

 [image: [Bild]]

 [image: [Bild]]

Inhaltsverzeichnis

 Impressum

 Einleitung

 Danksagungen

 Über die Fachkorrektoren der deutschen Ausgabe

 Kapitel 1: Die Grundlagen

 1.1 Einführung

 1.2 Programme

 1.2.1 ‌Hello, World!

 1.3 ‌Funktionen

 1.4 Typen, Variablen und Arithmetik

 1.4.1 Rechenoperatoren

 1.4.2 Initialisierung

 1.5 Gültigkeitsbereich und ‌Lebensdauer

 1.6 ‌Konstanten

 1.7 Zeiger, ‌Arrays und ‌Referenzen

 1.7.1 Der ‌Null-Pointer

 1.8 Bedingungen prüfen

 1.9 Auf Hardware abbilden

 1.9.1 ‌Zuweisung

 1.9.2 ‌Initialisierung

 1.10 Ratschläge

 Kapitel 2: Benutzerdefinierte Typen

 2.1 Einführung

 2.2 Strukturen

 2.3 Klassen

 2.4 Aufzählungen

 2.5 Unions

 2.6 Ratschläge

 Kapitel 3: Modularität

 3.1 Einführung

 3.2 Separates Kompilieren

 3.2.1 Header-Dateien

 3.2.2 Module

 3.3 Namensräume

 3.4 Funktionsargumente und Rückgabewerte

 3.4.1 Argumentübergabe

 3.4.2 Werterückgabe

 3.4.3 Rückgabetyp ableiten

 3.4.4 Suffix-Rückgabetyp

 3.4.5 Strukturierte Bindung

 3.5 Ratschläge

 Kapitel 4: Fehlerbehandlung

 4.1 Einführung

 4.2 Exceptions

 4.3 Invarianten

 4.4 Alternativen für die Fehlerbehandlung

 4.5 Assertions

 4.5.1 assert()

 4.5.2 Statische Assertionen

 4.5.3 noexcept

 4.6 Ratschläge

 Kapitel 5: Klassen

 5.1 Einführung

 5.1.1 Klassen

 5.2 Konkrete Typen

 5.2.1 Ein arithmetischer Typ

 5.2.2 Ein Container

 5.2.3 Container initialisieren

 5.3 Abstrakte Typen

 5.4 Virtuelle Funktionen

 5.5 Klassenhierarchien

 5.5.1 Vorteile von Hierarchien

 5.5.2 Die Navigation in einer Hierarchie

 5.5.3 Ressourcenlecks vermeiden

 5.6 Ratschläge

 Kapitel 6: Notwendige Operationen

 6.1 Einführung

 6.1.1 Notwendige Operationen

 6.1.2 Konvertierungen

 6.1.3 Member-Initialisierer

 6.2 Kopieren und Verschieben

 6.2.1 Container kopieren

 6.2.2 Container verschieben

 6.3 Ressourcenverwaltung

 6.4 Operatoren überladen

 6.5 Konventionelle Operationen

 6.5.1 Vergleiche (Relationale Operatoren)

 6.5.2 Container-Operationen

 6.5.3 Iteratoren und »smarte Zeiger«

 6.5.4 Eingabe- und Ausgabeoperationen

 6.5.5 swap()

 6.5.6 hash<>

 6.6 Benutzerdefinierte Literale

 6.7 Ratschläge

 Kapitel 7: Templates

 7.1 Einführung

 7.2 Parametrisierte Typen

 7.2.1 Beschränkte Template-Argumente

 7.2.2 Wert-Template-Argumente

 7.2.3 Deduktion von Template-Argumenten

 7.3 Parametrisierte Operationen

 7.3.1 Funktions-Templates

 7.3.2 Funktionsobjekte

 7.3.3 Lambda-Ausdrücke

 7.4 Template-Mechanismen

 7.4.1 Variablen-Templates

 7.4.2 Aliasse

 7.4.3 Compile-Zeit-if

 7.5 Ratschläge

 Kapitel 8: Konzepte und generische Programmierung

 8.1 Einführung

 8.2 Konzepte

 8.2.1 Verwendung von Konzepten

 8.2.2 Konzeptbasiertes Überladen

 8.2.3 Gültiger Code

 8.2.4 Definition von Konzepten

 8.2.5 Konzepte und auto

 8.2.6 Konzepte und Typen

 8.3 Generische Programmierung

 8.3.1 Verwendung von Konzepten

 8.3.2 Abstraktion mittels Templates

 8.4 Variadische Templates

 8.4.1 Fold-Ausdrücke

 8.4.2 Argumente weitergeben

 8.5 Modell der Template-Kompilierung

 8.6 Ratschläge

 Kapitel 9: Überblick über die Bibliothek

 9.1 Einführung

 9.2 Komponenten der Standardbibliothek

 9.3 Organisation der Standardbibliothek

 9.3.1 Namensräume

 9.3.2 Der Namensraum ranges

 9.3.3 Module

 9.3.4 Header

 9.4 Ratschläge

 Kapitel 10: Strings und reguläre Ausdrücke

 10.1 Einführung

 10.2 Strings

 10.2.1 Die Implementierung von string

 10.3 String-Views

 10.4 Reguläre Ausdrücke

 10.4.1 Suche

 10.4.2 Notation regulärer Ausdrücke

 10.4.3 Iteratoren

 10.5 Ratschläge

 Kapitel 11: Eingabe und Ausgabe

 11.1 Einführung

 11.2 Ausgabe

 11.3 Eingabe

 11.4 I/O-Status

 11.5 Ein-/Ausgabe benutzerdefinierter Typen

 11.6 Ausgabeformatierung

 11.6.1 Stream-Formatierung

 11.6.2 Formatierung im printf()-Stil

 11.7 Streams

 11.7.1 Standard-Streams

 11.7.2 Datei-Streams

 11.7.3 String-Streams

 11.7.4 Speicher-Streams

 11.7.5 Synchronisierte Streams

 11.8 Ein-/Ausgaben im C-Stil

 11.9 Dateisystem

 11.9.1 Pfade

 11.9.2 Dateien und Verzeichnisse

 11.10 Ratschläge

 Kapitel 12: Container

 12.1 Einführung

 12.2 vector

 12.2.1 Elemente

 12.2.2 Bereichsüberprüfung

 12.3 list

 12.4 forward_list

 12.5 map

 12.6 unordered_map

 12.7 Allokatoren

 12.8 Ein Überblick über Container

 12.9 Ratschläge

 Kapitel 13: Algorithmen

 13.1 Einführung

 13.2 Verwendung von Iteratoren

 13.3 Iterator-Typen

 13.3.1 Stream-Iteratoren

 13.4 Verwendung von Prädikaten

 13.5 Überblick über Algorithmen

 13.6 Parallele Algorithmen

 13.7 Ratschläge

 Kapitel 14: Bereiche (Ranges)

 14.1 Einführung

 14.2 Views

 14.3 Generatoren

 14.4 Pipelines

 14.5 Überblick über Konzepte

 14.5.1 Typkonzepte

 14.5.2 Iterator-Konzepte

 14.5.3 Bereichskonzepte

 14.6 Ratschläge

 Kapitel 15: Zeiger und Container

 15.1 Einführung

 15.2 Zeiger

 15.2.1 unique_ptr und shared_ptr

 15.2.2 span

 15.3 Container

 15.3.1 array

 15.3.2 bitset

 15.3.3 pair

 15.3.4 tuple

 15.4 Alternativen

 15.4.1 variant

 15.4.2 optional

 15.4.3 any

 15.5 Ratschläge

 Kapitel 16: Utilities

 16.1 Einführung

 16.2 Zeit

 16.2.1 Uhren

 16.2.2 Kalender

 16.2.3 Zeitzonen

 16.3 Funktionsanpassung

 16.3.1 Lambdas als Adapter

 16.3.2 mem_fn()

 16.3.3 function

 16.4 Typfunktionen

 16.4.1 Typprädikate

 16.4.2 Bedingte Eigenschaften

 16.4.3 Typgeneratoren

 16.4.4 Assoziierte Typen

 16.5 source_location

 16.6 move() und forward()

 16.7 Bitmanipulation

 16.8 Ein Programm beenden

 16.9 Ratschläge

 Kapitel 17: Numerik

 17.1 Einführung

 17.2 Mathematische Funktionen

 17.3 Numerische Algorithmen

 17.3.1 Parallele numerische Algorithmen

 17.4 Komplexe Zahlen

 17.5 Zufallszahlen

 17.6 Vektorarithmetik

 17.7 Numerische Grenzen

 17.8 Typ-Aliasse

 17.9 Mathematische Konstanten

 17.10 Ratschläge

 Kapitel 18: Nebenläufigkeit

 18.1 Einführung

 18.2 Tasks und thread

 18.2.1 Argumente übergeben

 18.2.2 Ergebnisse zurückgeben

 18.3 Daten gemeinsam nutzen

 18.3.1 mutexe und Locks

 18.3.2 atomic

 18.4 Warten auf Ereignisse

 18.5 Kommunizierende Tasks

 18.5.1 future und promise

 18.5.2 packaged_task

 18.5.3 async()

