
		
			[image: Cover.png]
		

	
		
			Cloud-Native Development and Migration to Jakarta EE

			Transform your legacy Java EE project into a cloud-native application

			Ron Veen

			David Vlijmincx

			[image: ]

			BIRMINGHAM—MUMBAI

			Cloud-Native Development and Migration to Jakarta EE

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Gebin George

			Publishing Product Manager: Kunal Sawant

			Senior Editor: Nithya Sadanandan

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Project Coordinator: Deeksha Thakkar

			Proofreader: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Ponraj Dhandapani

			Marketing Coordinator: Sonia Chauhan

			Business Development Executive: Samriddhi Murarka

			First published: November 2023

			Production reference: 3231023

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1R.

			ISBN 978-1-83763-962-5

			www.packtpub.com

			For my loved ones, whose sacrifices made it possible for me to work on this book.

			– Ron Veen

			For Mariska and my parents, Bernadette and Frits.

			– David Vlijmincx

			Contributors

			About the authors

			Ron Veen is a highly experienced software engineer, navigating the spectrum from Midrange Systems to Micro Services. Driven by his passion for software engineering and software architecture, he has amassed more than 15 years of experience working on the JVM and the Java ecosystem. Ron has seen all the frameworks and libraries from Apache to ZK and has worked with many versions of Java EE and later, Jakarta EE. An avid fan of alternative JVM languages like Groovy, Scala, Clojure, and his personal favorite Kotlin, Ron is also an Oracle Certified Java Programmer (OCP) and Sun Certified Business Component Developer (SCBCD/OCPBCD). Ron is also a regular speaker at international conferences.

			David Vlijmincx is a software developer with 8 years of experience in the field. He has a strong background in software development, with a focus on building scalable, high-quality applications using the Java programming language. David’s expertise spans through a variety of projects, ranging from small, standalone applications to large, complex systems, which needed to be migrated to newer versions of the EE specification or the cloud. David is an Oracle Certified Java Programmer (OCP) and is an avid blogger and speaker at industry conferences.

			About the reviewer

			Edwin Derks, a distinguished Java Champion hailing from The Netherlands, excels in unraveling intricate and strategic IT challenges as a dedicated Consultant. He is passionate about gathering and sharing knowledge on various facets of the Java ecosystem, composable architectures, and cloud-driven development . He actively contributes to MicroProfile and Jakarta EE and often speaks at conferences, passionately sharing his knowledge and experience.

			In his spare time, he is a loving husband and a father of three. He can often be found in the gym or having a good time at dance parties or heavy metal concerts.

		

	
		
			Table of Contents

			Preface

			Part 1: History of Java EE and Jakarta EE

			1

			The History of Enterprise Java

			What is Java EE, and why was it created?

			Web servers versus application servers

			Web servers

			Application servers

			Profiles to the rescue

			Java EE 5, the first user-friendly version

			The history of key features added in Java EE since version 5

			Java EE 6

			Java EE 7

			Java EE 8

			Summary

			2

			Introducing the Cargo Tracker Application

			Technical requirements

			What is the Cargo Tracker application?

			Why we chose the Cargo Tracker application

			Installing and running the Cargo Tracker application

			Features of the Cargo Tracker application

			Public Tracking Interface

			Administration Interface

			Mobile Event Logger

			Java EE features used in the Cargo Tracker application

			Enterprise Java Beans

			Persistence (JPA)

			Messaging (JMS)

			Context and Dependency Injection

			Java Service Faces (JSF)

			JAX-RS

			JSON binding

			Transactions

			Batch

			Summary

			Part 2: Modern Jakarta EE

			3

			Moving from Java EE to Jakarta EE

			Technical requirements

			It’s all about namespaces

			Migrating strategies

			Using an open source multiplatform editor

			Sed

			Using a specialized plugin for your IDE

			Upgrading your pom.xml file

			Migrating dependencies

			Upgrading the project

			Upgrading the Payara application server

			Upgrading PrimeFaces

			Red Hat MTA

			Upgrading your application server

			Summary

			4

			Modernizing Your Application with the Latest Features

			Technical requirements

			The most significant changes to Jakarta EE 10

			Core Profile

			Using UUIDs as keys

			Multi-part form parameters

			Pure Java Jakarta Faces views

			Authenticating with OpenID

			Improved concurrency

			Adding the first cloud-native feature – resilience

			Adding the second cloud-native feature – monitoring

			Looking at the default metrics of a running system

			Adding metrics to your system

			Using Prometheus and Grafana to visualize the monitoring process

			Setting up Prometheus

			Setting up Docker Compose

			Setting up the Prometheus settings

			Setting up Grafana

			Setting up docker-compose

			Setting up the auto data source

			Setting up the dashboard so that it loads automatically

			Showing Grafana Docker

			Showing the complete Docker file

			Summary

			5

			Making Your Application Testable

			Technical requirements

			The impact of testing on your migration

			Measuring code coverage of the project

			A word about TDD

			How to create unit tests

			Tools and libraries required for unit testing

			Creating a unit test

			How to create integration tests

			What are integration tests?

