numeric(limit: int = 10) -> int: 
    s = 0 
    for n in range(1, limit): 
        if n % 3 == 0 or n % 5 == 0: 
            s += n 
    return s

The sum computed by this function includes only numbers that are multiples of 3 or 5. We’ve made this program strictly procedural, avoiding any explicit use of Python’s object features. The function’s state is defined by the values of the variables s and n. The variable n takes on values such that 1 ≤ n < 10. As the iteration involves an ordered exploration of values for the n variable, we can prove that it will terminate when the value of n is equal to the value of limit.

There are two explicit assignment statements, both setting values for the s variable. These state changes are visible. The value of n is set implicitly by the for statement. The state change in the s variable is an essential element of the state of the computation.

Now let’s look at this again from a purely functional perspective. Then, we’ll examine a more Pythonic perspective that retains the essence of a functional approach while leveraging a number of Python’s features. 


1.2.1  Using the functional paradigm

In a functional sense, the sum of the multiples of 3 and 5 can be decomposed into two parts:


	The sum of a sequence of numbers


	A sequence of values that pass a simple test condition, for example, being multiples of 3 and 5




To be super formal, we can define the sum as a function using simpler language components. The sum of a sequence has a recursive definition:

from collections.abc import Sequence 
def sumr(seq : Sequence[int]) -> int: 
    if len(seq) == 0: 
        return 0 
    return seq[0] + sumr(seq[1:])

We’ve defined the sum in two cases. The base case states that the sum of a zero-length sequence is 0. The recursive case states that the sum of a sequence is the first value plus the sum of the rest of the sequence. Since the recursive definition depends on a shorter sequence, we can be sure that it will (eventually) devolve to the base case.

Here are some examples of how this function works:




>>> sumr([7, 11]) 
18 
>>> sumr([11]) 
11 
>>> sumr([]) 
0




The first example computes the sum of a list with multiple items. The second example shows how the recursion rule works by adding the first item, seq[0], to the sum of the remaining items, sumr(seq[1:]). Eventually, the computation of the result involves the sum of an empty list, which is defined as 0.

The + operator on the last line of the sumr function and the initial value of 0 in the base case characterize the equation as a sum. Consider what would happen if we changed the operator to * and the initial value to 1: this new expression would compute a product. We’ll return to this simple idea of generalization in the following chapters.

Similarly, generating a sequence of values with a given property can have a recursive definition, as follows:

from collections.abc import Sequence, Callable 
def until( 
        limit: int, 
        filter_func: Callable[[int], bool], 
        v: int 
) -> list[int]: 
    if v == limit: 
        return [] 
    elif filter_func(v): 
        return [v] + until(limit, filter_func, v + 1) 
    else: 
        return until(limit, filter_func, v + 1)

In this function, we’ve compared a given value, v, against the upper bound, limit. If v has reached the upper bound, the resulting list must be empty. This is the base case for the given recursion.

There are two more cases defined by an externally defined filter_func() function. The value of v is passed by the filter_func() function; if this returns a very small list, containing one element, this can be concatenated with any remaining values computed by the until() function.

If the value of v is rejected by the filter_func() function, this value is ignored and the result is simply defined by any remaining values computed by the until() function.

We can see that the value of v will increase from an initial value until it reaches limit, assuring us that we’ll reach the base case.

Before we can see how to use the until() function, we’ll define a small function to filter values that are multiples of 3 or 5:

def mult_3_5(x: int) -> bool: 
    return x % 3 == 0 or x % 5 == 0

We could also have defined this as a lambda object to emphasize succinct definitions of simple functions. Anything more complex than a one-line expression requires the def statement.

This function can be combined with the until() function to generate a sequence of values, which are multiples of 3 and 5. Here’s an example:




>>> until(10, mult_3_5, 0) 
[0, 3, 5, 6, 9]




Looking back at the decomposition at the top of this section, we now have a way to compute sums and a way to compute the sequence of values.

We can combine the sumr() and until() functions to compute a sum of values. Here’s the resulting code:

def sum_functional(limit: int = 10) -> int: 
    return sumr(until(limit, mult_3_5, 0))

This small application to compute a sum doesn’t make use of the assignment statement to set the values of variables. It is a purely functional, recursive definition that matches the mathematical abstractions, making it easier to reason about. We can be confident each piece works separately, giving confidence in the whole.

As a practical matter, we’ll use a number of Python features to simplify creating functional programs. We’ll take a look at a number of these optimizations in the next version of this example. 



1.2.2  Using a functional hybrid

We’ll continue this example with a mostly functional version of the previous example to compute the sum of multiples of 3 and 5. Our hybrid functional version might look like the following:

def sum_hybrid(limit: int = 10) -> int: 
    return sum( 
        n for n in range(1, limit) 
        if n % 3 == 0 or n % 5 == 0 
    )

We’ve used a generator expression to iterate through a collection of values and compute the sum of these values. The range(1, 10) object is an iterable; it generates a sequence of values {n∣1 ≤ n < 10}, often summarized as “values of n such that 1 is less than or equal to n and n is less than 10.” The more complex expression n for n in range(1, 10) if n % 3 == 0 or n % 5 == 0 is also a generator. It produces a set of values, {n∣1 ≤ n < 10 ∧ (n ≡ 0 mod 3 ∨n ≡ 0 mod 5)}; something we can describe as “values of n such that 1 is less than or equal to n and n is less than 10 and n is equivalent to 0 modulo 3 or n is equivalent to 0 modulo 5.” These are multiples of 3 and 5 taken from the set of values between 1 and 10. The variable n is bound, in turn, to each of the values provided by the range object. The sum() function consumes the iterable values, creating a final object, 23.