 18.5.4 Einen Thread stoppen

 18.6 Koroutinen

 18.6.1 Kooperatives Multitasking

 18.7 Ratschläge

 Kapitel 19: Geschichte und Kompatibilität

 19.1 Geschichte

 19.1.1 Chronik

 19.1.2 Die frühen Jahre

 19.1.3 Die ISO-C++-Standards

 19.1.4 Standards und Stil

 19.1.5 Verwendung von C++

 19.1.6 Das C++-Modell

 19.2 Die Entwicklung der Merkmale von C++

 19.2.1 Sprachmerkmale von C++11

 19.2.2 Sprachmerkmale von C++14

 19.2.3 Sprachmerkmale von C++17

 19.2.4 Sprachmerkmale von C++20

 19.2.5 Komponenten der C++11-Standardbibliothek

 19.2.6 Komponenten der C++14-Standardbibliothek

 19.2.7 Komponenten der C++17-Standardbibliothek

 19.2.8 Komponenten der C++20-Standardbibliothek

 19.2.9 Entfernte und veraltete Funktionsmerkmale

 19.3 C/C++-Kompatibilität

 19.3.1 C und C++ sind Geschwister

 19.3.2 Kompatibilitätsprobleme

 19.4 Ratschläge

 Anhang A: module std

 A.1 Einführung

 A.2 Benutzen Sie, was Ihre Implementierung zu bieten hat

 A.3 Benutzen Sie Header

 A.4 Machen Sie sich Ihr eigenes module std

 A.5 Ratschläge

 Anhang B: Literaturverzeichnis

 B.1 Literaturhinweise

Bjarne Stroustrup

Eine Tour durch C++

Der praktische Leitfaden
für modernes C++

Übersetzung aus dem Englischen von Kathrin Lichtenberg

[image: [Bild]]

 Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-7475-0627-1

1. Auflage 2023

www.mitp.de

E-Mail: mitp-verlag@sigloch.de

Telefon: +49 7953 / 7189 - 079

Telefax: +49 7953 / 7189 - 082

© 2023 mitp Verlags GmbH & Co. KG

 Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

 Dieses E-Book verwendet das EPUB-Format und ist optimiert für die Nutzung mit Apple Books auf dem iPad von Apple. Bei der Verwendung von anderen Readern kann es zu Darstellungsproblemen kommen.

 Der Verlag räumt Ihnen mit dem Kauf des E-Books das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

 Der Verlag schützt seine E-Books vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die E-Books mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert. Bei Kauf in anderen E-Book-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

Lektorat: Janina Bahlmann

Sprachkorrektorat: Philipp Hasper, Conny Lichtenberg

Fachkorrektorat: Petra Heubach-Erdmann

Covergestaltung: Christian Kalkert

Coverbild: Marco Pregnolato (Unsplash.com: @marco_pregnolato)

Satz: III-satz, Kiel, www.drei-satz.de

electronic publication: III-satz, Kiel, www.drei-satz.de

 Einleitung

 Was auch immer du lehren wirst, fasse dich kurz.
– Horaz, Ars poetica 335

 C++ fühlt sich an wie eine neue Sprache. Das heißt, man kann Ideen heute deutlicher, leichter und direkter ausdrücken als in C++98 oder C++11. Außerdem werden die daraus entstehenden Programme besser vom Compiler überprüft und laufen schneller.

 Dieses Buch bietet Ihnen einen Überblick über das C++, das durch C++20, den aktuellen ISO-C++-Standard, definiert und durch die wichtigsten Anbieter von C++ implementiert wird. Darüber hinaus werden eine Reihe von Bibliothekskomponenten erwähnt, die momentan schon in Gebrauch sind, aber erst mit C++23 in den Standard aufgenommen werden sollen.

 Wie andere moderne Sprachen ist C++ umfangreich und es sind viele Bibliotheken erforderlich, um es effektiv benutzen zu können. Dieses recht schmale Buch soll erfahrenen Programmierern eine Vorstellung davon vermitteln, was modernes C++ ausmacht. Es behandelt die wichtigsten Eigenschaften der Sprache sowie die wichtigsten Komponenten der Standardbibliothek. Es ist möglich, das Buch in ein oder zwei Tagen durchzulesen, aber natürlich braucht man mehr als zwei Tage, um zu lernen, gutes C++ zu schreiben. Das Ziel ist hier aber nicht, C++ zu beherrschen. Stattdessen erhalten Sie einen Überblick, zentrale Beispiele und eine gute Ausgangsbasis.

 Ich gehe davon aus, dass Sie bereits programmiert haben. Falls nicht, sollten Sie zuerst ein Lehrbuch wie Programming: Principles and Practice Using C++ (Second edition) [Stroustrup, 2014] lesen, bevor Sie hier weitermachen[1]. Selbst wenn Sie programmiert haben, könnten die von Ihnen benutzte Sprache oder die von Ihnen geschriebenen Anwendungen sich grundlegend von dem Stil des C++ unterscheiden, der hier vorgestellt wird.

 Stellen Sie sich eine Besichtigungstour in einer Stadt wie Kopenhagen oder New York vor. In nur wenigen Stunden erhaschen Sie einen kurzen Blick auf die wichtigsten Sehenswürdigkeiten, hören ein paar Anekdoten und bekommen Vorschläge, was Sie als Nächstes tun könnten. Sie kennen die Stadt nach einer solchen Rundfahrt nicht. Sie verstehen nicht alles, was Sie gesehen und gehört haben; manche der Geschichten klingen vermutlich seltsam oder sogar unglaubwürdig. Sie kennen auch nicht die offiziellen und inoffiziellen Regeln, die das Leben in der Stadt bestimmen. Um eine Stadt wirklich kennenzulernen, müssen Sie darin leben, am besten für viele Jahre. Mit ein bisschen Glück haben Sie allerdings einen Überblick gewonnen, ein Gefühl dafür, was so besonders an der Stadt ist, und können sich vielleicht vorstellen, was für Sie interessant sein könnte. Nach der Tour kann die eigentliche Entdeckungsreise beginnen.

 Diese Tour stellt die wichtigsten C++-Spracheigenschaften vor, die Programmierparadigmen unterstützen, wie die objektorientierte und die generische Programmierung. Sie versucht nicht, einen detaillierten, alle Funktionen und Eigenschaften einschließenden Blick auf die Sprache zu liefern – dieses Buch soll kein Referenzhandbuch sein. In bester Lehrbuchtradition versuche ich, ein Feature zu erklären, bevor ich es benutze, aber das ist nicht immer möglich und nicht jeder liest einen Text streng sequenziell. Ich erwarte von meinen Leserinnen und Lesern eine gewisse technische Reife. Sie sind eingeladen, die Querverweise und den Index zu benutzen.

 Auch die Standardbibliotheken werden auf dieser Tour nicht allumfassend, sondern nur beispielhaft vorgestellt. Suchen Sie bei Bedarf selbst nach zusätzlichen und unterstützenden Materialien. Das C++-Ökosystem bietet viel mehr als nur die Möglichkeiten, die der ISO-Standard mitbringt (z. B. Bibliotheken, Build-Systeme, Analysewerkzeuge und Entwicklungsumgebungen). Es gibt im Web eine Unmenge an Material (von durchaus unterschiedlicher Qualität). Die Tutorial- und Überblicksvideos von Konferenzen wie CppCon und Meeting C++ werden viele Leserinnen und Leser sicher überaus nützlich finden. Für die technischen Details der Sprache und Bibliothek, die vom ISO-C++-Standard angeboten werden, empfehle ich [Cppreference]. Wenn ich zum Beispiel eine Funktion oder Klasse der Standardbibliothek erwähne, kann deren Definition leicht nachgeschlagen werden. Und in der Dokumentation lassen sich dann auch viele weitere, damit verwandte Möglichkeiten finden.

 Diese Tour präsentiert C++ als geschlossenes Ganzes. Entsprechend gebe ich nur selten an, ob Sprachmerkmale zu C, C++98 oder späteren ISO-Standards gehören. Solche Informationen finden Sie in Kapitel 19 (Geschichte und Kompatibilität). Ich konzentriere mich auf die Grundlagen und versuche, mich kurz zu fassen, konnte aber dennoch nicht der Versuchung widerstehen, neue Eigenschaften, wie Module (§3.2.2), Konzepte (§8.2) und Coroutinen (§18.6), ausführlicher zu behandeln. Dass der Schwerpunkt eher auf neueren Entwicklungen liegt, wird auch die Neugier vieler Leserinnen und Leser befriedigen, die bereits ältere Versionen von C++ kennen.

 Das Referenzhandbuch oder der Standard einer Sprache hält einfach nur fest, was gemacht werden kann. Programmiererinnen und Programmierer wollen jedoch oft lieber lernen, wie sie die Sprache gut einsetzen können. Diesem Aspekt wird durch die Auswahl der behandelten Themen Genüge getan – zum Teil im Text, vor allem aber in den Abschnitten mit den Ratschlägen. Weitere Hinweise dazu, was gutes, modernes C++ ausmacht, können Sie in den C++ Core Guidelines [Stroustrup, 2015] finden. Die Core Guidelines eignen sich hervorragend, um die in diesem Buch vorgestellten Ideen weiter zu erkunden. Sie werden vermutlich eine bemerkenswerte Ähnlichkeit zwischen der Formulierung und sogar der Nummerierung der Ratschläge in den Core Guidelines und diesem Buch bemerken. Ein Grund dafür ist, dass die erste Auflage von A Tour of C++ eine wesentliche Quelle für die ersten Core Guidelines war.