			What is Testcontainers?

			Setting up Testcontainers

			Creating an integration test

			Summary

			Part 3: Embracing the Cloud

			6

			Introduction to Containers and Docker

			Technical requirements

			What are containers?

			How are containers created?

			A brief introduction to Docker

			Installing Docker

			Running a Docker container

			Creating a Docker container

			Building a container

			Running a container

			Running the container in detached mode

			Stopping a running container

			Using Docker Compose

			Summary

			7

			Meet Kubernetes

			Technical requirements

			In the beginning

			What is container orchestration?

			Why would you need Kubernetes?

			Self-healing

			Load-balancing and networking

			Persistent storage and volumes

			General

			Pods versus containers

			Some Kubernetes lingo

			Extending Kubernetes

			Kubernetes architecture

			Where to run Kubernetes

			Use your own hardware

			Using a hosted service

			A simple example

			Summary

			8

			What Is Cloud Native?

			Technical requirements

			What is cloud native?

			Cloud-native principles

			Microservices

			Containers and orchestration

			DevOps

			CI/CD

			Introducing the 12-factor app

			Code base

			Dependencies

			Config

			Backing services

			Build, release, run

			Processes

			Port binding

			Concurrency

			Disposability

			Dev/prod parity

			Logs

			Admin processes

			How to start the transformation

			Summary

			9

			Deploying Jakarta EE Applications in the Cloud

			Technical requirements

			Deploying to Azure

			Creating a container registry

			Uploading an image to the registry

			Creating a container instance

			Metrics of containers in the cloud

			Summary

			10

			Introducing MicroProfile

			Technical requirements

			A brief history of MicroProfile

			MicroProfile Config

			MicroProfile Health

			MicroProfile Fault Tolerance

			@Asynchronous

			@Retry

			@Timeout

			@Bulkhead

			@CircuitBreaker

			@Fallback

			Final remarks

			MicroProfile Metrics

			@Counted

			@Gauge

			@Metric

			@Timed

			Telemetry Tracing

			Automatic instrumentation

			Manual instrumentation

			Other specifications

			OpenAPI

			RestClient

			JSON Web Token Authentication

			Jakarta EE 10 Core Profile

			Summary

			Appendix A

			Java EE to Jakarta EE names

			Appendix B

			As a Service

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			Welcome to our comprehensive guide on Cloud-Native Development and Migration to Jakarta EE! In the pages of this book, you are about to embark on a transformative journey through the evolution of Jakarta EE, exploring its rich history and evolution.

			Our aim is to unlock the complex world of Jakarta EE, guiding you through the migration and modernization of your existing applications. As you turn the pages, you will discover how to make your code compatible with the latest Jakarta EE version and leverage its modern features effectively.

			The adventure doesn’t stop there. We’ll dive into the realm of cloud-native development as we demystify containers and introduce the Eclipse MicroProfile, a powerful tool in your toolkit. Together, we will transition your applications from local hardware to the limitless possibilities of the cloud. With our expert guidance, you will learn to deploy your Jakarta EE applications on Microsoft Azure, gaining hands-on experience in managing cloud resources.

			But that’s not all; the final leg of your journey explores the world of serverless architecture. Here, you will learn to design and run services that are truly serverless, harnessing the potential of the event-driven paradigm for scalability and cost-efficiency.

			By the end of this book, you will not only be a Jakarta EE expert, but also a proficient cloud-native developer. So, join us on this exciting journey of transformation and innovation as you pave the way for the future of Jakarta EE and cloud-native development.

			Who this book is for

			This book is tailored for developers seeking valuable insights into how to migrate their applications from Java EE to Jakarta EE and seamlessly integrate them into a cloud environment. Within these pages, developers will find guidance on every step required to transition their applications from Java EE to the latest Jakarta EE version.

			This book equips developers with the knowledge to modernize their applications with the latest features and to get it up and running in a cloud environment.