The bound variable, n, doesn’t exist outside the generator expression. The variable n isn’t visible elsewhere in the program.




The variable n in this example isn’t directly comparable to the variable n in the first two imperative examples. A for statement (outside a generator expression) creates a proper variable in the local namespace. The generator expression does not create a variable in the same way that a for statement does:




>>> sum( 
...     n for n in range(1, 10) 
...     if n % 3 == 0 or n % 5 == 0 
... ) 
23 
>>> n 
Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
NameError: name ’n’ is not defined




The generator expression doesn’t pollute the namespace with variables, like n, which aren’t relevant outside the very narrow context of the expression. This is a pleasant feature that ensures we won’t be confused by the values of variables that don’t have a meaning outside a single expression. 



1.2.3  The stack of turtles

When we use Python for functional programming, we embark down a path that will involve a hybrid that’s not strictly functional. Python is not Haskell, OCaml, or Erlang. For that matter, our underlying processor hardware is not functional; it’s not even strictly object-oriented, as CPUs are generally procedural.


All programming languages rest on abstractions, libraries, frameworks and virtual machines. These abstractions, in turn, may rely on other abstractions, libraries, frameworks and virtual machines. The most apt metaphor is this: the world is carried on the back of a giant turtle. The turtle stands on the back of another giant turtle. And that turtle, in turn, is standing on the back of yet another turtle.

It’s turtles all the way down.

— Anonymous



There’s no practical end to the layers of abstractions. Even something as concrete as circuits and electronics may be an abstraction to help designers summarize the details of quantum electrodynamics.

More importantly, the presence of abstractions and virtual machines doesn’t materially change our approach to designing software to exploit the functional programming features of Python.

Even within the functional programming community, there are both purer and less pure functional programming languages. Some languages make extensive use of monads to handle stateful things such as file system input and output. Other languages rely on a hybridized environment that’s similar to the way we use Python. In Python, software can be generally functional, with carefully chosen procedural exceptions.

Our functional Python programs will rely on the following three stacks of abstractions:


	Our applications will be functions—all the way down—until we hit the objects;


	The underlying Python runtime environment that supports our functional programming is objects—all the way down—until we hit the libraries;


	The libraries that support Python are a turtle on which Python stands.




The operating system and hardware form their own stack of turtles. These details aren’t relevant to the problems we’re going to solve. 




1.3  A classic example of functional programming

As part of our introduction, we’ll look at a classic example of functional programming. This is based on the paper Why Functional Programming Matters by John Hughes. The article appeared in a paper called Research Topics in Functional Programming, edited by D. Turner, published by Addison-Wesley in 1990.

Here’s a link to one of the papers in Research Topics in Functional Programming, “Why Functional Programming Matters”: http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

This paper is a profound discussion of functional programming. There are several examples given. We’ll look at just one: the Newton-Raphson algorithm for locating any roots of a function. In this case, we’ll define a function that will compute a square root of a number.

It’s important because many versions of this algorithm rely on the explicit state managed via loops. Indeed, the Hughes paper provides a snippet of the Fortran code that emphasizes stateful, imperative processing.

The backbone of this approximation is the calculation of the next approximation from the current approximation. The next_() function takes x, an approximation to the sqrt(n) value, and calculates a next value that brackets the proper root. Take a look at the following example:

def next_(n: float, x: float) -> float: 
    return (x + n / x) / 2

This function computes a series of values that will quickly converge on some value x such that x = [image: n x], which means x = [image: √-- n].




Note that the name next() would collide with a built-in function. Calling it next_() lets us follow the original presentation as closely as possible, using Pythonic names.




Here’s how the function looks when used in Python’s interactive REPL:




>>> n = 2 
>>> f = lambda x: next_(n, x) 
>>> a0 = 1.0 
>>> [round(x, 4) 
... for x in (a0, f(a0), f(f(a0)), f(f(f(a0))),) 
... ] 
[1.0, 1.5, 1.4167, 1.4142]




We defined the f() function as a lambda that will converge on [image: √ -- n] where n = 2. We started with 1.0 as the initial value for a0. Then we evaluated a sequence of recursive evaluations: a1 = f(a0), a2 = f(f(a0)), and so on. We evaluated these functions using a generator expression so that we could round each value to four decimal places. This makes the output easier to read and easier to use with doctest. The sequence appears to converge rapidly on [image: √-- 2]. To get a more precise answer, we must continue to perform the series of steps after the first four shown above.

We can write a function that will (in principle) generate an infinite sequence of ai values. This series will converge on the proper square root:

from collections.abc import Iterator, Callable 
def repeat( 
        f: Callable[[float], float], 
        a: float 
) -> Iterator[float]: 
    yield a 
    yield from repeat(f, f(a))

This function will generate a sequence of approximations using a function, f(), and an initial value, a. If we provide the next_() function defined earlier, we’ll get a sequence of approximations to the square root of the n argument.

The repeat() function expects the f() function to have a single argument; however, our next_() function has two arguments. We’ve used a lambda object, lambda x: next_(n, x), to create a partial version of the next_() function with one of two variables bound.




The Python generator functions can’t be trivially recursive; they must explicitly iterate over the recursive results, yielding them individually.