 Danksagungen

 Ein Dank geht an alle, die geholfen haben, die früheren Ausgaben von A Tour of C++ fertigzustellen und zu korrigieren, vor allem die Studentinnen und Studenten in meinem »Design Using C++«-Kurs an der Columbia University. Ich danke Morgan Stanley, dass sie mir die Zeit gegeben hat, diese dritte Auflage zu verfassen. Danke an Chuck Allison, Guy Davidson, Stephen Dewhurst, Kate Gregory, Danny Kalev, Gor Nishanov und J. C. van Winkel für das Begutachten des Buches und die vielen Verbesserungsvorschläge.

 Die Originalausgabe dieses Buches wurde vom Autor mit troff gesetzt, die verwendeten Makros stammten von Brian Kernighan.

 Manhattan, New York
Bjarne Stroustrup

 Über die Fachkorrektoren der deutschen Ausgabe

 Philipp Hasper ist Gründer eines Augmented-Reality-Startups und erfahren in der akademischen und industriellen Entwicklung von KI-Technologien. Er entwickelt mit C++, Java, Python und Typescript und hat bei zahlreichen Open-Source-Projekten mitgewirkt. Von ihm stammt auch das Buch C++ Schnelleinstieg, das im mitp-Verlag erschienen ist.

 Conny Lichtenberg widmete sich nach seinem Informatikstudium für viele Jahre in seiner eigenen kleinen Firma dem informationstechnischen Allerlei – Systementwurf, Programmierung, Consulting –, bevor er sich neue Herausforderungen suchte und nun Softwareprojekte betreut. Seine Spezialität ist das Werkeln auf der Kommandozeile und er hat den Ehrgeiz, möglichst viele Probleme mit kunstvoll konstruierten regulären Ausdrücken und Pipelines zu lösen.

[1] Anm. zur Übersetzung: Auch im deutschsprachigen Raum sind geeignete Lehrbücher erschienen, beispielsweise C++ Schnelleinstieg von (Hasper, 2021) oder C++ lernen und professionell anwenden (Prinz/Kirch, 2022).

 Kapitel 1:
Die Grundlagen

 The first thing we do, let’s
kill all the language lawyers.
– Henry VI, Part II

 1.1 Einführung

 Dieses Kapitel präsentiert ganz formlos die Notation von C++, das Speicher- und Berechnungsmodell von C++ sowie die grundlegenden Mechanismen, nach denen Code zu einem Programm zusammengefügt wird. Dies sind die Komponenten, die man vor allem in C sieht und die einen Programmierstil bilden, der als ‌‌prozedurale Programmierung bezeichnet wird.

 1.2 Programme

 C++ ist eine kompilierte Sprache. Damit ein Programm ausgeführt werden kann, muss sein Quelltext durch einen Compiler verarbeitet werden. Dabei werden Objektdateien erzeugt, die dann ein Linker zu einem ausführbaren Programm kombiniert. Ein C++-Programm besteht typischerweise aus vielen Quellcodedateien (meist einfach ‌Quelldateien genannt).

 [image: [Bild]]

 Ein ausführbares Programm wird für eine bestimmte Hardware/System-Kombination erzeugt; es kann nicht von z. B. einem Android-Gerät auf einen Windows-PC übertragen werden. Wenn es um die ‌‌Portabilität von C++-Programmen geht, dann meinen wir üblicherweise die Portabilität des Quellcodes; das heißt, dass der Quellcode erfolgreich auf einer Vielzahl von Systemen kompiliert und ausgeführt werden kann.

 Der ‌ISO-C++-Standard definiert zwei Arten von Entitäten:

 	Elemente der Kernsprache, wie integrierte Typen (z. B. char und int) und Schleifen (z. B. for- und while-Anweisungen)

 	Komponenten der Standardbibliothek, wie etwa Container (z. B. vector und map) und I/O-Operationen (z. B. << und getline())

 Bei den Komponenten der ‌‌Standardbibliothek handelt es sich um völlig normalen C++-Code, der von jeder C++-Implementierung bereitgestellt wird. Das heißt, die C++-Standardbibliothek kann selbst in C++ implementiert werden, was auch so ist (mit sehr geringfügigem Einsatz von Maschinencode für Dinge wie thread-Kontextwechsel). Das impliziert, dass C++ für die anspruchsvollsten Aufgaben im Bereich der Systemprogrammierung ausreichend ausdrucksstark und effizient ist.

 C++ gehört zu den statisch ‌typisierten Sprachen. Das heißt, der Typ jeder Entität (wie etwa Objekt, Wert, Name und Ausdruck) muss dem Compiler an der Stelle bekannt sein, an der sie benutzt wird. Der Typ eines Objekts bestimmt die Menge der Operationen, die darauf angewendet werden können, sowie seine Anordnung im Speicher.

 1.2.1 ‌Hello, World!

 Das kleinstmögliche C++-Programm ist

 int main(){} // das kleinstmögliche C++-Programm

 Es definiert eine Funktion namens ‌main(), die keine Argumente entgegennimmt und nichts tut.

 Geschweifte Klammern, ‌{}, drücken in C++ eine Gruppierung aus. Hier kennzeichnen sie den Anfang und das Ende des Funktionskörpers. Der doppelte Schrägstrich, //, startet einen Kommentar, der bis zum Zeilenende reicht. Ein Kommentar ist für die menschlichen Leserinnen und Leser vorgesehen; der Compiler ignoriert Kommentare.

 Jedes C++-Programm muss genau eine globale Funktion namens main() besitzen. Das Programm startet, indem es diese Funktion ausführt. Der Integer-Wert int, der von main() zurückgegeben wird, falls er vorhanden ist, ist der Rückgabewert des Programms an »das System«. Wird kein Wert zurückgegeben, erhält das System einen Wert, der einen erfolgreichen Abschluss des Programms signalisiert. Ist der von main() zurückgegebene Wert ungleich null, bedeutet dies ein Fehlschlagen des Programms. Nicht alle Betriebssysteme und Ausführungsumgebungen machen Gebrauch von diesem Rückgabewert: Linux/Unix-Systeme tun es, Windows-Umgebungen dagegen nur selten.

 Üblicherweise erzeugt ein Programm irgendeine Ausgabe. Hier ist ein Programm, das Hello, World! schreibt:

 import std;

int main()
{
 std::cout << "Hello, World!\n";
}

 Die Zeile import std; weist den Compiler an, die Deklarationen der Standardbibliothek zur Verfügung zu stellen. Ohne diese Deklarationen wäre der Ausdruck

 std::cout << "Hello, World!\n"

 sinnlos. Der Operator ‌‌<< (»ausgeben«) schreibt sein zweites Argument auf sein erstes. In diesem Fall wird das String-Literal "Hello, World!\n" auf den Standard-Ausgabe-Stream std::cout geschrieben. Ein String-Literal ist eine Folge von Zeichen, die von doppelten Anführungszeichen umgeben sind. In einem String-Literal kennzeichnet der Backslash ‌\ gefolgt von einem anderen Zeichen ein einzelnes »Sonderzeichen«. Hier ist ‌\n das Newline-Zeichen. Es werden also die Zeichen Hello, World! geschrieben, gefolgt von einem Newline, also dem Steuerzeichen für eine neue Zeile.

 ‌std:: gibt an, dass der Name (Bezeichner) ‌cout im Namensraum der Standardbibliothek (§3.3) zu finden ist. Ich lasse das std:: normalerweise weg, wenn es um Standardeigenschaften geht. §3.3 zeigt, wie man Namen aus einem Namensraum auch ohne explizite Qualifizierung sichtbar machen kann.

 Die Direktive ‌import ist neu in C++20. Es ist noch nicht im Standard verankert, dass die gesamte Standardbibliothek als Modul std vorhanden ist. Das wird in §3.2.2 erklärt. Falls Sie Probleme mit import std; haben, probieren Sie das altmodische und herkömmliche

 #include <iostream> // bindet die Deklarationen für die
 // I/O-Stream-Bibliothek ein

int main()
{
 std::cout << "Hello, World!\n";
}

 Das wird in §3.2.1 erklärt und hat in allen C++-Implementierungen seit 1998 funktioniert (§19.1.1).

 Im Prinzip wird der gesamte ausführbare Code in ‌Funktionen gepackt und direkt oder indirekt aus main() heraus aufgerufen. Zum Beispiel:

 import std; // importiert die Deklarationen für die
 // Standardbibliothek
using namespace std; // macht die Namen aus std auch ohne
 // std:: sichtbar (§3.3)
double square(double x) // quadriert eine Gleitkommazahl mit doppelter
 // Genauigkeit
{
 return x*x;
}

void print_square(double x)
{
 cout << "das Quadrat von " << x << " ist " << square(x) << "\n";
}

int main()
{
 print_square(1.234) // Ausgabe: das Quadrat von 1,234 ist 1,52276
}

 Der »Rückgabetyp« ‌void zeigt an, dass die Funktion keinen Wert zurückgibt.

 1.3 ‌Funktionen

 Die wichtigste Möglichkeit, irgendetwas in einem C++-Programm erledigen zu lassen, besteht darin, dafür eine Funktion aufzurufen. Über das Definieren einer ‌Funktion legen Sie fest, wie eine Operation durchgeführt werden soll. Eine Funktion kann nur aufgerufen werden, wenn sie zuvor deklariert wurde.

 Eine ‌Funktionsdeklaration legt den Namen der Funktion, den ‌Typ des zurückgelieferten Werts (falls vorhanden) und die Anzahl und Typen der Argumente fest, die in einem Aufruf angegeben werden müssen. Zum Beispiel:

 Elem* next_elem(); // kein Argument, liefert einen Zeiger auf
 // Elem (einen Elem*) zurück
void exit(int); // int-Argument, liefert nichts zurück
double sqrt(double); // double-Argument, liefert einen double zurück

 In einer Funktionsdeklaration steht der Rückgabetyp vor dem Namen der Funktion; die ‌‌Argumenttypen stehen hinter dem Namen und werden in Klammern eingeschlossen.