			What this book covers

			Chapter 1, The History of Enterprise Java, introduces you to the history of Java EE and Jakarta EE.

			Chapter 2, Introducing the Cargo Tracker Application, starts with an overview of the Cargo tracker application’s functionality. The second half takes a look at the Java EE features that are used in the project.

			Chapter 3, Moving from Java EE to Jakarta EE, describes how to approach the migration from Java EE to Jakarta EE.

			Chapter 4, Modernizing Your Application with the Latest Features, provides an overview of the significant changes made to Jakarta EE 10. The chapter will also show you how to implement cloud-native features like resilience and monitoring. Lastly, we will show you how to visualize the metrics coming from your application.

			Chapter 5, Making Your Application Testable, provides an overview of why testing is important when migrating a software project and how to measure it. You will learn how to write unit tests and integration tests for modern applications to ensure the application keeps working as expected.

			Chapter 6, Introduction to Containers and Docker, provides an overview of what containers are and why they are an important tool. You will learn what Docker is, how to install it, and how to create a Docker container based on the Cargo tracker application.

			Chapter 7, Meet Kubernetes, introduces you to Kubernetes, the de facto standard for running containers.

			Chapter 8, What is Cloud Native?, describes the principles of cloud-native computing.

			Chapter 9, Deploying Jakarta EE Applications in the Cloud, provides an overview of deploying an application to the Azure cloud. You will learn how to create a container registry and how to create an instance from a container in the registry. This chapter also covers how you can see the metrics of the deployed instance.

			Chapter 10, Introducing MicroProfile, introduces the most important specifications of the MicroProfile specification.

			Appendix A, Java EE to Jakarta EE names, is a list of Java EE to Jakarta EE specifications.

			Appendix B, As a Service, explains the different concepts of using the Internet for computing.

			To get the most out of this book

			For optimal learning, it is essential to have prior experience in developing Java applications using an enterprise framework like Java EE, Jakarta EE, or Spring.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Azure Cloud

						
							
							Windows, macOS, or Linux

						
					

					
							
							Java 17

						
							
					

					
							
							Java EE 7

						
							
					

					
							
							Jakarta EE 10

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Cloud-Native-Development-and-Migration-to-Jakarta-EE. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The param-value tells PrimeFaces that we want to use the omega theme for the project.”

			A block of code is set as follows:

			
<context-param>
   <param-name>primefaces.THEME</param-name>
   <param-value>saga</param-value>
</context-param>
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
mvn compile
			Any command-line input or output is written as follows:

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “If a quick fix can be applied, you can do so by right-clicking the incident and choosing Apply All Quickfixes.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Cloud-Native Development and Migration to Jakarta EE, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781837639625

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	


		
			Part 1: History of Java EE and Jakarta EE

			In this part, you will get an overview of the history of enterprise Java and the application we will be migrating throughout this book. The historical context will shed light on the transformation from Java EE and underscore the necessity of migrating to Jakarta EE 10. This will also include the changes that Jakarta EE made to make developing applications easier. The introduction of the Cargo tracker will help you familiarize yourself with the application, so you know what we are migrating and the challenges we’ll encounter.

			This part has the following chapters:

			
					Chapter 1, The History of Enterprise Java

					Chapter 2, Introducing the Cargo Tracker Application

			

		

		
			
			

		

		
			
			

		

	


		
			1

			The History of Enterprise Java

			In this chapter, we will look at the history of Java EE and Jakarta EE. Since its inception, Java enterprise technology has had several names – starting as J2EE, then being rebranded as JEE, followed by Java EE, and finally, Jakarta EE.

			In this chapter, we will cover the following topics:

			
					What is Java EE, and why was it created?

					Web servers versus application servers

					Java EE 5, the first user-friendly version

					The history of key features added in Java EE since version 5

			

			By the end of this chapter, you will have a better understanding of Java EE and Jakarta EE in a historical sense, and you will know some of the key features added to Java EE. Changes to Jakarta EE will be discussed in subsequent chapters.

			What is Java EE, and why was it created?

			The Java language was introduced to the world in 1996. It consisted of a compiler and a Java virtual machine. Both components are platform-dependent, meaning that you have different versions for Windows, Linux, macOS, and so on. This is called Java Standard Edition (Java SE).

			The Java language is unique in that it does not compile to native machine code but, instead, to something called bytecode. This bytecode is platform-independent, meaning it can be transferred to any of the aforementioned platforms.