Attempting to use a simple return repeat(f, f(a)) will end the iteration, returning a generator expression instead of yielding values.

There are two ways to return all the values instead of returning a generator expression, which are as follows:


	We can write an explicit for statement to yield values as follows:

for x in some_iter: yield x


	We can use the yield from expression as follows:

yield from some_iter




Both techniques of yielding the values of a recursive generator function are will have similar results. We’ll try to emphasize yield from.

It turns out that yield and yield from are a bit more sophisticated than we’ve shown here. For our purposes, we’ll limit ourselves to working with recursive results. For more information on the full feature set for yield and yield from, see PEP 342 and PEP 380: https://peps.python.org/pep-0342/ and https://peps.python.org/pep-0380/.




Of course, we don’t want the entire infinite sequence created by the repeat() function. It’s essential to stop generating values when we’ve found the square root we’re looking for. The common symbol for the limit we can consider “close enough” is the Greek letter epsilon, 𝜖.

In Python, we have to be a little clever when taking items from an infinite sequence one at a time. It works out well to use a simple interface function that wraps a slightly more complex recursion. Take a look at the following code snippet:

from collections.abc import Iterator 
def within( 
        𝜖: float, 
        iterable: Iterator[float] 
) -> float: 
    def head_tail( 
            𝜖: float, 
            a: float, 
            iterable: Iterator[float] 
    ) -> float: 
        b = next(iterable) 
        if abs(a-b) <= 𝜖: 
            return b 
        return head_tail(𝜖, b, iterable) 
 
    return head_tail(𝜖, next(iterable), iterable)

We’ve defined an internal function, head_tail(), which accepts the tolerance, 𝜖, an item from the iterable sequence, a, and the rest of the iterable sequence, iterable. The first item from the iterable, extracted with the next() function, is bound to a name, b. If |a − b|≤ 𝜖, the two values of a and b are close enough to call the value of b the square root; the difference is less than or equal to the very small value of 𝜖. Otherwise, we use the b value in a recursive invocation of the head_tail() function to examine the next pair of values.

Our within() function properly initializes the internal head_tail() function with the first value from the iterable parameter.

We can use the three functions, next_(), repeat(), and within(), to create a square root function, as follows:

def sqrt(n: float) -> float: 
    return within( 
        𝜖=0.0001, 
        iterable=repeat( 
            lambda x: next_(n, x), 
            1.0 
        ) 
    )

We’ve used the repeat() function to generate a (potentially) infinite sequence of values based on the next_(n,x) function. Our within() function will stop generating values in the sequence when it locates two values with a difference less than 𝜖.

This definition of the sqrt() function provides useful default values to the underlying within() function. It provides an 𝜖 value of 0.0001 and an initial a0 value of 1.0.

A more advanced version could use default parameter values to make changes possible. As an exercise, the definition of sqrt() can be rewritten so an expression such as sqrt(1.0, 0.000_01, 3) will start with an approximation of 1.0 and compute the value of [image: √ -- 3] to within 0.00001. For most applications, the initial a0 value can be 1.0. However, the closer it is to the actual square root, the more rapidly this algorithm converges.

The original example of this approximation algorithm was shown in the Miranda language. It’s easy to see there are some profound differences between Miranda and Python. In spite of the differences, the similarities give us confidence that many kinds of functional programming can be easily implemented in Python.

The within function shown here is written to match the original article’s function definition. Python’s itertools library provides a takewhile() function that might be better for this application than the within() function. Similarly, the math.isclose() function may be better than the abs(a-b) <= 𝜖 expression used here. Python offers a great many pre-built functional programming features; we’ll look closely at these functions in Chapter 8, The Itertools Module and Chapter 9, Itertools for Combinatorics – Permutations and Combinations. 



1.4  Exploratory data analysis

Later in this book, we’ll use the field of exploratory data analysis as a source for concrete examples of functional programming. This field is rich with algorithms and approaches to working with complex datasets; functional programming is often a very good fit between the problem domain and automated solutions.

While details vary from author to author, there are several widely accepted stages of EDA. These include the following:


	Data preparation: This might involve extraction and transformation for source applications. It might involve parsing a source data format and doing some kind of data scrubbing to remove unusable or invalid data. This is an excellent application of functional design techniques.







David Mertz’s superb book Cleaning Data for Effective Data Science( https://www.packtpub.com/product/cleaning-data-for-effective-data-science/9781801071291) provides additional information on data cleaning. This is a crucial subject for all data science and analytical work.





	Data exploration: This is a description of the available data. This usually involves the essential statistical functions. This is another excellent place to explore functional programming. We can describe our focus as univariate and bivariate statistics, but that sounds too daunting and complex. What this really means is that we’ll focus on mean, median, mode, and other related descriptive statistics. Data exploration may also involve data visualization. We’ll skirt this issue because it doesn’t involve very much functional programming.







For more information on Python visualization, see Interactive Data Visualization with Python, https://www.packtpub.com/product/interactive-data-visualization-with-python-second-edition/9781800200944. See https://www.projectpro.io/article/python-data-visualization-libraries/543 for some additional visualization libraries.





	Data modeling and machine learning: This tends to be prescriptive as it involves extending a model to new data. We’re going to skirt around this because some of the models can become mathematically complex. If we spend too much time on these topics, we won’t be able to focus on functional programming.


	Evaluation and comparison: When there are alternative models, each must be evaluated to determine which is a better fit for the available data. This can involve ordinary descriptive statistics of model outputs, which can benefit from functional design techniques.




