

 [image: cover]

 IGNOU PGDCA MCS 206 Object Oriented Programming using Java Previous Years solved Papers

 Manish Soni

 	

Preface

	

	Welcome to the comprehensive collection of IGNOU PGDCA MCS 206 Object Oriented Programming using Java Previous Years solved Papers solved papers for the Post Graduate Diploma in Computer Applications (PGDCA) program offered by the Indira Gandhi National Open University (IGNOU). This book is meticulously crafted to assist students in their preparation for the Object-Oriented Programming using Java examination, a fundamental and integral part of the PGDCA curriculum. As technology continues to evolve, Java remains a cornerstone of computer science, playing a pivotal role in software development across diverse platforms. Recognizing the significance of a strong foundation in Java programming, this compilation brings together years of previous exam papers with detailed solutions, providing a valuable resource for students to enhance their understanding and excel in their academic pursuits.

	Each solved paper within this book is designed to serve as more than just an answer key. Beyond the correct responses, you will find thorough explanations, strategic insights, and helpful tips aimed at aiding your comprehension of Java concepts. Whether you are a novice programmer or a seasoned learner, this collection offers a structured approach to mastering Object-Oriented Programming using Java, covering topics ranging from basic syntax to advanced features. The inclusion of previous years' papers ensures that you are well-acquainted with the examination patterns and can approach your assessments with confidence.

	As you embark on your journey through the PGDCA program, we hope this book proves to be a valuable companion, aiding you in your quest for proficiency in Java. It is our sincere desire that this resource contributes significantly to your academic success, fostering a deeper appreciation for Java programming and its applications in the dynamic world of computer science. Best of luck in your studies and may this book serve as a stepping stone towards a rewarding and fulfilling career in the realm of computer applications.

	

	

Table of Contents

	Preface

	PGDCA December 2021

	PGDCA June 2022

	PGDCA December 2022

	

	

PGDCA December 2021

	

	POST GRADUATE DIPLOMA IN COMPUTER APPLICATION (PGDCA)

	(NEW) Term-End Examination

	December, 2021

	MCS-206

	OBJECT ORIENTED PROGRAMMING USING JAVA

	

	1. (a) What is Object Oriented Programming? What is an object? How is it created in Java? Explain with the help of an example.

	Ans- Object-Oriented Programming (OOP) is a programming paradigm that revolves around the concept of "objects." It is a way of designing and organizing code to promote modularity, reusability, and a clear structure. In OOP, software is structured as a collection of objects, each representing an instance of a class.

	An object, in the context of OOP, is a self-contained unit that consists of data (attributes) and the methods (functions) that operate on that data. Objects are instances of classes, which are blueprints or templates defining the structure and behavior of the objects.

	In Java, objects are created using the new keyword to instantiate a class. Here's an example to illustrate the concept:

	// Define a simple class called Car

	class Car {

	 // Attributes

	 String brand;

	 String model;

	 int year;

	

	 // Constructor to initialize the object

	 public Car(String brand, String model, int year) {

	 this.brand = brand;

	 this.model = model;

	 this.year = year;

	 }

	

	 // Method to display information about the car

	 public void displayInfo() {

	 System.out.println("Brand: " + brand);

	 System.out.println("Model: " + model);

	 System.out.println("Year: " + year);

	 }

	}

	

	public class Main {

	 public static void main(String[] args) {

	 // Create an object of the Car class

	 Car myCar = new Car("Toyota", "Camry", 2022);

	

	 // Access the object's attributes and methods

	 myCar.displayInfo();

	 }

	}

	

	In this example, we have a Car class with attributes (brand, model, year) and a method (displayInfo) to print information about the car. In the main method, we create an instance of the Car class called myCar using the new keyword. We then access the object's attributes (brand, model, year) and call the displayInfo method to print details about the car. This demonstrates the fundamental concepts of OOP, where the Car class serves as a blueprint for creating individual objects representing specific cars with unique characteristics.

	

	(b) Explain use of “super” keyword in Java programming with the help of an example.

