

 [image: Cover of How to Build Android Applications with Kotlin by Alex Forrester, Eran Boudjnah, Alexandru Dumbravan, and Jomar Tigcal]

 How to Build Android Applications with Kotlin

 Third Edition

 A hands-on guide to developing, testing, and publishing production-grade Android 16 apps

 Alex Forrester

 Eran Boudjnah

 Alexandru Dumbravan

 Jomar Tigcal

 [image:]

 How to Build Android Applications with Kotlin

 Third Edition

 Copyright © 2025 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Portfolio Director: Ashwin Nair

 Relationship Lead: Sohini Ghosh

 Program Manager: Ruvika Rao

 Content Engineer: Adrija Mitra

 Technical Editor: Rohit Singh

 Copy Editor: Safis Editing

 Indexer: Pratik Shirodkar

 Proofreader: Adrija Mitra

 Production Designer: Alishon Falcon

 Growth Lead: Sohini Ghosh

 First published: February 2021

 Second edition: May 2023

 Third edition: September 2025

 Production reference: 1250825

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83588-276-4

 www.packtpub.com

 Dedicated to my wife, Angela, and daughter, Catherine, for all their love and support.

 – Alex Forrester

 To my endlessly supportive wife, Lea, for always being there.

 – Eran Boudjnah

 Dedicated to Niki, for her constant support.

 – Alexandru Dumbravan

 To my loving wife, Celine, for her support and encouragement. To my parents, for all their sacrifices and for raising me well.

 – Jomar Tigcal

 Contributors

 About the authors

 Alex Forrester is an experienced software developer with more than 20 years of experience in mobile and web development and content management systems. He has worked with Android since 2010, creating flagship apps for blue-chip companies across a broad range of industries at Sky, The Automobile Association, HSBC, Discovery Channel, NatWest, and O2. Alex lives in Hertfordshire with his wife and daughter. When he’s not developing, he likes playing touch rugby and running in the Chiltern Hills.

 Eran Boudjnah has been developing apps and leading mobile teams for a wide range of clients, from start-ups (Just Eat and Plume Design) to large-scale companies (Sky and HSBC) and conglomerates, since 1997. He has been working with Android since around 2013. Eran is a developer with almost three decades of experience in developing mobile applications, websites, desktop applications, and interactive attractions. He is passionate about board games and has a 1990s Transformers collection that he’s quite proud of. Eran lives in Brentwood, Essex, in the United Kingdom, with Lea, his incredibly supportive wife.

 Alexandru Dumbravan is an Android developer with more than 10 years of experience in building Android apps, focusing on fintech applications since 2016 when he moved to London. In his spare time, Alex enjoys playing video games, watching movies, and occasionally visiting the gym.

 Jomar Tigcal is an Android developer with over 15 years of experience in mobile and software development. He has worked on various stages of Android app development for small start-ups and large companies since 2012. Jomar has also given talks and conducted training and workshops on Android. In his free time, he likes running and reading. He lives in Vancouver, BC, Canada, with his wife, Celine.

 About the reviewers

 Swamy Gangadhar Pavan Vulisetti is a senior Android engineer with extensive experience in the healthcare, travel, and IoT industries. He specializes in designing scalable, high-performance mobile solutions and has a strong command of modern Android frameworks and SDK integrations. Pavan’s exceptional computer science skills allow him to craft efficient algorithms and maintain robust code architecture. His expertise lies in building seamless user experiences while following industry best practices. With a passion for innovation and problem-solving, he is committed to delivering impactful, reliable software solutions that meet complex business challenges.

 Hema Sai Charan Kothamasu also known as hemAndroid, is a mobile app developer with over 11 years of experience in Android, Flutter, and iOS native development. In 2013, after completing his studies, he started his career at a start-up, working on experimental Android projects. Over time, he transitioned from a solo developer to an active contributor to the global developer community. In 2018, inspired by Google Developer Groups, he started giving insightful talks, which transformed his career. Now a sought-after mentor and technical speaker, he guides aspiring developers through engaging workshops and events. Hema is a co-organizer of the Flutter Hyderabad community and has contributed as a reviewer to Thriving in Android Development Using Kotlin.