One goal of EDA is often to create a model that can be deployed as a decision support application. In many cases, a model might be a simple function. A functional programming approach can apply the model to new data and display results for human consumption. 



1.5  Summary

In this chapter, we’ve looked at programming paradigms with an eye toward distinguishing the functional paradigm from the imperative paradigm. For our purposes, object-oriented programming is a kind of imperative programming; it relies on explicit state changes. Our objective in this book is to explore the functional programming features of Python. We’ve noted that some parts of Python don’t allow purely functional programming; we’ll be using some hybrid techniques that meld the good features of succinct, expressive functional programming with some high-performance optimizations in Python.

In the next chapter, we’ll look at five specific functional programming techniques in detail. These techniques will form the essential foundation for our hybridized functional programming in Python. 



1.6  Exercises

The exercises in this book are based on code available from Packt Publishing on GitHub. See https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition.

In some cases, the reader will notice that the code provided on GitHub includes partial solutions to some of the exercises. These serve as hints, allowing the reader to explore alternative solutions.

In many cases, exercises will need unit test cases to confirm they actually solve the problem. These are often identical to the unit test cases already provided in the GitHub repository. The reader will need to replace the book’s example function name with their own solution to confirm that it works. 


1.6.1  Convert an imperative algorithm to functional code

The following algorithm is stated as imperative assignment statements and a while construct to indicate processing something iteratively.



[image: Algorithm 1: Imperative iteration ]
Algorithm 1: Imperative iteration 



What does this appear to compute? Given Python built-in functions like sum, can this be simplified?

It helps to write this in Python and refactor the code to be sure that correct answers are created.

A test case is the following:


[image: V ← {7.46,6.77,12.74,7.11,7.81,8.84,6.08,5.39,8.15,6.42,5.73} ]


The computed value for m is approximately 7.5. 



1.6.2  Convert step-wise computation to functional code

The following algorithm is stated as a long series of single assignment statements. The rad(x) function converts degrees to radians, rad(d) = π ×[image: 1d80]. See the math module for an implementation.



[image: Algorithm 2: Imperative computation ]
Algorithm 2: Imperative computation 



Is this code easy to understand? Can you summarize this computation as a short mathematical-looking formula?

Breaking it down into sections, lines 1 to 8 seem to be focused on some conversions, differences, and mid-point computations. Lines 9 to 12 compute two values, x and y. Can these be summarized or simplified? The final four lines do a relatively direct computation of d. Can this be summarized or simplified? As a hint, look at math.hypot() for a function that might be applicable in this case.

It helps to write this in Python and refactor the code.

A test case is the following:


   lat1 ← 32.82950 

   lon1 ←−79.93021 

   lat2 ← 32.74412 

   lon2 ←−79.85226


The computed value for d is approximately 6.4577.

Refactoring the code can help to confirm your understanding. 



1.6.3  Revise the sqrt() function

The sqrt() function defined in the A classic example of functional programming section has only a single parameter value, n. Rewrite this to create a more advanced version using default parameter values to make changes possible. An expression such as sqrt(1.0, 0.000_01, 3) will start with an approximation of 1.0 and compute the value to a precision of 0.00001. The final parameter value, 3, is the value of n, the number we need to compute the square root of. 



1.6.4  Data cleansing steps

A file of source data has US ZIP codes in a variety of formats. This problem often arises when spreadsheet software is used to collect or transform data.


	Some ZIP codes were processed as numbers. This doesn’t work out well for places in New England, where ZIP codes have a leading zero. For example, one of Portsmouth, New Hampshire’s codes should be stated as 03801. In the source file, it is 3801. For the most part, these numbers will have five or nine digits, but some codes in New England will be four or eight digits when a single leading zero was dropped. For Puerto Rico, there may be two leading zeroes.


	Some ZIP codes are stored as strings, 12345−0100, where a four-digit extension for a post-office box has been appended to the base five-digit code.




A CSV-format file has only text values. However, when data in the file has been processed by a spreadsheet, problems can arise. Because a ZIP code has only digits, it can be treated as numeric data. This means the original data values will have been converted to a number, and then back to a text representation. These conversions will drop the leading zeroes. There are a number of workarounds in various spreadsheet applications to prevent this problem. If they’re not used, the data can have anomalous values that can be cleansed to restore the original representation.

The objective of the exercise is to compute a histogram of the most popular ZIP codes in the source data file. The data must be cleansed to have the following two ZIP formats:


	Five characters with no post-office box, for example 03801


	Ten characters with a hyphen, for example 03899-9876




The essential histogram can be done with a collections.Counter object as follows.

from collections import Counter 
import csv 
from pathlib import Path 
 
DEFAULT_PATH = Path.cwd() / "address.csv" 
 
def main(source_path: Path = DEFAULT_PATH) -> None: 
    frequency: Counter[str] = Counter() 
    with source_path.open() as source: 
        rdr = csv.DictReader(source) 
        for row in rdr: 
            if "-" in row[’ZIP’]: 
                text_zip = row[’ZIP’] 
                missing_zeroes = 10 - len(text_zip) 
                if missing_zeroes: 
                    text_zip = missing_zeroes*’0’ + text_zip 
            else: 
                text_zip = row[’ZIP’] 
                if 5 < len(row[’ZIP’]) < 9: 
                    missing_zeroes = 9 - len(text_zip) 
                else: 
                    missing_zeroes = 5 - len(text_zip) 
                if missing_zeroes: 
                    text_zip = missing_zeroes*’0’ + text_zip 
            frequency[text_zip] += 1 
    print(frequency) 
 
if __name__ == "__main__": 
    main()

This makes use of imperative processing features to read a file. The overall design, using a for statement to process rows of a file, is an essential Pythonic feature that we can preserve.