 Die Semantik der ‌Argumentübergabe ist identisch mit der Semantik der Initialisierung (§3.4.1). Das heißt, die Argumenttypen werden geprüft und falls notwendig findet eine implizite Konvertierung der Argumenttypen statt (§1.4). Zum Beispiel:

 double s2 = sqrt(2); // Aufruf von sqrt() mit dem Argument double{2}
double s3 = sqrt("three"); // Fehler: sqrt() verlangt ein Argument des
 // Typs double

 Man sollte den Wert einer solchen Prüfung und Typkonvertierung zum Compile-Zeitpunkt nicht unterschätzen.

 Eine Funktionsdeklaration könnte Argumentnamen enthalten. Dies kann für den Leser eines Programms hilfreich sein, doch der Compiler ignoriert solche Namen einfach, solange die Deklaration nicht auch eine Funktionsdefinition ist. Zum Beispiel:

 double sqrt(double d); // gibt die Quadratwurzel von d zurück
double square(double); // gibt das Quadrat des Arguments zurück

 Der ‌Typ einer Funktion besteht aus ihrem Rückgabetyp, gefolgt von einer Abfolge ihrer Argumenttypen in runden Klammern. Zum Beispiel:

 double get(const vector<double>& vec, int index); // Typ: double(const
 // vector<double>&,int)

 Eine Funktion kann Member (Mitglied) einer ‌Klasse sein (§2.3, §5.2.1). Bei einer solchen ‌‌Member-Funktion ist der Name ihrer Klasse ebenfalls Teil des Funktionstyps. Zum Beispiel:

 char& String::operator[](int index); // Typ: char& String::(int)

 Wir wollen, dass unser Code verständlich ist, weil dies den ersten Schritt auf dem Weg zur Wartungsfreundlichkeit bedeutet. Um Verständlichkeit zu erreichen, zerlegt man als Erstes die Berechnungsaufgaben in sinnvolle Einheiten (dargestellt als Funktionen und Klassen) und benennt diese. Solche Funktionen bilden dann das Grundvokabular der rechnerischen Verarbeitung, genau wie die (integrierten und benutzerdefinierten) Typen das Grundvokabular der Daten bilden. Die C++-Standardalgorithmen (z. B. find, sort und iota) sind ein guter Start (Kapitel 13). Anschließend können Sie Funktionen, die gängige oder spezialisierte Aufgaben repräsentieren, zu größeren Verarbeitungseinheiten zusammensetzen.

 Die Anzahl der Fehler in Code korreliert stark mit der Menge und der Komplexität des Codes. Beiden Problemen können Sie begegnen, indem Sie mehr und kürzere Funktionen verwenden. Eine Funktion zu benutzen, die eine bestimmte Aufgabe erledigt, erspart es oft, mitten in irgendwelchem Code ein spezialisiertes Stück Code schreiben zu müssen; wenn Sie daraus eine Funktion bauen, sind Sie gezwungen, die Aktivität zu benennen und ihre Abhängigkeiten zu dokumentieren. Können Sie keinen passenden Namen finden, dann ist es sehr wahrscheinlich, dass Sie ein Designproblem haben.

 Falls zwei Funktionen mit demselben Namen, aber unterschiedlichen Argumenttypen definiert sind, wählt der Compiler bei jedem Aufruf die Funktion, die am passendsten erscheint. Zum Beispiel:

 void print(int); // nimmt ein Integer-Argument entgegen
void print(double); // nimmt ein Gleitkomma-Argument entgegen
void print(string); // nimmt ein String-Argument entgegen

void user()
{
 print(42); // ruft print(int) auf
 print(9.65); // ruft print(double) auf
 print("Barcelona"); // ruft print(string) auf
}

 Falls zwei alternative ‌Funktionen aufgerufen werden könnten, aber keine von beiden besser als die andere ist, dann gilt der Aufruf als mehrdeutig und der Compiler gibt einen Fehler aus. Zum Beispiel:

 void print(int, double);
void print(double, int);

void user2()
{
 print(0,0); // Fehler: mehrdeutig
}

 Das Definieren mehrerer Funktionen mit demselben Namen wird als ‌‌Überladen der Funktion bezeichnet. Es ist ein wesentlicher Bestandteil der generischen Programmierung (§8.2). Wenn eine Funktion überladen wird, dann sollten alle Funktionen mit demselben Namen die gleiche Semantik implementieren. Die print()-Funktionen sind ein Beispiel dafür; jedes print() gibt sein Argument aus.

 1.4 Typen, Variablen und Arithmetik

 Jeder Name und jeder Ausdruck hat einen ‌‌Typ, der bestimmt, welche Operationen darauf ausgeführt werden dürfen. So legt zum Beispiel die Deklaration

 int inch;

 fest, dass inch vom Typ int ist; das heißt, inch ist eine Integer-Variable.

 Eine Deklaration ist eine Anweisung, die eine Entität in das Programm einführt und ihren Typ festlegt:

 	Ein Typ definiert eine Menge an möglichen Werten und eine Menge an Operationen (für ein Objekt).

 	Ein ‌Objekt ist ein Speicherbereich, der einen Wert eines bestimmten Typs enthält.

 	Ein ‌Wert ist eine Menge an Bits, die entsprechend einem Typ interpretiert werden.

 	Eine ‌Variable ist ein benanntes Objekt.

 C++ bietet eine ganze Reihe grundlegender Typen, die ich hier aber nicht alle aufführen will. Sie können sie in Referenzquellen finden, etwa in [Cppreference] im Netz. Hier nur einige Beispiele:

 bool // Boolean, mögliche Werte sind true und false
char // Zeichen, zum Beispiel 'a', 'z' und '9'
int // Integer, zum Beispiel -273, 42 und 1066
double // Gleitkommazahl doppelter Genauigkeit, zum Beispiel
 // -273.15, 3.14 und 6.626e-34
unsigned // nichtnegativer Integer, zum Beispiel 0, 1 und 999
 // (wird für bitweise logische Operationen benutzt)

 Jeder grundlegende Typ besitzt direkt eine Hardware-Entsprechung und hat eine feste Größe, die den Wertebereich festlegt, der darin gespeichert werden kann:

 [image: [Bild]]

 Eine ‌char-Variable hat die natürliche Größe eines Zeichens auf einem bestimmten Computer (üblicherweise handelt es sich um ein 8 Bit langes Byte). Die Größen der anderen Typen sind Vielfaches der Größe eines char. Die Größe eines Typs ist von der Implementierung abhängig (d. h. kann auf unterschiedlichen Maschinen verschieden ausfallen) und lässt sich durch den ‌sizeof-Operator ermitteln. So ist zum Beispiel sizeof(char) gleich 1, während sizeof(int) oft 4 beträgt. Wenn Sie einen Typ einer bestimmten Größe haben wollen, benutzen Sie einen Typ-Alias der Standardbibliothek, wie etwa int32_t (§17.8).

 Zahlen können als ‌‌Gleitkommazahlen oder als ‌‌Integer-Werte vorliegen.

 	Gleitkomma-Literale sind an einem Dezimalpunkt (z. B. 3.14) oder einem Exponenten (z. B. 314e-2) erkennbar.

 	Integer-Literale sind standardmäßig dezimal (z. B. 42 bedeutet zweiundvierzig). Das Präfix 0b kennzeichnet ein binäres (Basis 2) Integer-Literal (z. B. 0b10101010). Das Präfix 0x kennzeichnet ein hexadezimales (Basis 16) Integer-Literal (z. B. 0xBAD12CE3). Das Präfix 0 kennzeichnet ein oktales (Basis 8) Integer-Literal (z. B. 0334).

 Damit lange Literale für uns Menschen besser lesbar sind, können Sie ein einfaches Anführungszeichen (‌') als ‌Trennzeichen benutzen. So beträgt zum Beispiel π ungefähr 3.14159'26535'89793'23846'26433'83279'50288 oder, falls Sie die hexadezimale Notation bevorzugen, 0x1.921F'B544'42D1'8P+1.

 1.4.1 Rechenoperatoren

 Die arithmetischen Operatoren können für geeignete Kombinationen der Grundtypen benutzt werden:

 ‌‌‌x+y // Plus
+x // unäres Plus
‌‌x-y // Minus
-x // unäres Minus
‌‌x*y // Multiplizieren
‌‌x/y // Dividieren
‌‌x%y // Rest (Modulo) für Integer

 Das gilt auch für Vergleichsoperatoren:

 ‌‌x==y // Gleich
‌‌x!=y // Ungleich
‌‌x<y // Kleiner als
‌‌x>y // Größer als
‌‌x<=y // Kleiner als oder gleich
‌‌x>=y // Größer als oder gleich

 Es gibt darüber hinaus auch Logikoperatoren:

 ‌‌‌‌x&y // Bitweises Und
x|y // Bitweises Oder
‌‌x^y // Bitweises Exklusiv-Oder
‌‌~ x // Bitweises Komplement
‌‌x&&y // Logisches Und
‌‌x||y // Logisches Oder
‌‌! x // Logisches Nicht (Negation)

 Ein bitweiser logischer Operator liefert als Ergebnis den Operandentyp, für den die Operation auf jedem Bit durchgeführt wurde. Die Logikoperatoren && und || geben je nach den Werten ihrer Operanden einfach true oder false zurück.