 Gajendra Singh Rathore (also known as gsrathoreniks) is a dedicated mobile app developer with years of expertise in creating seamless and high-performing Android applications. Known for his meticulous attention to design and performance, Gajendra specializes in crafting apps that prioritize user experience. A passionate advocate for knowledge sharing, he actively contributes to the developer community through his insightful articles and blogs on cutting-edge tech topics. Gajendra is also a mentor to budding developers, helping them navigate the complexities of modern app development. An avid reader of tech articles and an open source enthusiast, Gajendra’s commitment to learning and teaching is reflected in every project he undertakes.

 Peter Gichia is a freelance software engineer focused on native Android development and an entrepreneur currently working on a self-checkout system for the retail sector, among other personal projects. He enjoys solving problems for his clients, whether through code or business strategy. He is also an active contributor to the Android development community through writing and publishing Android-related articles. In the process, he has successfully published a text-based course on building scalable applications with MVVM architecture in collaboration with a leading Edutech company. In his free time, Peter enjoys expanding his knowledge through podcasts and books.

 Preface

 Written by four veteran developers with 60+ years of collective experience, this updated third edition will jumpstart your Android development journey, focusing on Kotlin libraries and Jetpack Compose, Google’s powerful declarative UI framework.

 You’ll learn the fundamentals of app development, enabling you to use Android Studio, as well as getting to grips with Jetpack Compose to create your first screens, build apps to run them on virtual devices through guided exercises, and implement Jetpack Compose’s layout groups to make the most of lists, images, and maps.

 The book has been updated with Kotlin’s powerful networking and Coroutines libraries to help you fetch data in the background from a web service and manage the display of data using Kotlin flows. You’ll learn about testing, creating clean architecture, persisting data, and exploring the dependency injection pattern, as well as how to publish your apps on the Google Play Store. You’ll also work on realistic projects split up into bite-sized exercises and activities, along with building apps to create quizzes, read news articles, check weather reports, store recipes, retrieve movie information, as well as to remind you where you parked your car.

 By the end of this book, you’ll have gained the skills and confidence to build your own creative Android apps using Kotlin.

 Who this book is for

 If you want to build your own Android apps using Kotlin but are unsure of how to begin, then this book is for you. Basic knowledge of the Kotlin programming language or experience in a similar programming language, along with a willingness to brush up on Kotlin, is required.

 What this book covers

 Chapter 1, Creating Your First App, shows how to use Android Studio to build your first Android app. You will create an Android Studio project, understand what it’s made up of, and explore the tools necessary for building and deploying an app on a virtual device. You will also learn about the structure of an Android app.

 Chapter 2, Building User Screen Flows, shows how the Android system interacts with your app through the Android lifecycle, how you are notified of changes to your app’s state, and how you can use the Android lifecycle to respond to these changes.

 Chapter 3, Developing the UI with Jetpack Compose, provides an in-depth look at basic composable functions and layout groups in Jetpack Compose. It demonstrates how to use them to build the UI and respond to state changes.

 Chapter 4, Building App Navigation, goes through how to build user-friendly app navigation through three primary patterns – the navigation drawer, bottom navigation, and tabbed navigation – so that users can easily access your app’s content.

 Chapter 5, Essential Libraries – Ktor, Kotlin Serialization, and Coil, introduces Ktor, a popular networking library, and shows how to make network requests and how to encode and decode JSON strings. Finally, it shows you how to load images from the web and present them in your app.

 Chapter 6, Building Lists with Jetpack Compose, teaches you how to present items in a list using Compose’s lazy lists, which work even if the list is incredibly long. It also demonstrates how to let your users interact with items in a list.

 Chapter 7, Android Permissions and Google Maps, goes over the concept of permissions in Android and shows you how to request relevant permissions. We then go on to implement an interactive map using Google Maps and see how we can add markers to the map.

 Chapter 8, Services, WorkManager, and Notifications, covers the different ways in which background work can be processed in the Android world. This will give you the knowledge needed to download large files in the background, play music, and monitor events even when your app is not in the foreground.