On the other hand, the processing of the text_zip and missing_zeroes variables through a number of state changes seems like it’s a potential source for confusion.

This can be refactored through several rewrites:


	
Decompose the main() function into two parts. A new zip_histogram() function should be written to contain much of the processing detail. This function will process the opened file, and return a Counter object. A suggested signature is the following:

    def zip_histogram( 
            reader: csv.DictReader[str]) -> Counter[str]: 
        pass

The main() function is left with the responsibility to open the file, create the csv.DictReader instance, evaluate zip_histogram(), and print the histogram.




	
Once the zip_histogram() function has been defined, the cleansing of the ZIP attribute can be refactored into a separate function, with a name like zip_cleanse(). Rather than setting the value of the text_zip variable, this function can return the cleansed result. This can be tested separately to be sure the various cases are handled gracefully.




	
The distinction between long ZIP codes with a hyphen and without a hyphen is something that should be fixed. Once the zip_cleanse() works in general, add a new function to inject hyphens into ZIP codes with only digits. This should transform 38011234 to 03801-1234. Note that short, five-digit ZIP codes do not need to have a hyphen added; this additional transformation only applies to nine-digit codes to make them into ten-position strings.






The final zip_histogram() function should look something like the following:

def zip_histogram( 
        reader: csv.DictReader[str]) -> Counter[str]: 
    return Counter( 
        zip_cleanse( 
            row[’ZIP’] 
        ) for row in reader 
    )

This provides a framework for performing a focused data cleanup in the given column. It allows us to distinguish between CSV and file processing features, and the details of how to clean up a specific column of data. 



1.6.5  (Advanced) Optimize this functional code

The following algorithm is stated as a single ”step” that has been decomposed into three separate formulae. The decomposition is more a concession to the need to fit the expression into the limits of a printed page than a useful optimization. The rad(x) function converts degrees to radians, rad(d) = π ×[image: -d- 180].



[image: Algorithm 3: Redundant expressions ]
Algorithm 3: Redundant expressions 



There are a number of redundant expressions, like rad(lat1) and rad(lat2). If these are assigned to local variables, can the expression be simplified?

The final computation of d does not match the conventional understanding of computing a hypotenuse, [image: ∘ ------- x2 + y2]. Should the code be refactored to match the definition in math.hypot?

It helps to start by writing this in Python and then refactoring the code.

A test case is the following:


   lat1 ← 32.82950 

   lon1 ←−79.93021 

   lat2 ← 32.74412 

   lon2 ←−79.85226


The computed value for d is approximately 6.4577.

Refactoring the code can help to confirm your understanding of what this code really does.




Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.link/dHrHU
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Introducing Essential Functional Concepts

Most of the features of functional programming are already part of the Python language. Our goal in writing functional Python is to shift our focus away from imperative (procedural or object-oriented) techniques as much as possible.

We’ll look at the following functional programming topics:


	In Python, functions are first-class objects.


	We can use and create higher-order functions.


	We can create pure functions very easily.


	We can work with immutable data.


	In a limited way, we can create functions that have non-strict evaluation of sub-expressions. Python generally evaluates expressions strictly. As we’ll see later, a few operators are non-strict.


	We can design functions that exploit eager versus lazy evaluation.


	We can use recursion instead of an explicit loop state.


	We have a type system that can apply to functions and objects.




This expands on the concepts from the first chapter: firstly, that purely functional programming avoids the complexities of an explicit state maintained through variable assignments; and secondly, that Python is not a purely functional language.

Because Python is not a purely functional language, we’ll focus on those features that are indisputably important in functional programming. We’ll start by looking at functions as first-class Python objects, with properties and methods of their own. 


2.1  Functions as first-class objects

Functional programming is often succinct and expressive. One way to achieve this is by providing functions as arguments and return values for other functions. We’ll look at numerous examples of manipulating functions.

For this to work, functions must be first-class objects in the runtime environment. In programming languages such as C, a function is not a runtime object; because the compiled C code generally lacks internal attributes and methods, there’s little runtime introspection that can be performed on a function. In Python, however, functions are objects that are created (usually) by def statements and can be manipulated by other Python functions. We can also create a function as a callable object or by assigning a lambda object to a variable.

Here’s how a function definition creates an object with attributes:




>>> def example(a, b, **kw): 
...     return a*b 
... 
>>> type(example) 
<class ’function’> 
>>> example.__code__.co_varnames 
(’a’, ’b’, ’kw’) 
>>> example.__code__.co_argcount 
2




We’ve created an object, example, that is of the function class. This object has numerous attributes. The __code__ attribute of the function object has attributes of its own. The implementation details aren’t important. What is important is functions are first-class objects and can be manipulated like all other objects. The example shows the values of two of the many attributes of a function object. 


2.1.1  Pure functions

A function free from the confusion created by side effects is often more expressive than a function that also updates state elsewhere in an application. Using pure functions can also allow some optimizations by changing evaluation order. The big win, however, stems from pure functions being conceptually simpler and much easier to test.