 In ‌Zuweisungen und ‌‌arithmetischen Operationen führt C++ alle sinnvollen Konvertierungen zwischen den Grundtypen durch, sodass diese frei gemischt werden können:

 void some_function() // Funktion, die keinen Wert zurückliefert
{
 double d = 2.2; // Initialisiert eine Gleitkommazahl
 int i = 7; // Initialisiert Integer
 d = d+i; // Weist d eine Summe zu
 i = d*i; // Weist i ein Produkt zu; Achtung: das double d*i
 // wird zu einem int abgeschnitten
}

 Die in Ausdrücken benutzten ‌‌Konvertierungen werden als die üblichen arithmetischen Konvertierungen bezeichnet und sollen sicherstellen, dass die Ausdrücke mit der höchsten Genauigkeit ihrer Operanden verarbeitet werden. So wird zum Beispiel eine Addition eines double und eines int mittels Gleitkomma-Arithmetik mit doppelter Genauigkeit ausgeführt.

 Beachten Sie, dass ‌‌= der Zuweisungsoperator ist, == dagegen auf Gleichheit prüft.

 Zusätzlich zu den herkömmlichen arithmetischen und logischen Operatoren bietet C++ speziellere Operationen zum Modifizieren einer Variablen:

 ‌‌‌x+=y // x = x+y
++x // Inkrementiert: x = x+1
‌x–=y // x = x-y
‌‌–– x // Dekrementiert: x = x-1
‌‌‌x*=y // Skaliert: x = x*y
x/=y // Skaliert: x = x/y
x%=y // x = x%y

 Diese Operatoren sind kompakt, bequem und werden sehr häufig verwendet.

 Die Auswertung erfolgt von links nach rechts für x.y, x->y, x(y), x[y], x<<y, x>>y, x&&y und x||y. Zuweisungen (z. B. x+=y) werden von rechts nach links ausgewertet. Aus historischen Gründen, die mit dem Drang nach Optimierung zusammenhängen, ist die ‌Auswertungsreihenfolge von anderen Ausdrücken (z. B. f(x) + g(y)) sowie von Funktionsargumenten (z. B. h(f(x),g(y))) leider nicht festgelegt.

 1.4.2 Initialisierung

 ‌Bevor ein Objekt benutzt werden kann, muss ihm ein Wert übergeben werden. C++ bietet eine Vielzahl an Notationen zum Ausdrücken einer Initialisierung, wie etwa das bereits vorgestellte ‌= sowie eine universelle Form, nämlich ‌‌‌Listen, die durch ein Paar geschweifte Klammern ({}) begrenzt werden:

 double d1 = 2.3; // Initialisiert d1 auf 2.3
double d2 {2.3}; // Initialisiert d2 auf 2.3
double d3 = {2.3}; // Initialisiert d3 auf 2.3 (das = ist mit
 // { ... } optional)

complex<double> z = 1; // eine komplexe Zahl mit
 // Gleitkomma-Skalaren doppelter Genauigkeit
complex<double> z2 {d1, d2};
complex<double> z3 = {d1, d2}; // das = ist mit { ... } optional

vector<int> v {1, 2, 3, 4, 5, 6}; // ein Vektor aus ints

 Die Art, den Operator = zu verwenden, ist traditionell und stammt schon aus C. Falls Sie sich unsicher sind, benutzen Sie die allgemeine {}-Listenform. Damit schützen Sie sich zumindest vor Konvertierungen, bei denen Informationen verloren gehen:

 int i1 = 7.8; // i1 wird zu 7 (Überraschung?!)
int i2 {7.8}; // Fehler: Gleitkomma- zu Integer-Konvertierung

 Leider sind Konvertierungen, bei denen Informationen verloren gehen, die sogenannten ‌‌verengenden Konvertierungen (Narrowing Conversions), wie etwa double nach int und int nach char, erlaubt und kommen implizit zum Einsatz, wenn Sie = benutzen (nicht jedoch, wenn Sie {} verwenden). Die durch implizite verengende Konvertierungen verursachten Probleme sind der Preis, den man für die Kompatibilität zu C bezahlen muss (§19.3).

 Eine Konstante (§1.6) kann nicht uninitialisiert bleiben und eine Variable sollte nur unter ausgesprochen seltenen Umständen uninitialisiert bleiben. Führen Sie einen Namen nur dann ein, wenn Sie einen passenden Wert dafür haben. Benutzerdefinierte Typen (wie string, vector, Matrix, Motor_controller und Orc_warrior) können so definiert werden, dass sie implizit initialisiert werden (§5.2.1).

 Wenn Sie eine Variable definieren, müssen Sie deren Typ nicht explizit angeben, falls der Typ sich aus der Initialisierung schlussfolgern lässt:

 auto b = true; // ein Boolean
auto ch = 'x'; // ein char
auto i = 123; // ein int
auto d = 1.2; // ein double
auto z = sqrt(y); // z hat den Typ, der von sqrt(y) zurückgegeben wird
auto bb {true}; // bb ist ein Boolean

 Bei ‌auto neigt man meist dazu, = zu benutzen, weil keine potenziell lästige Typkonvertierung im Spiel ist. Falls Sie es jedoch vorziehen, konsistent die {}-Initialisierung zu verwenden, so können Sie das auch hier tun.

 Man setzt auto immer dann ein, wenn es keinen speziellen Grund gibt, den Typ ausdrücklich zu erwähnen. »Spezielle Gründe«, den Typ dennoch anzugeben, sind unter anderem:

 	Die Definition ist in einem großen Gültigkeitsbereich, in dem Sie den Leserinnen und Lesern Ihres Codes den Typ ganz eindeutig klarmachen wollen.

 	Der Typ des Initialisierers ist nicht offensichtlich.

 	Sie wollen den Umfang oder die Genauigkeit einer Variablen ganz ausdrücklich festlegen (z. B. double anstelle von float).

 Durch Verwendung von auto werden Redundanz und das Schreiben langer Typnamen vermieden. Das ist vor allem in der generischen Programmierung wichtig, bei der es für die Programmierer schwierig sein kann, den exakten Typ eines Objekts zu kennen, und die Typnamen recht lang sein können (§13.2).

 1.5 Gültigkeitsbereich und ‌Lebensdauer

 Eine Deklaration führt ihren Namen in einen Gültigkeitsbereich ein:

 	‌Lokaler Gültigkeitsbereich: Ein Name, der in einer Funktion (§1.3) oder einem Lambda (§7.3.2) deklariert wurde, wird als lokaler Name bezeichnet. Sein Gültigkeitsbereich erstreckt sich vom Punkt der Deklaration bis zum Ende des Blocks, in dem seine Deklaration auftritt. Ein Block wird durch ein Paar geschweifte Klammern ({}) begrenzt. Namen von Funktionsargumenten werden als lokale Namen betrachtet.

 	‌Klassen-Gültigkeitsbereich: Ein Name wird als ‌‌Member-Name (oder Class-Member-Name) bezeichnet, wenn er in einer Klasse (§2.2, §2.3, Kapitel 5), aber außerhalb einer Funktion (§1.3), eines Lambda (§7.3.2) oder eines enum class (§2.4) definiert wurde. Sein Gültigkeitsbereich erstreckt sich von der öffnenden geschweiften Klammer ({) seiner umschließenden Deklaration bis zur dazugehörenden schließenden geschweiften Klammer (}).

 	‌Namensraum-Gültigkeitsbereich: Ein Name wird als ‌Namensraum-Member-Name bezeichnet, wenn er in einem Namensraum (Namespace) (§3.3), aber außerhalb einer Funktion, eines Lambda (§7.3.2), einer Klasse (§2.2, §2.3, Kapitel 5) oder eines enum class (§2.4) definiert wurde. Sein Gültigkeitsbereich erstreckt sich vom Punkt der Deklaration bis zum Ende seines Namensraums.

 Ein Name, der nicht innerhalb eines anderen Konstrukts deklariert wurde, wird als globaler Name bezeichnet und liegt im ‌globalen Namensraum.

 Darüber hinaus gibt es Objekte ohne Namen, wie etwa temporäre Objekte und Objekte, die mithilfe von new (§5.2.2) erzeugt wurden. Zum Beispiel:

 vector<int> vec; // vec ist global (ein globaler Vektor aus Integern)

void fct(int arg) // fct ist global (benennt eine globale Funktion)
 // arg ist lokal (benennt ein Integer-Argument)
{
 string motto {"Wer wagt, gewinnt"}; // motto ist lokal
 auto p = new Record{"Hume"}; // p zeigt auf ein unbenanntes
 // Record (erzeugt durch new)
 // ...
}
struct Record {
 string name; // name ist ein Member von Record (ein String-Member)
 // ...
};

 Ein ‌Objekt muss vor seiner Benutzung konstruiert (initialisiert) werden. Am Ende seines Gültigkeitsbereichs wird es zerstört. Für ein Namensraumobjekt ist das Ende des Programms der Punkt der Zerstörung. Für ein Member wird der Punkt der ‌Zerstörung durch den Punkt der Zerstörung des Objekts festgelegt, dessen Member es ist. Ein Objekt, das durch ‌‌new erzeugt wurde, »lebt« hingegen, bis es mittels ‌‌delete zerstört wird (§5.2.2).