			To execute the bytecode, you would need a Java Virtual Machine (JVM). The JVM translates the intermediate bytecode to machine code, specific to the platform it is executed on.

			This principle of compiling to bytecode and being able to execute it on any platform was dubbed Write Once, Run Anywhere (WORA). This has proven to be the distinctive feature that has led to the success of Java in business environments.

			Initially, Java was meant to run in browsers, inside so-called applets. These applets added a lot of functionality to the early browsers such as Microsoft’s Internet Explorer and Netscape’s Navigator.

			Free versions of Java were supplied to several popular platforms, which aided in the rapid success of the language.

			The JVM specification could be licensed by third parties, allowing them to build their own implementations of the compiler and the JVM. Several companies have done so, which means that there are now several vendors that offer their own implementation. The most common are (in alphabetical order) as follows:

			
					Alibabi Dragonwell

					Amazon Coretto

					Azul Zulu

					Bellsoft Liberica

					Eclipse Adoptium Temurin

					J9

					Oracle Oracle JDK and OpenJDK

					Redhat OpenJDK

					SAP SapMachine

			

			But soon, Java moved out of the realm of browsers into the business world. It became obvious that developing business applications required additional functionality that was not part of the language.

			Instead of adding this functionality to the language itself, it was decided that it would better be provided by a separate set of APIs. To avoid confusion and distinguish between Java SE and these new APIs, they were called Java Enterprise Edition (Java EE).

			Java EE added features such as transactions, security, scalability, management of components, and concurrency. It allowed you to create dynamic web applications and provided a robust platform for distributed transactions.

			Web servers versus application servers

			The terms web servers and application servers are often confused by people new to Java EE and used interchangeably, although this is not correct. In this section, we will highlight the differences between the two, as we believe that it is important to know the differences between them, as both are key components of Java EE, but each plays its own role.

			Starting to understand the difference between them is best done by highlighting their goals.

			Web servers

			Web servers implement the Servlet API, which is a set of classes and interfaces defined in the specification that allow you to create dynamic web applications. Applications based on the Servlet API, called Servlets, run inside a web server and serve, possibly dynamic, content to their users.

			There are a number of technologies developed over the years that support the Servlet API. Specifications such as Java Server Pages (JSP), Java Standard Tag Libraries (JSTL), Java Server Faces (JSF), and Bean Validations are the most notable. Later, Java API for XML Web Service (JAX-WS) and Java API for Restful Web services (JAX-RS) were added.

			There are many popular, standalone implementations of the Servlet API, such as the following:

			
					Tomcat

					Jetty

					NGINX

			

			All these provide a Servlet container in which servlets can run.

			It is good to understand that you can run multiple servlets inside one servlet container. In the early days, this was a common practice, as it allowed you to run more than one application on the same piece of hardware.

			For good measure, it should be noted that a framework such as Spring Boot still uses the Servlet API. This means that at the core level, some implementation of the Servlet API is still running. In the case of Spring Boot, however, which servlet container implementation is being used is pluggable, meaning you choose it yourself.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/image/B19794_QR_Free_PDF.jpg





OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/image/Packt_Logo_New.png
<packm





OEBPS/toc.xhtml


		

		Contents



			

						Cloud-Native Development and Migration to Jakarta EE



						Contributors



						About the authors



						About the reviewer



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Conventions used



								Get in touch



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



						Part 1: History of Java EE and Jakarta EE



						Chapter 1: The History of Enterprise Java

					

								What is Java EE, and why was it created?



								Web servers versus application servers

							

										Web servers



										Application servers



										Profiles to the rescue



							



						



								Java EE 5, the first user-friendly version



								The history of key features added in Java EE since version 5

							

										Java EE 6



										Java EE 7



										Java EE 8



							



						



								Summary



					



				



						Chapter 2: Introducing the Cargo Tracker Application

					

								Technical requirements



								What is the Cargo Tracker application?