To write a pure function in Python, we have to write local-only code. This means we have to avoid global statements. We need to avoid entanglements with objects that have hidden state; often, this means avoiding input and output operations. We need to look closely at any use of nonlocal, also. While assigning to a non-local variable is a side effect, the state change is confined to a nested function definition. Avoiding global variables and file operations is an easy standard to meet. Pure functions are a common feature of Python programs.




There isn’t a built-in tool to guarantee a Python function is free from side effects. For folks interested in the details, a tool like mr-proper, https://pypi.org/project/mr-proper/, can be used to confirm that a function is pure.




A Python lambda is often used to create a very small, pure function. It’s possible for a lambda object to perform input or output or use an impure function. A bit of code inspection is still helpful to remove any doubts.

Here’s a function created by assigning a lambda object to a variable:




>>> mersenne = lambda x: 2 ** x - 1 
>>> mersenne(17) 
131071




We created a pure function using lambda and assigned this to the variable mersenne. This is a callable object with a single parameter, x, that returns a single value.

The following example shows an impure function defined as a lambda object:




>>> default_zip = lambda row: row.setdefault(’ZIP’, ’00000’)




This function has the potential to update a dictionary in the event the key, ’ZIP’, is not present. There are two cases, as shown in the following example:




>>> r_0 = {’CITY’: ’Vaca Key’} 
>>> default_zip(r_0) 
’00000’ 
>>> r_0 
{’CITY’: ’Vaca Key’, ’ZIP’: ’00000’} 
 
>>> r_1 = {’CITY’: ’Asheville’, ’ZIP’: 27891} 
>>> default_zip(r_1) 
27891




In the first case, the dictionary object r_0 does not have the key, ’ZIP’. The dictionary object is updated by the lambda object. This is a consequence of using the setdefault() method of a dictionary.

In the second case, the r_1 object contains the key, ’ZIP’. There’s no update to the dictionary. The side effect depends on the state of the object prior to the function, making the function potentially more difficult to understand. 



2.1.2  Higher-order functions

We can achieve expressive, succinct programs using higher-order functions. These are functions that accept a function as an argument or return a function as a value. We can use higher-order functions as a way to create composite functions from simpler functions.

Consider the Python max() function. We can provide a function as an argument and modify how the max() function behaves.

Here’s some data we might want to process:




>>> year_cheese = [(2000, 29.87), (2001, 30.12), 
...     (2002, 30.6), (2003, 30.66), (2004, 31.33), 
...     (2005, 32.62), (2006, 32.73), (2007, 33.5), 
...     (2008, 32.84), (2009, 33.02), (2010, 32.92)]




We can apply the max() function, as follows:




>>> max(year_cheese) 
(2010, 32.92)




The default behavior is to simply compare each tuple in the sequence. This will return the tuple with the largest value on position zero of each tuple.

Since the max() function is a higher-order function, we can provide another function as an argument. In this case, we’ll use a lambda as the function; this is used by the max() function, as follows:




>>> max(year_cheese, key=lambda yc: yc[1]) 
(2007, 33.5)




In this example, the max() function applies the supplied lambda and returns the tuple with the largest value in position one of each tuple.

Python provides a rich collection of higher-order functions. We’ll see examples of each of Python’s higher-order functions in later chapters, primarily in Chapter 5, Higher-Order Functions. We’ll also see how we can easily write our own higher-order functions. 




2.2  Immutable data

Since we’re not using variables to track the state of a computation, our focus needs to stay on immutable objects. We can make extensive use of tuples, typing.NamedTuples, and frozen @dataclass to provide more complex data structures that are also immutable. We’ll look at these class definitions in detail in Chapter 7, Complex Stateless Objects.

The idea of immutable objects is not foreign to Python. Strings and tuples are two widely-used immutable objects. There can be a performance advantage to using immutable tuples instead of more complex mutable objects. In some cases, the benefits come from rethinking the algorithm to avoid the costs of object mutation.

As an example, here’s a common design pattern that works well with immutable objects: the wrapper() function. A list of tuples is a fairly common data structure. We will often process this list of tuples in one of the two following ways:


	Using higher-order functions: As shown earlier, we provided a lambda as an argument to the max() function: max(year_cheese, key=lambda yc: yc[1]).


	Using the wrap-process-unwrap pattern: In a functional context, we can implement this with code that follows an unwrap(process(wrap(structure))) pattern.




For example, look at the following command snippet:




>>> max(map(lambda yc: (yc[1], yc), year_cheese))[1] 
(2007, 33.5)




This fits the three-part pattern of wrapping a data structure, finding the maximum of the wrapped structures, and then unwrapping the structure.

The expression map(lambda yc: (yc[1], yc), year_cheese) will transform each item into a two-tuple with a key followed by the original item. In this example, the comparison key value is the expression yc[1].

The processing is done using the max() function. Since each piece of the source data has been simplified to a new two-tuple, the higher-order function features of the max() function aren’t required. To make this work, the comparison value was taken from position one of the source record and placed first into the two-tuple. The default behavior of the max() function uses the first item in each two-tuple to locate the largest value.

Finally, we unwrap using the subscript expression [1]. This will pick the second element of the two-tuple selected by the max() function.

This kind of wrap-and-unwrap is so common that some languages have special functions with names like fst() and snd() that we can use as function prefixes instead of a syntactic suffix of [0] or [1]. We can use this idea to modify our wrap-process-unwrap example, as follows:




>>> snd = lambda x: x[1] 
>>> snd(max(map(lambda yc: (yc[1], yc), year_cheese))) 
(2007, 33.5)




Here, a lambda is used to define the snd() function to pick the second item from a tuple. This provides an easier-to-read version of unwrap(process(wrap())). As with the previous example, the map(lambda... , year_cheese) expression is used to wrap our raw data items, and the max() function does the processing. Finally, the snd() function extracts the second item from the tuple.