 Chapter 9, Testing with JUnit, Mockito, MockK, and Compose, covers the libraries and frameworks available to test the code base of an Android application.

 Chapter 10, Coroutines and Flow, introduces you to doing background operations and data manipulations with Coroutines and flows. You’ll also learn about manipulating and displaying data using flow operators.

 Chapter 11, Android Architecture Components, goes over some of the more commonly used architecture components, such as ViewModel, which can be used to separate business logic from the user interface, and Room, which shows how you can persist data in a structured way.

 Chapter 12, Persisting Data, covers the available options for persisting data on an Android device, from key-value formats to files.

 Chapter 13, Dependency Injection with Dagger, Hilt, and Koin, presents the concept of dependency injection and the available libraries that can be used to implement dependency injection in an Android app.

 Chapter 14, Architecture Patterns, explains the architecture patterns you can use to structure your Android projects to separate them into different components with distinct functionality. These make it easier for you to develop, test, and maintain your code.

 Chapter 15, Advanced Jetpack Compose, discusses how to enhance your apps with effects and animations with Jetpack Compose.

 Chapter 16, Launching Your App on Google Play, concludes this book by showing you how to publish your apps on Google Play: from preparing a release to creating a Google Play Developer account, and finally, releasing your app.

 To get the most out of this book

 	
 Software/hardware covered in the book

 	
 Operating system requirements

 	
 Android Studio Meerkat or later versions

 	
 Windows, macOS, or Linux

 If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/How-to-Build-Android-Applications-with-Kotlin-Third-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781835882764.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Execute the terraform graph command:”

 A block of code is set as follows:

 var counter = 0
val mainView = findViewById<ConstraintLayout>(R.id.main)
val counterValue = mainView.findViewById<TextView>(
 R.id.counter_value
)
val plusButton = mainView.findViewById<Button>(
 R.id.plus
)
val minusButton = mainView.findViewById<Button>(
 R.id.minus
)

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 @Composable
fun Employee(employee: EmployeeUiModel) {
 Row {
 if (employee.imageUrl.isEmpty()) {
 Spacer(modifier = Modifier.size(64.dp)
 } else {
 LoadedImage(
 imageUrl = employee.imageUrl,
 modifier = Modifier.size(64.dp)
)
 }
 Column {
 Text(text = employee.name)
 Text(text = employee.role.label)
 }
 }
}

 Note: Although dependencies in the respective libs.versions.toml files may appear in two lines in the chapters, they should be added as one lines in your code.

 Any command-line input or output is written as follows:

 set KEYSTORE_PASSWORD=securepassword

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “You will see a window with side tabs and Projects highlighted. Select the New Project option on the right-hand side.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book or have any general feedback, please email us at customercare@packt.com and mention the book’s title in the subject of your message.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

 Share Your Thoughts

 Once you’ve read How to Build Android Applications with Kotlin, Third Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Part 1

 Android Foundation

 This first part introduces you to Android Studio, the integrated development environment (IDE) used for Android development, and then guides you through the building blocks of Android development using the Jetpack Compose Android UI toolkit. It provides a comprehensive overview of the Android framework, working through guided exercises that reinforce the learning objectives so that this knowledge can be retained.

 This part of the book includes the following chapters:

 	Chapter 1, Creating Your First App

 	Chapter 2, Building User Screen Flows

 	Chapter 3, Developing the UI with Jetpack Compose

 	Chapter 4, Building App Navigation

 1

 Creating Your First App

 This chapter is an introduction to Android, where you will set up the Android Studio environment and focus on the fundamentals of Android development.

 You will cover creating an Android project with Android Studio. Then, you will set up a virtual device and run your app on it. You will explore the Android manifest file, which details all the Android app components, features, and permissions model. You will learn how to use the Gradle build system and analyze the Android application structure. You will start developing user interfaces (UIs) with the Android UI toolkit, Jetpack Compose.

 By the end of this chapter, you will have gained the knowledge required to create an Android app from scratch and install it on a virtual Android device. You will be able to analyze and understand the importance of the AndroidManifest.xml file. You will know how an app project is structured in Android Studio and use the Gradle build tool to configure and build your app and manage library dependencies. Finally, you will be able to start implementing UI elements using Jetpack Compose with Material Design.