								Why we chose the Cargo Tracker application



								Installing and running the Cargo Tracker application



								Features of the Cargo Tracker application

							

										Public Tracking Interface



										Administration Interface



										Mobile Event Logger



							



						



								Java EE features used in the Cargo Tracker application

							

										Enterprise Java Beans



										Persistence (JPA)



										Messaging (JMS)



										Context and Dependency Injection



										Java Service Faces (JSF)



										JAX-RS



										JSON binding



										Transactions



										Batch



							



						



								Summary



					



				



						Part 2: Modern Jakarta EE



						Chapter 3: Moving from Java EE to Jakarta EE

					

								Technical requirements



								It’s all about namespaces

							

										Migrating strategies



										Using an open source multiplatform editor



										Sed



										Using a specialized plugin for your IDE



										Upgrading your pom.xml file



							



						



								Migrating dependencies

							

										Upgrading the project



										Upgrading the Payara application server



										Upgrading PrimeFaces



										Red Hat MTA



							



						



								Upgrading your application server



								Summary



					



				



						Chapter 4: Modernizing Your Application with the Latest Features

					

								Technical requirements



								The most significant changes to Jakarta EE 10

							

										Core Profile



										Using UUIDs as keys



										Multi-part form parameters



										Pure Java Jakarta Faces views



										Authenticating with OpenID



										Improved concurrency



							



						



								Adding the first cloud-native feature – resilience



								Adding the second cloud-native feature – monitoring

							

										Looking at the default metrics of a running system



										Adding metrics to your system



							



						



								Using Prometheus and Grafana to visualize the monitoring process

							

										Setting up Prometheus



										Setting up Docker Compose



										Setting up the Prometheus settings



										Setting up Grafana



										Setting up docker-compose



										Setting up the auto data source



							



						



								Setting up the dashboard so that it loads automatically

							

										Showing Grafana Docker



										Showing the complete Docker file



							



						



								Summary



					



				



						Chapter 5: Making Your Application Testable

					

								Technical requirements



								The impact of testing on your migration

							

										Measuring code coverage of the project



										A word about TDD



										How to create unit tests



										Tools and libraries required for unit testing



										Creating a unit test



										How to create integration tests



										What are integration tests?



										What is Testcontainers?



										Setting up Testcontainers



										Creating an integration test



							



						



								Summary



					



				



						Part 3: Embracing the Cloud



						Chapter 6: Introduction to Containers and Docker

					

								Technical requirements



								What are containers?

							

										How are containers created?



							



						



								A brief introduction to Docker



								Installing Docker



								Running a Docker container

							

										Creating a Docker container



										Building a container



										Running a container



										Running the container in detached mode



										Stopping a running container



										Using Docker Compose



							



						



								Summary



					



				



						Chapter 7: Meet Kubernetes

					

								Technical requirements



								In the beginning



								What is container orchestration?



								Why would you need Kubernetes?

							

										Self-healing



										Load-balancing and networking



										Persistent storage and volumes



										General



										Pods versus containers



										Some Kubernetes lingo



							



						



								Extending Kubernetes



								Kubernetes architecture



								Where to run Kubernetes

							

										Use your own hardware



										Using a hosted service



							



						



								A simple example



								Summary



					



				



						Chapter 8: What Is Cloud Native?

					

								Technical requirements



								What is cloud native?



								Cloud-native principles

							

										Microservices



										Containers and orchestration



										DevOps



										CI/CD



							



						



								Introducing the 12-factor app

							

										Code base



										Dependencies



										Config



										Backing services



										Build, release, run



										Processes



										Port binding



										Concurrency



										Disposability



										Dev/prod parity



										Logs



										Admin processes



							



						



								How to start the transformation



								Summary



					



				



						Chapter 9: Deploying Jakarta EE Applications in the Cloud

					

								Technical requirements



								Deploying to Azure



								Creating a container registry

							

										Uploading an image to the registry



							



						



								Creating a container instance



								Metrics of containers in the cloud



								Summary



					



				



						Chapter 10: Introducing MicroProfile

					

								Technical requirements



								A brief history of MicroProfile



								MicroProfile Config



								MicroProfile Health



								MicroProfile Fault Tolerance

							

										@Asynchronous



										@Retry



										@Timeout



										@Bulkhead



										@CircuitBreaker



										@Fallback



										Final remarks



							



						



								MicroProfile Metrics

							

										@Counted



										@Gauge



										@Metric



										@Timed



							



						



								Telemetry Tracing

							

										Automatic instrumentation



										Manual instrumentation



							



						



								Other specifications

							

										OpenAPI



										RestClient



										JSON Web Token Authentication



										Jakarta EE 10 Core Profile



							



						



								Summary



					



				



						Appendix A: Java EE to Jakarta EE names



						Appendix B: As a Service



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/CourierStd.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/image/Cover.png
<packh

Cloud-Native Development
and Migration to Jakarta EE

Transform your legacy Java EE project
into a cloud-native application

<> RON VEEN | DAVID VLIJMINCX





OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/Fonts/MyriadPro-SemiboldIt.otf