	

	Ans- The super keyword in Java is used to refer to the immediate parent class object or invoke the parent class's methods and constructors. It is often used in scenarios where a subclass wants to access or override a method or field defined in its superclass. Here's an example to illustrate the use of the super keyword:

	// Parent class (Superclass)

	class Animal {

	 // Method in the parent class

	 public void eat() {

	 System.out.println("Animal is eating");

	 }

	}

	

	// Child class (Subclass) inheriting from Animal

	class Dog extends Animal {

	 // Method in the child class, overriding the eat method in the parent class

	 @Override

	 public void eat() {

	 // Use of 'super' to invoke the eat method of the parent class

	 super.eat();

	 System.out.println("Dog is eating");

	 }

	

	 // New method in the child class

	 public void bark() {

	 System.out.println("Dog is barking");

	 }

	}

	

	public class Main {

	 public static void main(String[] args) {

	 // Create an object of the child class

	 Dog myDog = new Dog();

	

	 // Call the eat method of the child class, which invokes the eat method of the parent class using 'super'

	 myDog.eat();

	

	 // Call the bark method of the child class

	 myDog.bark();

	 }

	}

	

	In this example, we have a Animal class with an eat method. The Dog class extends the Animal class and overrides the eat method. Inside the overridden eat method of the Dog class, the super.eat() statement is used to invoke the eat method of the parent class before executing the subclass-specific code. This allows the child class to leverage the functionality of the parent class while extending or customizing it.

	When we create an object of the Dog class and call its eat method, both the parent class's eat method and the child class's specific behavior are executed. The super keyword facilitates the interaction between the parent and child classes in a hierarchical inheritance structure.

	

	c) Write a Java program to demonstrate how a thread is created in Java. Also set the priority of created thread to 8.

	

	Ans- In Java, you can create a thread by extending the Thread class or implementing the Runnable interface. Below is an example demonstrating how to create a thread by extending the Thread class and setting its priority to 8:

	class MyThread extends Thread {

	 // Constructor to set the thread name

	 public MyThread(String name) {

	 super(name);

	 }

	

	 // Run method that will be executed when the thread starts

	 @Override

	 public void run() {

	 System.out.println("Thread " + Thread.currentThread().getName() + " is running.");

	 }

	}

	

	public class ThreadExample {

	 public static void main(String[] args) {

	 // Create an instance of MyThread and set the priority to 8

	 MyThread myThread = new MyThread("MyThread");

	 myThread.setPriority(8);

	

	 // Start the thread

	 myThread.start();

	

	 // Main thread continues to execute

	 System.out.println("Main thread is running.");

	 }

	}

	

	In this example, a class MyThread extends the Thread class. The run method contains the code that will be executed when the thread starts. In the ThreadExample class, an instance of MyThread is created and its priority is set to 8 using the setPriority method. The thread is then started using the start method.

	Please note that setting thread priorities is just a suggestion to the scheduler, and the actual behavior may vary across different Java Virtual Machine (JVM) implementations and operating systems. Thread priorities range from 1 to 10, where a higher priority value indicates a higher priority. In this example, the priority is set to 8, but you can adjust it according to your specific requirements.

	

	2. (a) What is an Abstract Class ? Explain advantages of abstract class with the help of a program.

	

	Ans- An abstract class in Java is a class that cannot be instantiated on its own and may contain abstract methods. Abstract methods are declared without providing an implementation in the abstract class. Subclasses that extend the abstract class must provide concrete implementations for all the abstract methods. Abstract classes are declared using the abstract keyword.

	Here are some advantages of using abstract classes:

	Code Reusability: Abstract classes can provide a common base for multiple subclasses. This promotes code reusability, as common functionality can be implemented in the abstract class and reused by its subclasses.

	Method Signatures: Abstract classes can declare abstract methods, which are essentially method signatures without implementations. This enforces that subclasses must provide concrete implementations for these methods, ensuring a consistent interface across all derived classes.

	Template for Subclasses: Abstract classes can serve as templates or blueprints for subclasses. They define a common structure that must be followed by all derived classes, providing a clear and consistent framework for class design.

	Partial Implementation: Abstract classes can contain both abstract and non-abstract (concrete) methods. This allows the abstract class to provide a partial implementation of the functionality while leaving some details to be implemented by subclasses.

	Here's a simple example to illustrate the concept of an abstract class and its advantages:

	// Abstract class

	abstract class Shape {

	 // Abstract method (method signature without implementation)

	 public abstract double calculateArea();

	

	 // Concrete method

	 public void display() {

	 System.out.println("This is a shape.");

	 }

	}

	

	// Concrete subclass 1

	class Circle extends Shape {

	 private double radius;

	

	 // Constructor

	 public Circle(double radius) {

	 this.radius = radius;

	 }

	

	 // Implementation of abstract method

	 @Override

	 public double calculateArea() {

	 return Math.PI * radius * radius;

	 }

	}

	

	// Concrete subclass 2

	class Rectangle extends Shape {

	 private double length;

	 private double width;

	

	 // Constructor

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

OEBPS/cover.jpg
IGNOU PGDCA MCS 206
Object Oriented
Programming using Java
Previous Years solved
Papers

Manish Soni