 We will cover the following topics in the chapter:

 	Creating an Android project with Android Studio

 	Setting up a virtual device and running your app

 	The Android manifest file

 	Using Gradle to build, configure, and manage app dependencies

 	Android application structure

 Getting the most out of this book – get to know your free benefits

 Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge your learning journey and help you learn without limits.

 Here’s a quick overview of what you get with this book:

 Next-gen reader

 	
 [image:]
 Figure 1.1: Illustration of the next-gen Packt Reader’s features

 	
 Our web-based reader, designed to help you learn effectively, comes with the following features:

 [image:] Multi-device progress sync: Learn from any device with seamless progress sync.

 [image:] Highlighting and notetaking: Turn your reading into lasting knowledge.

 [image:] Bookmarking: Revisit your most important learnings anytime.

 [image:] Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

 Interactive AI assistant (beta)

 	
 [image:]
 Figure 1.2: Illustration of Packt’s AI assistant

 	
 Our interactive AI assistant has been trained on the content of this book, to maximize your learning experience. It comes with the following features:

 [image:] Summarize it: Summarize key sections or an entire chapter.

 [image:] AI code explainers: In the next-gen Packt Reader, click the Explain button above each code block for AI-powered code explanations.

 Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

 DRM-free PDF or ePub version

 	
 [image:]
 Figure 1.3: Free PDF and ePub

 	
 Learn without limits with the following perks included with your purchase:

 [image:] Learn from anywhere with a DRM-free PDF copy of this book.

 [image:] Use your favorite e-reader to learn using a DRM-free ePub version of this book.

 	
 Unlock this book’s exclusive benefits now

 Scan this QR code or go to packtpub.com/unlock, then search for this book by name. Ensure it’s the correct edition.

 	
 [image:]
 [image:]

 	
 Note: Keep your purchase invoice ready before you start.

 Technical requirements

 The complete code for all the exercises and the activity in this chapter is available on GitHub at https://packt.link/EiB80.

 Creating an Android project with Android Studio

 In order to be productive building Android apps, it is essential to become confident in using Android Studio. This is the official integrated development environment (IDE) for Android development, built on JetBrains’ IntelliJ IDEA IDE and developed by the Android Studio team at Google. You will use it throughout this book to create apps and progressively add more advanced features.

 Since Google I/O 2017 (the annual Google developer conference), Kotlin has been Google’s preferred programming language for Android app development. You will be using Kotlin throughout this book to build Android apps.

 Kotlin was created to address some of the shortcomings of Java in terms of verbosity, handling null types, and adding more functional programming techniques, among many other issues.

 Getting to grips with and familiarizing yourself with Android Studio will enable you to feel confident building Android apps. So, let’s get started with creating your first project.

 The installation and setup of Android Studio are covered in the Preface. Please ensure you have completed those steps before you continue.

 Exercise 1.01 – Creating an Android Studio project for your app

 This is the starting point for creating a project structure that your app will be built upon. The template-driven approach will enable you to create a basic project in a short timeframe while setting up the building blocks you can use to develop your app.

 To complete this exercise, perform the following steps:

 	Open Android Studio. You will see a window with side tabs and Projects highlighted. Select the New Project option on the right-hand side.

 	Now, you’ll enter a simple wizard-driven flow, which greatly simplifies the creation of your first Android project. The next screen you will see has many options for the initial setup you’d like your app to have:

 [image: Figure 1.4 – Starting a project template for your app]
 Figure 1.4 – Starting a project template for your app

 Welcome to your first introduction to the Android development ecosystem. The word displayed in most of the project types is Activity. In Android, an activity represents a single screen in your app that a user can interact with. When creating a new project, you can choose from different templates, each of which sets up the initial screen in a specific way. These templates determine how the first screen will look and provide a starting point for building your app. Select Empty Activity from the template and click on Next. The project configuration screen is as follows:

 [image: Figure 1.5 – Project configuration]
 Figure 1.5 – Project configuration

 [image: A magnifying glass on a black background AI-generated content may be incorrect.]Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen Packt Reader or view it in the PDF/ePub copy.