 1.6 ‌Konstanten

 C++ unterstützt zwei Arten von ‌Unveränderlichkeit (damit ist ein Objekt mit einem unveränderlichen Zustand gemeint):

 	‌const bedeutet in etwa: »Ich verspreche, diesen Wert nicht zu verändern«. Dies wird vor allem benutzt, um Schnittstellen zu spezifizieren, damit Daten mithilfe von Zeigern und Referenzen an Funktionen übergeben werden können, ohne dass man befürchten muss, dass sie modifiziert werden. Der Compiler setzt das Versprechen durch, das von const gegeben wurde. Der Wert eines const kann zur Laufzeit berechnet werden.

 	‌constexpr bedeutet in etwa: »wird zum Zeitpunkt des Kompilierens ausgewertet«. Dies wird vor allem dafür verwendet, um Konstanten festzulegen, um die Ablage von Daten in schreibgeschütztem Speicher zu ermöglichen (wo es unwahrscheinlich ist, dass diese beschädigt werden) und zu Performance-Zwecken. Der Wert eines constexpr muss vom Compiler berechnet werden.

 Zum Beispiel:

 constexpr int dmv = 17; // dmv ist eine benannte Konstante
int var = 17; // var ist keine Konstante
const double sqv = sqrt(var); // sqv ist eine benannte Konstante,
 // die möglicherweise zur Laufzeit berechnet wird

double sum(const vector<double>&); // sum wird sein Argument nicht
 // modifizieren (§1.7)

vector<double> v {1.2, 3.4, 4.5}; // v ist keine Konstante
const double s1 = sum(v); // Okay: sum(v) wird zur Laufzeit
 // ausgewertet
constexpr double s2 = sum(v); // Fehler: sum(v) ist kein konstanter
 // Ausdruck

 Damit eine Funktion in einem konstanten Ausdruck verwendet werden kann, das heißt in einem Ausdruck, der vom Compiler ausgewertet wird, muss sie mit constexpr oder ‌consteval definiert werden. Zum Beispiel:

 constexpr double square(double x) { return x*x; }

constexpr double max1 = 1.4*square(17); // Okay: 1.4*square(17) ist
 // ein konstanter Ausdruck
constexpr double max2 = 1.4*square(var); // Fehler: var ist keine
 // Konstante, weshalb square(var) auch keine Konstante ist
const double max3 = 1.4*square(var); // Okay: kann zur Laufzeit
 // ausgewertet werden

 Eine constexpr-Funktion kann durchaus für nichtkonstante Argumente verwendet werden, allerdings ist das Ergebnis dann kein konstanter Ausdruck. Der Aufruf einer constexpr-Funktion mit nichtkonstanten Argumenten ist in Kontexten erlaubt, die keine konstanten Ausdrücke verlangen. Auf diese Weise müssen Sie die gleiche Funktion nicht zweimal definieren: einmal für konstante Ausdrücke und einmal für Variablen. Wenn Sie wollen, dass eine Funktion nur für die Auswertung während des Kompilierens benutzt wird, deklarieren Sie sie mit consteval statt mit constexpr. Zum Beispiel:

 consteval double square2(double x) { return x*x; }

constexpr double max1 = 1.4*square2(17); // Okay: 1.4*square(17) ist
 // ein konstanter Ausdruck
const double max3 = 1.4*square2(var); // Fehler: var ist keine
 // Konstante

 Funktionen, die mit constexpr oder consteval deklariert werden, sind die C++-Version des Prinzips von reinen Funktionen. Sie können keine Nebeneffekte haben und können nur Informationen verwenden, die ihnen als Argumente übergeben wurden. Insbesondere können sie nichtlokale Variablen nicht modifizieren, aber sie können Schleifen haben und ihre eigenen lokalen Variablen benutzen. Zum Beispiel:

 constexpr double nth(double x, int n) // angenommen 0<=n
{
 double res = 1;
 int i = 0;
 while (i<n) { // while-Schleife: macht etwas, solange
 // die Bedingung erfüllt ist (§1.7.1)
 res *= x;
 ++i;
 }
 return res;
}

 An einigen Stellen verlangen die Regeln der Sprache den Einsatz von konstanten Ausdrücken (z. B. bei Array-Grenzen (§1.7), Case-Bezeichnern (§1.8), Template-Wertargumenten (§7.2) und Konstanten, die mit constexpr deklariert werden). In anderen Fällen ist die Auswertung zum Zeitpunkt des Kompilierens aus Performance-Gründen wichtig. Unabhängig von Performance-Fragen ist die Unveränderlichkeit von Objekten eine wichtige Designentscheidung.

 1.7 Zeiger, ‌Arrays und ‌Referenzen

 Die grundlegendste Form der Sammlung (Collection) von Daten ist ein zusammenhängender Speicherbereich, der mit Elementen desselben Typs belegt ist, ein sogenanntes Array. Im Prinzip ist es das, was die Hardware bereitstellt. Ein Array aus Elementen des Typs char kann folgendermaßen deklariert werden:

 char v[6]; // Array aus sechs Zeichen

 Ein ‌Zeiger (Pointer) auf einen Speicherbereich lässt sich so deklarieren:

 char* p; // ein Zeiger auf ein Zeichen

 In Deklarationen bedeutet ‌[] »Array aus« und * »Zeiger auf«. Alle Arrays haben 0 als untere Grenze, sodass v die sechs Elemente v[0] bis v[5] besitzt. Die Größe eines Arrays muss ein konstanter Ausdruck sein (§1.6). Eine Zeigervariable kann die Adresse eines Objekts des entsprechenden Typs enthalten:

 char* p = &v[3]; // p zeigt auf das vierte Element von v
char x = *p; // *p ist das Objekt, auf das der Zeiger p zeigt

 In einem Ausdruck bedeutet das unäre Präfix * »Inhalt von« und das unäre Präfix ‌‌& »Adresse von«. Das kann grafisch so dargestellt werden:

 [image: [Bild]]

 Stellen Sie sich vor, Sie würden die Elemente eines Arrays ausgeben:

 void print()
{
 int v1[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 for (auto i=0; i!=10; ++i) // gibt die Elemente aus
 cout << v[i] << '\n';
 // ...
}

 Diese ‌‌for-Anweisung kann gelesen werden als: »Setze i auf 0; solange i noch nicht 10 ist, gib das i-te Element aus und erhöhe i um 1«. C++ bietet auch eine einfachere for-Anweisung, die sogenannte bereichsbasierte for-Anweisung, für ‌Schleifen, die eine Sequenz in der einfachsten Weise durchlaufen:

 void print2()
{
 int v[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 for (auto x : v) // für jedes x in v
 cout << x << '\n';

 for (auto x : {10, 21, 32, 43, 54, 65}) // für jeden Integer in
 // der Liste
 cout << x << '\n';
 // ...
}

 Die erste bereichsbasierte for-Anweisung kann gelesen werden als: »Kopiere jedes Element aus v, vom ersten bis zum letzten, nach x und gib es aus«. Beachten Sie, dass Sie keine Array-Grenze angeben müssen, wenn Sie es mit einer Liste initialisieren. Die bereichsbasierte for-Anweisung kann für jede Sequenz von Elementen benutzt werden (§13.1).

 Falls Sie die Werte aus v nicht in die Variable x kopieren wollen, sondern mit x nur ein Element referenzieren möchten, könnten Sie schreiben:

 void increment()
{
 int v[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 for (auto& x : v) // addiert 1 zu jedem x in v
 ++x;
 // ...
}

 In einer Deklaration bedeutet das unäre Suffix ‌& »Referenz auf«. Eine Referenz ist vergleichbar mit einem Zeiger, allerdings müssen Sie nicht das Präfix * benutzen, um auf den Wert zuzugreifen, auf den durch die Referenz verwiesen wird. Außerdem kann im Gegensatz zu einem Zeiger eine Referenz nicht dazu gebracht werden, nach ihrer Initialisierung auf ein anderes Objekt zu verweisen.

 Referenzen sind besonders nützlich beim Festlegen von Funktionsargumenten. Zum Beispiel:

 void sort(vector<double>& v); // sortiert v (v ist ein Vektor aus doubles)

 Indem Sie eine Referenz benutzen, stellen Sie sicher, dass Sie bei einem Aufruf von sort(my_vec) nicht aus Versehen my_vec kopieren. Es wird daher tatsächlich my_vec sortiert und nicht eine Kopie davon.

 Wenn Sie ein Argument nicht modifizieren möchten, aber auch die Kosten des Kopierens vermeiden wollen, benutzen Sie eine const-Referenz (§1.6), das heißt eine Referenz auf eine Konstante. Zum Beispiel

 double sum(const vector<double>&)

 Funktionen, die const-Referenzen übernehmen, sind sehr verbreitet.