This can be simplified by using typing.NamedTuple or a @dataclass. In Chapter 7, Complex Stateless Objects, we’ll look at these two alternatives.

We will—as a general design principle—avoid class definitions. It can seem like anathema to avoid objects in an Object-Oriented Programming (OOP) language, but we note that functional programming doesn’t depend on stateful objects. When we use class definitions, we’ll avoid designs that update attribute values.

There are a number of good reasons for using immutable objects. We can, for example, use an object as a named collection of attribute values. Additionally, callable objects can provide some optimizations, like the caching of computed results. Caching is important because Python doesn’t have an optimizing compiler. Another reason for using class definitions is to provide a namespace for closely related functions. 



2.3  Strict and non-strict evaluation

Functional programming’s efficiency stems, in part, from being able to defer a computation until it’s required. There are two similar concepts for avoiding computation. These are:


	Strictness: Python operators are generally strict and evaluate all sub-expressions from left to right. This means an expression like f(a)+f(b)+f(c) is evaluated as if it was (f(a)+f(b))+f(c). An optimizing compiler might avoid strict ordering to improve performance. Python doesn’t optimize and code is mostly strict. We’ll look at cases where Python is not strict below.


	Eagerness and laziness: Python operators are generally eager and evaluate all sub-expressions to compute the final answer. This means (3-3) * f(d) is fully evaluated even though the first part of the multiplication—the (3-3) sub-expression—is always zero, meaning the result is always zero, no matter what value is computed by the expression f(d). Generator expressions are an example of Python doing lazy evaluation. We’ll look at an example of this in the next section, Lazy and eager evaluation.




In Python, the logical expression operators and, or, and if-else are all non-strict. We sometimes call them short-circuit operators because they don’t need to evaluate all arguments to determine the resulting value.

The following command snippet shows the and operator’s non-strict feature:




>>> 0 and print("right") 
0 
 
>>> True and print("right") 
right




When we execute the first of the preceding command snippets, the left-hand side of the and operator is equivalent to False; the right-hand side is not evaluated. In the second example, when the left-hand side is equivalent to True, the right-hand side is evaluated.

Other parts of Python are strict. Outside the logical operators, an expression is evaluated strictly from left to right. A sequence of statement lines is also evaluated strictly in order. Literal lists and tuples require strict evaluation. When a class is created, the methods are defined in a strict order. 



2.4  Lazy and eager evaluation

Python’s generator expressions and generator functions are lazy. These expressions don’t create all possible results immediately. It’s difficult to see this without explicitly logging the details of a calculation. Here is an example of the version of the range() function that has the side effect of showing the numbers it creates:

from collections.abc import Iterator 
def numbers(stop: int) -> Iterator[int]: 
    for i in range(stop): 
        print(f"{i=}") 
        yield i

To provide some debugging hints, this function prints each value as the value is yielded. If this function were eager, evaluating numbers(1024) would take the time (and storage) to create all 1,024 numbers. Since the numbers() function is lazy, it only creates a number as it is requested.

We can use this noisy numbers() function in a way that will show lazy evaluation. We’ll write a function that evaluates some, but not all, of the values from this iterator:

def sum_to(limit: int) -> int: 
    sum: int = 0 
    for i in numbers(1_024): 
        if i == limit: break 
        sum += i 
    return sum

The sum_to() function has type hints to show that it should accept an integer value for the n parameter and return an integer result. This function will not evaluate the entire result of the values produced by the numbers() function. It will break after only consuming a few values from the numbers() function. We can see this consumption of values in the following log:




>>> sum_to(5) 
i=0 
i=1 
i=2 
i=3 
i=4 
i=5 
10




As we’ll see later, Python generator functions have some properties that make them a little awkward for simple functional programming. Specifically, a generator can only be used once in Python. We have to be cautious with how we use the lazy Python generator expressions. 



2.5  Recursion instead of an explicit loop state

Functional programs don’t rely on loops and the associated overhead of tracking the state of loops. Instead, functional programs try to rely on the much simpler approach of recursive functions. In some languages, the programs are written as recursions, but Tail-Call Optimization (TCO) in the compiler changes them to loops. We’ll introduce some recursion here and examine it closely in Chapter 6, Recursions and Reductions.

We’ll look at an iteration to test whether a number is a prime number. Here’s a definition from https://mathworld.wolfram.com/PrimeNumber.html: “A prime number ... is a positive integer p > 1 that has no positive integer divisors other than 1 and p itself.” We can create a naive and poorly performing algorithm to determine whether a number has any factors between 2 and the number. This is called the Trial Division algorithm. It has the advantage of simplicity; it works acceptably for solving some of the Project Euler problems. Read up on Miller-Rabin primality tests for a much better algorithm.

We’ll use the term coprime to mean that two numbers have only 1 as their common factor. The numbers 2 and 3, for example, are coprime. The numbers 6 and 9, however, are not coprime because they have 3 as a common factor.

If we want to know whether a number, n, is prime, we actually ask this: is the number n coprime to all prime numbers, p, such that p2 < n? We can simplify this using all integers, i, such that 2 ≤ i2 < n. The simplification does more work, but is much easier to implement.