 [image:]The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one.

 [image:]

 The preceding screen configures your app. Let’s go through all the options:

 	Name: Similar to the name of your Android project, this name will appear as the default name of your app when it’s installed on a phone and visible on Google Play.

 	Package name: This uses the standard reverse domain name pattern to create a name. It will be used as an address identifier for source code and assets in your app. It’s best to make this name as clear and descriptive and as closely aligned with the purpose of your app as possible. As shown in Figure 1.5, the Name value of the app, My Application (in lowercase with spaces removed), is appended to the domain (com.example.myapplication).

 	Save location: This is the local folder on your machine where the app will initially be stored. By default, the project will be saved into a new folder with the name of the application with spaces removed. This results in a MyApplication project folder being created.

 	Minimum SDK: Depending on which version of Android Studio you download, the default might be the same as shown in Figure 1.5 or a different version. Keep this the same. Most of Android’s new features are made backward compatible, so your app will run fine on most older devices. However, if you do want to target newer devices, you should consider raising the minimum API level. There is a Help me choose link to a dialog that explains the feature set in different versions of Android and the current percentage of devices worldwide running each Android version.

 	Build configuration language: The language used to build your app. Keep this as Kotlin DSL (DSL stands for domain-specific language). A DSL is a programming language used for a particular domain or a specific set of tasks. In this case, the domain is build scripts. Kotlin is the programming language you’ll use to build apps, so you will have the familiarity of using it in build scripts.

 	Once you have filled in all these details, select Finish. Your project will be built, and you will then be presented with the following screen or similar:

 [image: Figure 1.6 – Android Studio default project]
 Figure 1.6 – Android Studio default project

 You can immediately see the starting screen that has been created (MainActivity) and the application folder structure in the left panel. You may see a warning saying you are in safe mode. This will stay until you click Trust Project.

 In this exercise, you have gone through the steps to create your first Android app using Android Studio. This template-driven approach has shown you the core options you need to configure for your app.

 In the next section, you will set up a virtual device and see your app run for the first time.

 Setting up a virtual device and running your app

 As a part of installing Android Studio, you downloaded and installed the latest Android software development kit (SDK) components. This includes a base emulator, which you will configure to create an Android Virtual Device (AVD) to run Android apps on. An emulator mimics the hardware and software features and configuration of a real device. The benefit is that you can make changes and quickly see them on your desktop while developing your app. Although virtual devices do not have all the features of a real device, the feedback cycle is often quicker than going through the steps of connecting a real device.

 [image: Figure 1.7 – SDK components]
 Figure 1.7 – SDK components

 [image: A magnifying glass on a black background AI-generated content may be incorrect.]Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen Packt Reader or view it in the PDF/ePub copy.

 [image:]The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one.

 [image:]

 Let’s take a look at the SDK components that are installed and how the virtual device fits in:

 	Android Emulator: This is the base emulator, which we will configure to create virtual devices of different Android makes and models.

 	Android SDK Build-Tools 36: Android Studio uses build tools to build your app. This process involves compiling, linking, and packaging your app to prepare it for installation on a device. The platform refers to the API level.

 	Android SDK Platform 36: This is the version of the Android platform that you will use to develop your app.

 	Sources for Android 36: When you are editing code, it is useful to see detailed information on the Android SDK within the source files (this is the code that will be compiled and run with your own code to create your app).

 Exercise 1.02 – Setting up a virtual device and running your app on it

 We set up an Android Studio project to create our app in Exercise 1.01 – Creating an Android Studio project for your app, and we are now going to run it on a virtual device. This process is a continuous cycle while working on your app. When implementing a feature, you can verify its look and behavior when you need to.

 For this exercise, you will create a single virtual device, but you should ensure that you run your app on multiple devices to verify that its look and behavior are consistent. Perform the following steps:

 	On the right-hand side of Android Studio, there should be a Device Manager window open. If you can’t see it, go to View | Tool Windows | Device Manager to display it.