 In Deklarationen werden Operatoren (wie &, * und []) als ‌‌Deklaratoroperatoren bezeichnet:

 T a[n] // T[n]: a ist ein Array aus n Ts
T* p // T*: p ist ein Zeiger auf T
T& r // T&: r ist eine Referenz auf T
T f(A) // T(A): f ist eine Funktion, die ein Argument des Typs A
 // entgegennimmt und ein Ergebnis des Typs T zurückgibt

 1.7.1 Der ‌Null-Pointer

 Sie versuchen, dafür zu sorgen, dass ein Zeiger immer auf ein Objekt zeigt, damit beim Dereferenzieren des Zeigers ein gültiges Ergebnis erzeugt wird. Wenn Sie kein Objekt haben, auf das gezeigt wird, oder Sie die Vorstellung vermitteln müssen, dass »kein Objekt verfügbar« ist (z. B. für das Ende einer Liste), dann geben Sie dem Zeiger den Wert ‌‌nullptr (‌Null-Pointer). Es gibt für alle Typen von Zeigern nur ein nullptr:

 double* pd = nullptr;
Link<Record>* lst = nullptr; // Zeiger auf einen Link auf ein Record
int x = nullptr; // Fehler: nullptr ist ein Zeiger, kein Integer

 Oft erweist es sich als klug zu überprüfen, dass ein Zeigerargument tatsächlich auf etwas zeigt:

 int count_x(const char* p, char x)
 // zählt, wie oft x in p[] auftritt
 // p soll auf ein 0-terminiertes Array aus char (oder auf nichts) zeigen
{
 if (p==nullptr)
 return 0;
 int count = 0;
 for (; *p!=0; ++p)
 if (*p==x)
 ++count;
 return count;
}

 Man kann mit ++ einen Zeiger weiterrücken, sodass er auf das nächste Element eines Arrays zeigt, und außerdem den Initialisierer in einer for-Anweisung weglassen, wenn er nicht gebraucht wird.

 Die Definition count_x() geht davon aus, dass char* ein String im Stil von C ist, das heißt, dass der Zeiger auf ein 0-terminiertes Array aus char zeigt. Die Zeichen in einem String-Literal sind unveränderlich, um also count_x("Hello!") zu verarbeiten, habe ich count_x() mit einem const char*-Argument deklariert.

 In älterem Code wird anstelle von nullptr üblicherweise 0 oder NULL benutzt. Mit nullptr vermeidet man jedoch eine mögliche Verwechslung zwischen Integern (wie 0 oder NULL) und Zeigern (wie nullptr).

 In dem count_x()-Beispiel benutze ich für die for-Anweisung keinen Initialisierer, Sie können also auch die einfachere while-Anweisung einsetzen:

 int count_x(const char* p, char x)
 // zählt, wie oft x in p[] auftritt
 // p soll auf ein 0-terminiertes Array aus char (oder auf nichts) zeigen
{
 if (p==nullptr)
 return 0;
 int count = 0;
 while (*p) {
 if (*p==x)
 ++count;
 ++p;
 }
 return count;
}

 Die while-Anweisung wird ausgeführt, bis ihre Bedingung false wird.

 Das Prüfen eines numerischen Werts (z. B. while (*p) in count_x()) ist äquivalent mit dem Vergleich des Werts mit 0 (hier also while (*p!=0)). Das Prüfen eines Zeigerwerts (z. B. if (p)) ist äquivalent mit dem Vergleich des Werts mit dem nullptr (hier also if (p!=nullptr)).

 Es gibt keine »Nullreferenz«. Eine Referenz muss auf ein gültiges Objekt verweisen (und die Implementierungen gehen davon aus, dass sie es tut). Es gibt obskure und schlaue Möglichkeiten, diese Regel zu verletzen – machen Sie das nicht!

 1.8 Bedingungen prüfen

 C++ stellt die übliche Menge an Anweisungen zum Ausdrücken von Verzweigungen und Schleifen bereit, wie etwa if-Anweisungen, switch-Anweisungen, while- und for-Schleifen. Hier ist zum Beispiel eine einfache Funktion, die eine Benutzereingabe anfordert und einen booleschen Wert zurückgibt, der die Antwort anzeigt:

 bool accept()
{
 cout << "Wollen Sie weitermachen (j oder n)?\n"; // Frage anzeigen
 char answer = 0; // auf einen Wert initialisieren, der nicht in
 // der Eingabe auftaucht
 cin >> answer; // Antwort lesen

 if (answer == 'j')
 return true;
 return false;
}

 Passend zum Ausgabeoperator << (»ausgeben an«) gibt es den ‌‌>>-Operator (»einlesen von«) für Eingaben; ‌cin ist der Standard-Eingabe-Stream (Kapitel 11). Der Typ des rechten Operanden von >> legt fest, welche Eingabe akzeptiert wird; der rechte Operand ist außerdem das Ziel der Eingabeoperation. Das Zeichen \n am Ende des Ausgabestrings repräsentiert ein Newline (§1.2.1).

 Beachten Sie, dass die Definition von answer dort erscheint, wo sie benötigt wird (und nicht schon vorher). Eine Deklaration kann überall dort auftauchen, wo auch eine Anweisung stehen kann.

 Das Beispiel lässt sich noch verbessern, indem man auch die Antwort n (für »nein«) berücksichtigt:

 bool accept2()
{
 cout << "Wollen Sie weitermachen (j oder n)?\n"; // Frage anzeigen
 char answer = 0; // auf einen Wert initialisieren, der nicht in
 // der Eingabe auftaucht
 cin >> answer; // Antwort lesen

 switch (answer) {
 case 'j':
 return true;
 case 'n':
 return false;
 default:
 cout << "Das ist dann wohl ein Nein.\n";
 return false;
 }
}

 Eine switch-Anweisung prüft einen Wert gegen eine Menge aus Konstanten. Diese Konstanten, ‌case-Bezeichner genannt, müssen eindeutig sein. Falls der geprüfte Wert zu keinem der Bezeichner passt, wird default gewählt. Gibt es keinen zu dem Wert passenden case-Bezeichner und wurde auch kein default angegeben, dann findet gar keine Aktion statt.

 Sie müssen ein case nicht verlassen, indem Sie aus der Funktion zurückkehren, die seine switch-Anweisung enthält. Oft wollen Sie die Ausführung mit der Anweisung fortsetzen, die auf die switch-Anweisung folgt. Das können Sie mit einer break-Anweisung erreichen. Schauen Sie sich als Beispiel einen überaus geschickten, wenn auch simplen Parser für ein einfaches, befehlsgesteuertes Videospiel an:

 void action()
{
 while (true) {
 cout << "Aktion eingeben:\n"; // Aktion anfordern
 string act;
 cin >> act; // Zeichen in einen String einlesen
 Point delta {0,0}; // Point enthält ein {x,y} Paar

 for (char ch : act) {
 switch (ch) {
 case 'u': // nach oben (up)
 case 'n': // nach Norden
 ++delta.y;
 break;
 case 'r': // nach rechts
 case 'e': // nach Osten (east)
 ++delta.x;
 break;
 // ... weitere Aktionen ...
 default:
 cout << "Ich hänge fest!\n";
 }
 move(current+delta*scale);
 update_display();
 }
 }
}

 Genau wie eine for-Anweisung (§1.7) kann eine if-Anweisung eine Variable einführen und prüfen. Zum Beispiel:

 void do_something(vector<int>& v)
{
 if (auto n = v.size(); n!=0) {
 // ... wir kommen hierher, falls n!=0 ...
 }
 // ...
}

 Hier wird der Integer n für die Verwendung in der if-Anweisung definiert, mit v.size() initialisiert und sofort mit der Bedingung n!=0 hinter dem Semikolon geprüft. Ein Name, der in einer Bedingung deklariert wird, befindet sich im Gültigkeitsbereich beider Zweige der if-Anweisung.

 Wie bei der for-Anweisung deklariert man einen Namen in der Bedingung einer if-Anweisung, um den Gültigkeitsbereich der Variablen zu beschränken, womit man die Lesbarkeit verbessert und Fehler minimiert.

 Am gebräuchlichsten ist es, eine Variable gegen 0 (oder den nullptr) zu prüfen. Dazu verzichten Sie einfach auf die explizite Erwähnung der Bedingung. Zum Beispiel:

 void do_something(vector<int>& v)
{
 if (auto n = v.size()) {
 // ... wir kommen hierher, falls n!=0 ...
 }
 // ...
}

 Nutzen Sie nach Möglichkeit immer diese knappere und einfachere Form.

 1.9 Auf Hardware abbilden

 C++ ermöglicht eine direkte Abbildung auf ‌Hardware. Wenn Sie eine der grundlegenden Operationen benutzen, dann wird Ihre Implementierung die sein, die die Hardware bietet. Zum Beispiel führt das Addieren zweier int, x+y, direkt den entsprechenden Maschinenbefehl aus.

 Eine C++-Implementierung sieht den Speicher eines Computers als eine Sequenz von Speicherorten, in die sie (typisierte) Objekte legen kann, die sie mithilfe von Zeigern adressiert, also anspricht:

 [image: [Bild]]

 Ein Zeiger wird im Speicher als eine ‌Maschinenadresse dargestellt, der numerische Wert von p in dieser Abbildung wäre also 103. Falls das verdächtig nach einem Array (§1.7) aussieht, dann liegt das daran, dass ein Array für C++ die grundsätzliche Abstraktion einer »fortlaufenden Abfolge von Objekten im Speicher« ist.

 Die einfache Abbildung grundlegender Sprachkonstrukte auf die Hardware ist entscheidend für die sagenhafte, maschinennahe Arbeitsweise, für die C und C++ seit Jahrzehnten berühmt sind. Das C und C++ zugrunde liegende ‌‌Maschinenmodell basiert tatsächlich auf der Computerhardware und nicht auf irgendwelchen Formen von Mathematik.

 1.9.1 ‌Zuweisung

 Eine Zuweisung eines integrierten Typs ist ein einfacher Kopierbefehl auf Maschinenebene. Nehmen Sie dies hier an:

 int x = 2;
int y = 3;
x = y; // x wird 3; wir erhalten also x==y

 Das ist eindeutig. Grafisch kann das so dargestellt werden:

 [image: [Bild]]

 Die zwei Objekte sind unabhängig voneinander. Sie können den Wert von y ändern, ohne dass der Wert von x beeinträchtigt wird. Zum Beispiel verändert x=99 den Wert von y nicht. Anders als in Java, C# und anderen Sprachen – aber genauso wie in C – gilt das für alle Typen, nicht nur für ints.