Sometimes, it helps to formalize this as follows:


[image: prime(n) = ∀x[2 ≤ x < √n-+ 1 ∧ n ⁄≡ 0 mod x ] ]


The expression could look as follows in Python:

not any( 
    n % p == 0 
    for p in range(2, int(math.sqrt(n))+1) 
)

An alternative conversion from mathematical formalism to Python would use all(n % p != 0, ...). The all() function will stop when it finds the first False value. The not any() will stop when it finds the first True value. While the results are identical, the performance varies depending on whether or not p is a prime number.

This expression has a for iteration inside it: it’s not a pure example of stateless functional programming. We can reframe this into a function that works with a collection of values. We can ask whether the number, n, is coprime within any value in the half-open interval [2,[image: √ -- n] + 1). This uses the symbols [) to show a half-open interval: the lower values are included, and the upper value is not included. This is typical behavior of the Python range() function. We will also restrict ourselves to the domain of natural numbers. The square root values, for example, are implicitly truncated to integers.

We can think of the definition of prime as the following:


[image: prime(n) = coprime (n,[2,√n-+ 1)) ]


given n > 1. We know n is prime when it is coprime to all values in the range [2,[image:  -- √ n] + 1).

While the formal math can feel daunting, this is a search for a coprime in the given range of values. If we find a coprime, the value of n is not prime. If we fail to find a coprime, then the value of n must be prime.

When defining a recursive search over a range of values, the base case can be the empty range. Searching the empty range means no values can be found. Searching a non-empty range is handled recursively by processing one value combined with a range that’s narrower by the one value processed. We could formalize it as follows:


[image:  ( |||| True if a = b, { coprime (n,[a,b)) = | ( ) the range is empty |||( (n ⁄≡ 0 mod a )∧ coprime n, [a + 1,b) if a < b ]


In the case where the range is non-empty, one value, a, is checked to see if it is coprime with n; then, the remaining values in the range [a + 1,b) are checked. This expression can be confirmed by providing concrete examples of the two cases, which are given as follows:


	If the range is empty, a = b, we evaluated something like this:


[image:  ( ) coprime 131073,[363,363) ]


The range contains no values, so the return is True. This is analogous to computing the sum of an empty list: the sum is zero.


	If the range is not empty, we evaluated something like this:


[image:  ( ) coprime 131073,[2,363) ]


This decomposes into evaluating:


[image:  ( ) (131073 ⁄≡ 0 mod 2)∧ coprime 131073,[3,363) ]


For this example, we can see that the first clause is True, and we’ll evaluate the second clause recursively. Compare this with evaluating coprime[image: (]16,[image: [2,5)][image: )]. The value of 16≢0 mod 2 would be False; the values of 16 and 2 are not coprime. The evaluation of coprime[image: (]131073,[image: [3,363)][image: )] becomes irrelevant, since we know the 16 is composite.




As an exercise for the reader, this recursion can be redefined to count down instead of up, using [a,b− 1) in the second case. Try this revision to see what, if any, changes are required.




Some folks like to define the empty interval as a ≥ b instead of a = b. The extra > condition is needless, since a is incremented by 1 and we can easily guarantee that a ≤ b, initially. There’s no way for a to somehow magically leap past b through some error in the function; we don’t need to over-specify the rules for an empty interval.




Here is a Python code snippet that implements this definition of prime:

def isprimer(n: int) -> bool: 
    def iscoprime(k: int, a: int, b: int) -> bool: 
        """Is k coprime with a value in the given range?""" 
        if a == b: return True 
        return (k % a != 0) and iscoprime(k, a+1, b) 
    return iscoprime(n, 2, int(math.sqrt(n)) + 1)

This shows a recursive definition of an iscoprime() function. The function expects an int value for all three parameters. The type hints claim it will return a bool result.

The recursion base case is implemented as a == b. When this is true, the range of values from a to one less than b is empty. Because the recursive evaluation of iscoprime() is the tail end of the function, this is an example of tail recursion.

The iscoprime() function is embedded in the isprimer() function. The outer function serves to establish the boundary condition for the range of values that will be searched.

What’s important in this example is that the two cases of this recursive function follow the mathematical definition in a direct way. Making the range of values an explicit argument to the internal iscoprime() function allows us to call the function recursively with argument values that reflect a steadily shrinking interval.

While recursion is often succinct and expressive, we have to be cautious about using it in Python. There are two problems that can arise:


	Python imposes a recursion limit to detect recursive functions with improperly defined base cases.


	Python does not have a compiler that does Tail-Call Optimization (TCO) for us.




The default recursion limit is 1,000, which is adequate for many algorithms. It’s possible to change this with the sys.setrecursionlimit() function. It’s not wise to raise this arbitrarily since it might lead to exceeding the OS memory limitations and crashing the Python runtime.

If we try a recursive isprimer() function on a prime number n over 1,000,000, we’ll run afoul of the recursion limit. (Folks using IPython have a higher default limit on the size of the stack; try isprimer(9_000_011) to see the problem.)

Some functional programming languages can optimize these “tail call” recursive functions. An optimizing compiler will transform the recursive evaluation of the iscoprime(k, a+1, b) expression into a low-overhead for statement. The optimization tends to make debugging optimized programs more difficult. Python doesn’t perform this optimization. Performance and memory are sacrificed for clarity and simplicity. This also means we are forced to do the optimization manually.

This is the subject of Chapter 6, Recursions and Reductions. We’ll look at several examples of doing manual TCO. 
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