 [image: Figure 1.8 – The Device Manager window]
 Figure 1.8 – The Device Manager window

 	On the right of the tool window, you will see an icon selected in a window that displays No devices connected and Add a new device below it.

 	Click Add a new device. There is also a + (plus) icon displayed at the top of the Device Manager window if you want to create another device. When selected, it displays a popup. Click on Create Virtual Device.

 [image: Figure 1.9 – Device Manager | Create Virtual Device]
 Figure 1.9 – Device Manager | Create Virtual Device

 You will then be presented with this screen:

 [image: Figure 1.10 – Device definition]
 Figure 1.10 – Device definition

 	We are going to choose the Pixel 9 device. The real (non-virtual device) Pixel range of devices is developed by Google and has access to the most up-to-date versions of the Android platform. Once selected, click the Next button:

 [image: Figure 1.11 – System image]
 Figure 1.11 – System image

 You can change the name of the system image in the top-left corner if you’d like to. Click the latest numbered API version. Here, it is API 36, which is the API level of Android 16. The System Image column might also show Google Play in the name, which means the system image comes pre-installed with Google Play services. You can also see a symbol in the Play column in Figure 1.10, which indicates this.

 This is a rich feature set of Google APIs and Google apps that your app can use and interact with. On first running the app, you will see apps such as Maps, Chrome, and Play Store instead of a plain system image.

 	You should develop your app with the latest version of the Android platform to benefit from the latest features. On first creating a virtual device, you will have to download the system image.

 	Select Yes on the dialog to download the system image.

 [image: Figure 1.12 – System Image download]
 Figure 1.12 – System Image download

 	Click Finish, and your virtual device will be shown in the Device Manager window:

 [image: Figure 1.13 – The Device Manager window]
 Figure 1.13 – The Device Manager window

 	Press the Play arrow button on the right-hand side to launch the AVD:

 [image: Figure 1.14 – Virtual device launched]
 Figure 1.14 – Virtual device launched

 	The device name will also be visible in the top toolbar above the Running Devices window. If you can’t see it, make sure the toolbar is visible by going to View | Appearance | Toolbar.

 [image: Figure 1.15 – Toolbar with launch options]
 Figure 1.15 – Toolbar with launch options

 	Press the green triangle/Play button to launch your app.

 This will load a basic app on the virtual device, as shown in Figure 1.16:

 [image: Figure 1.16 – The app running on a virtual device]
 Figure 1.16 – The app running on a virtual device

 In this exercise, you have gone through the steps to create a virtual device and run the app you created on it. The Device Manager window, which you have used to do this, enables you to create the device (or range of devices) you would like to target your app for. Running your app on the virtual device allows a quick feedback cycle to verify how a new feature behaves and displays the way you expect it to.

 Next, you will explore the AndroidManifest.xml file of your project, which contains the information and configuration of your app.

 The Android manifest file

 The app you have just created, although simple, encompasses the core building blocks that you will use in all the projects you create. The app is driven from the AndroidManifest.xml file, a manifest file that details the contents of your app. To open it, locate the tool window by selecting View | Tool Windows | Project. Once displayed, the drop-down options at the top of the Project window allow you to change the way you view your project, with the most commonly used displays being Android and Project:

 [image: Figure 1.17 – The Tool Windows drop-down menu]
 Figure 1.17 – The Tool Windows drop-down menu

 The AndroidManifest.xml file is located at app | manifests in the Android display of the Project window:

 <?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">
 <application
 android:allowBackup="true"
 android:dataExtractionRules=
 "@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.MyApplication"
 tools:targetApi="31">
 <activity
 android:name=".MainActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/Theme.MyApplication">
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

 [image:]Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

 (1) to quickly copy code into your coding environment, or click the Explain button

 (2) to get the AI assistant to explain a block of code to you.

 [image: A white background with a black text AI-generated content may be incorrect.]
 [image:]The next-gen Packt Reader is included for free with the purchase of this book. Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this book by name. Double-check the edition shown to make sure you get the right one.

 [image: A qr code on a white background AI-generated content may be incorrect.]