 Falls Sie wollen, dass unterschiedliche Objekte auf den gleichen (gemeinsam genutzten) Wert verweisen, dann müssen Sie das angeben. Zum Beispiel:

 int x = 2;
int y = 3;
int* p = &x;
int* q = &y; // p!=q und *p!=*q
p = q; // p wird &y; jetzt ist p==q, also (offensichtlich) *p==*q

 Grafisch wird das so ausgedrückt:

 [image: [Bild]]

 Ich habe willkürlich 88 und 92 als Adressen gewählt. Wieder können Sie sehen, dass das Objekt, auf das die Zuweisung erfolgt, den Wert aus dem zugewiesenen Objekt erhält, wodurch sich zwei unabhängige Objekte (hier: Zeiger) mit demselben Wert ergeben. Das heißt, p=q ergibt p==q. Nach p=q zeigen beide Zeiger auf y.

 Eine Referenz und ein Zeiger verweisen/zeigen beide auf ein Objekt und beide werden im Speicher als Maschinenadresse dargestellt. Allerdings folgen sie unterschiedlichen Regeln in der Sprache. Die Zuweisung auf eine Referenz verändert nicht, worauf die Referenz verweist, sondern ändert den Inhalt des referenzierten Objekts:

 int x = 2;
int y = 3;
int& r = x; // r verweist auf x
int& r2 = y; // r2 verweist auf y
r = r2; // liest aus r2, schreibt auf r: x wird zu 3

 Grafisch kann es so dargestellt werden:

 [image: [Bild]]

 Um auf den Wert zuzugreifen, auf den mit einem Zeiger gezeigt wird, benutzen Sie *; das wird für eine Referenz implizit gemacht.

 Neben x=y haben Sie x==y für jeden integrierten Typ und gut designten benutzerdefinierten Typ (Kapitel 1), der = (Zuweisung) und == (Prüfung auf Gleichheit) anbietet.

 1.9.2 ‌Initialisierung

 Die ‌Initialisierung unterscheidet sich von der Zuweisung. Damit eine Zuweisung korrekt funktioniert, muss das Objekt, dem etwas zugewiesen wird, schon einen Wert haben. Die Aufgabe der Initialisierung andererseits ist es, ein nichtinitialisiertes Stück Speicher zu einem gültigen Objekt zu machen. Für fast alle Typen ist nicht definiert, welche Wirkung es hat, wenn aus einer nichtinitialisierten Variablen gelesen oder auf sie geschrieben wird. Betrachten Sie die Referenzen:

 int x = 7;
int& r {x}; // bindet r an x (r verweist auf x)
r = 7; // Zuweisung auf das, worauf r verweist

int& r2; // Fehler: nichtinitialisierte Referenz
r2 = 99; // Zuweisung auf das, worauf r2 verweist

 Glücklicherweise können Sie keine nichtinitialisierte Referenz haben; wäre es möglich, dann würde dieses r2 = 99 die 99 zu irgendeinem unspezifizierten Speicherort zuweisen; die Folge wären falsche Ergebnisse oder ein Absturz.

 Sie können = verwenden, um eine Referenz zu initialisieren, aber lassen Sie sich davon nicht verwirren. Zum Beispiel:

 int& r = x; // bindet r an x (r verweist auf x)

 Das ist immer noch eine Initialisierung, die r an x bindet, und nicht irgendeine Form des Kopierens von Werten.

 Die Unterscheidung zwischen Initialisierung und Zuweisung ist auch für viele benutzerdefinierte Typen ausgesprochen wichtig, etwa für string und vector, bei denen das Objekt, dem etwas zugewiesen wurde, eine Ressource besitzt, die irgendwann wieder freigegeben werden muss (§6.3).

 Die grundlegende Semantik der Argumentübergabe und Funktionswertrückgabe ist die der Initialisierung (§3.4). Zum Beispiel erhalten Sie auf diese Weise Referenzparameter (§3.4.1).

 1.10 Ratschläge

 Die Ratschläge, die Sie hier sehen, sind den C++ Core Guidelines [Stroustrup, 2015][1] entnommen. Verweise auf Guidelines sehen so aus: [CG: ES.23], womit die 23. Regel im Expressions and Statement gemeint wäre. Im Allgemeinen bietet eine solche Core Guideline weitere Erklärungen und Beispiele.

 	Keine Panik! Alles wird im Laufe der Zeit klarer; §1.1; [CG: In.0].

 	Benutzen Sie nicht ausschließlich die integrierten Features. Viele grundlegende (integrierte) Features verwendet man normalerweise am besten indirekt durch Bibliotheken, wie die ISO-C++-Standardbibliothek (Kapitel 9–Kapitel 18); [CG: P.13].

 	Binden Sie die benötigten Bibliotheken mit #include oder (vorzugsweise) import ein, um das Programmieren zu vereinfachen; §1.2.1.

 	Sie müssen nicht jede Einzelheit von C++ kennen, um gute Programme zu schreiben.

 	Konzentrieren Sie sich auf Programmiertechniken, nicht auf Spracheigenschaften.

 	Der ISO-C++-Standard ist die entscheidende Instanz bei Fragen und Problemen zur Sprachdefinition; §19.1.3; [CG: P.2].

 	»Verpacken« Sie sinnvolle Operationen in Funktionen mit sorgfältig ausgewählten Namen; §1.3; [CG: F.1].

 	Eine Funktion sollte eine einzige logische Operation ausführen; §1.3; [CG: F.2].

 	Fassen Sie sich bei den Funktionen kurz; §1.3; [CG: F.3].

 	Verwenden Sie das Überladen, wenn Funktionen konzeptuell die gleiche Aufgabe mit unterschiedlichen Typen ausführen; §1.3.

 	Falls eine Funktion zum Zeitpunkt des Kompilierens ausgewertet werden darf, deklarieren Sie sie mit constexpr; §1.6; [CG: F.4].

 	Falls eine Funktion zum Zeitpunkt des Kompilierens ausgewertet werden muss, deklarieren Sie sie mit consteval; §1.6.

 	Falls eine Funktion keine Nebeneffekte haben darf, deklarieren Sie sie mit constexpr oder consteval; §1.6; [CG: F.4].

 	Entwickeln Sie Verständnis dafür, wie die Grundelemente der Sprache auf die Hardware abgebildet werden; §1.4, §1.7, §1.9, §2.3, §5.2.2, §5.4.

 	Nutzen Sie Trennzeichen, um große Literale besser lesbar zu machen; §1.4; [CG: NL.11].

 	Vermeiden Sie komplizierte Ausdrücke; [CG: ES.40].

 	Vermeiden Sie verengende Konvertierungen; §1.4.2; [CG: ES.46].

 	Minimieren Sie den Gültigkeitsbereich einer Variablen; §1.5, §1.8.

 	Halten Sie die Gültigkeitsbereiche klein; §1.5; [CG: ES.5].

OEBPS/Images/00_SocialMedia.jpg
Neuerscheinungen, Praxistipps, Gratiskapitel,
Einblicke in den Verlagsalltag —
gibt es alles bei uns auf Instagram und Facebook

instagram.com/mitp_verlag facebook.com/mitp.verlag

OEBPS/Images/1.4.jpg
100: 101: 102:~_103: 104: 105:

Speicher:

OEBPS/Images/1.2.jpg
bool:

char:
int:

double:

unsigned:

OEBPS/Images/1.1.jpg
Quelldatei 1 ko/rflaiel‘en

Objektdatei 1

f&@—»{ausﬁihrbare Datei

I‘—@pilieren Objektdatei 2

OEBPS/Images/1.5.jpg

OEBPS/Images/1.7.jpg
88

r2:

92

88

r:

92

OEBPS/Images/mitp.png
mitp

OEBPS/Images/1.3.jpg

OEBPS/Images/9783747506271.jpg
BJARNE STROUSTRUP

OEBPS/Images/1.6.jpg

OEBPS/Images/00_AADRM.jpg
Hinweis des Verlages zum Urheberrecht und Digitalen
Rechtemanagement (DRM)

Liebe Leserinnen und Leser,

dieses E-Book, einschlieRlich aller seiner Teile, ist
urheberrechtlich geschiitzt. Mit dem Kauf raumen wir
lhnen das Recht ein, die Inhalte im Rahmen des
geltenden Urheberrechts zu nutzen. Jede Verwertung
auBerhalb dieser Grenzen ist ohne unsere Zustimmung
unzuladssig und strafbar. Das gilt besonders fiir
Vervielfiltigungen, Ubersetzungen sowie
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Je nachdem wo Sie Ihr E-Book gekauft haben, kann
dieser Shop das E-Book vor Missbrauch durch ein
digitales Rechtemanagement schiitzen. Haufig erfolgt
dies in Form eines nicht sichtbaren digitalen
Wasserzeichens, das dann individuell pro Nutzer
signiert ist. Angaben zu diesem DRM finden Sie auf den
Seiten der jeweiligen Anbieter.

Beim Kauf des E-Books in unserem Verlagsshop ist lhr
E-Book DRM-frei.

Viele GriiRe und viel Spalk beim Lesen, .

Ohr mér‘,o—(/eré@ﬁ‘em