 A typical manifest, in general terms, is a top-level file that describes the enclosed files or other data and associated metadata that form a group or unit. The Android manifest file applies this concept to your Android app as an XML file.

 Every Android app has an application class that allows you to configure the app. After the <application> element opens, you define your app’s components. As we have just created our app, it only contains the first screen, shown in the following code:

 <activity android:name=".MainActivity">

 The next child XML node specified is as follows:

 <intent-filter>

 Android uses intents as a mechanism for interacting with apps and system components. Intents get sent, and the intent filter registers your app’s capability to react to these intents. <android.intent.action.MAIN> is the main entry point into your app, which, as it appears in the enclosing XML of .MainActivity, specifies that this screen will be started when the app is launched. android.intent.category.LAUNCHER states that your app will appear in the list of installed apps on your user’s device.

 As you have created your app from a template, it has a basic manifest that will launch the app and display an initial screen at startup through an Activity component. Depending on which other features you want to add to your app, you may need to add permissions in the Android manifest file.

 Permissions are grouped into three different categories – normal, signature, and dangerous:

 	Normal: These permissions include accessing the network state, Wi-Fi, the internet, and Bluetooth. These are usually permitted without asking for the user’s consent at runtime.

 	Signature: These permissions are shared by the same group of apps that must be signed with the same certificate. This means these apps can share data freely, but other apps don’t have access.

 	Dangerous: These permissions are centered around the user and their privacy, such as sending Short Message Service (SMS) texts to access accounts and locations, and reading and writing to the filesystem and contacts.

 These permissions must be listed in the manifest, and in the case of dangerous permissions, from Android Marshmallow API 23 (Android 6 Marshmallow) onward, you must also ask the user to grant the permissions at runtime.

 In the next exercise, we will configure the Android manifest file. Detailed documentation on this file can be found at the link here: https://packt.link/6LiNO.

 Exercise 1.03 – Configuring the Android manifest internet permission

 The key permission that most apps require is access to the internet. This is not added by default. In this exercise, we will fix that and, in the process, load a WebView object, which is a view to show web pages. This use case is very common in Android app development as most commercial apps will display a privacy policy, terms and conditions, and so on. As these documents are likely common to all platforms, the usual way to display them is to load a web page. To do this, perform the following steps:

 	Create a new Android Studio project as you did in Exercise 1.01 – Creating an Android Studio project for your app.

 	Switch tabs to the MainActivity tab From the Android display of the Project window, it’s located at app | kotlin+java | com.example.myapplication.

 	On opening the MainActivity tab you’ll see that it has the MainActivity class. The following code is just a snippet of this file:
 class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?)
 {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContent {
 MyApplicationTheme {
 Scaffold(
 modifier = Modifier.fillMaxSize()
) { innerPadding ->
 Greeting(
 name = "Android",
 modifier = Modifier
 .padding(innerPadding)
)
 }
 }
 }
 }
}

 	You’ll examine the contents of this file in more detail in the next section of this chapter, but for now, you just need to be aware that the setContent function sets the layout of the UI you saw when you first ran the app in the virtual device. Update the preceding code to the following:
 import android.webkit.WebView
import androidx.compose.ui.viewinterop.AndroidView
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 val webView = WebView(this)
 webView.settings.javaScriptEnabled = true
 webView.loadUrl("https://www.google.com")
 AndroidView(
 modifier = Modifier.fillMaxSize(),
 factory = { context ->
 webView
 }
)
 }
 }
}

 This creates a WebView object (which allows your app to show a web page) and adds it to an AndroidView composable.

 The val keyword is a read-only property reference, which can’t be changed once it has been set. JavaScript needs to be enabled in the WebView object to execute JavaScript. Then, we load the URL into the WebView object.

 Android UIs are built with Jetpack Compose, which you will be using in this book. It’s a declarative approach, which means that you describe the end state of how you want your app to display, and the framework draws/composes it. From here on, I’ll refer to Jetpack Compose as simply Compose. The legacy method of building Android UIs used XML files, where you constructed the end display step by step by adding your views in an XML file before manually setting the views when loading, and when data changed. The way to use XML views in Compose is to wrap them in an AndroidView composable. As Compose doesn’t have a built-in WebView composable, you need to use an AndroidView composable to embed the WebView object. The preceding code adds a WebView object with the factory argument, which takes a block of code of a legacy View and makes it available to use in Compose. The modifier argument enables you to add specific styling and layout behavior to the composable. context is an application-level abstract class that enables you to interact with the Android system.

 We are not setting the type, but Kotlin has type inference, so it will infer the type if possible. So, specifying the type explicitly with val webView: WebView = WebView(this) is not necessary. Depending on which programming languages you have used in the past, the order of defining the parameter name and type may or may not be familiar. Kotlin uses the name followed by the type.

 	Now, run the app, and the text will appear as shown in the screenshot:

 [image: Figure 1.18 – No internet permission error message]
 Figure 1.18 – No internet permission error message

 	This error occurs because there is no INTERNET permission added to your AndroidManifest.xml file. (If you get the net::ERR_CLEARTEXT_NOT_PERMITTED error, this is because the URL you are loading into WebView is not HTTPS, and non-HTTPS traffic is disabled from API level 28, Android 9.0 Pie, and above.)

 	Let’s fix that by adding the INTERNET permission to the manifest. Open up the Android manifest file and add the following above the <application> tag:
 <uses-permission android:name="android.permission.INTERNET" />

 You can find the full Android manifest file with the permission added here: https://packt.link/ws71v.

 Uninstall the app from the virtual device before running the app again. You need to do this, as app permissions can sometimes get cached.

 Do this by long-pressing the app icon, selecting the App Info option that appears, and then pressing the bin icon with the Uninstall text below it. Alternatively, long-press the app icon and then drag it to the bin icon with the Uninstall text beside it in the top-right corner of the screen.

 	Install the app again and see the web page appear in the WebView object.

 [image: Figure 1.19 – App displaying WebView]
 Figure 1.19 – App displaying WebView

 In this example, you learned how to add a permission to the manifest. The Android manifest file can be thought of as a table of contents of your app. It lists all the components and permissions your app uses. As you have seen from starting the app from the launcher, it also provides the entry points into your app.

 In the next section, you will explore the Android build system, which uses the Gradle build tool to get your app up and running.

 Using Gradle to build, configure, and manage app dependencies

 In the course of creating this project, you have principally used the Android platform SDK. The necessary Android libraries were downloaded when you installed Android Studio. However, these are not the only libraries that are used to create your app. To configure and build your Android project or app, a build tool called Gradle is used.

 Gradle is a multi-purpose build tool that Android Studio uses to build your app. You can either use Kotlin or Groovy, a dynamically typed Java virtual machine (JVM) language, to configure the build process and allow easy dependency management so you can add libraries to your project and specify the versions.

 As the default language when creating a new project in Android Studio is Kotlin, you will be using this. The files that this build and configuration information is stored in are named build.gradle.kts, which are Kotlin script files. You benefit from the same autocompletion and compile-time safety as your main app source files written in Kotlin.

 When you first create your app, there are two build.gradle.kts files, one at the root/top level of the project and one specific to your app in the app module folder.

 The project-level build.gradle.kts file

 Let’s now have a look at the project-level build.gradle.kts file. This is where you set up all the root project settings, which can be applied to sub-modules/projects:

 plugins {
 alias(libs.plugins.android.application) apply false
 alias(libs.plugins.kotlin.android) apply false
 alias(libs.plugins.kotlin.compose) apply false
}

 Gradle works on a plugin system, so you can write your own plugin that does a task or series of tasks and plug it into your build pipeline. The three plugins listed in the preceding snippet do the following:

 	libs.plugins.android.application: This adds support to create an Android application

 	libs.plugins.jetbrains.kotlin.android: This provides integration and language support for Kotlin in the project

 	libs.plugins.kotlin.compose: This enables Jetpack Compose support for Kotlin

 The apply false statement enables these plugins only to sub-projects/modules, and not the project’s root level. The alias syntax refers to the version catalog we will discuss in the following subsection.

 The app-level build.gradle.kts file

 The build.gradle.kts app-level file is specific to your project configuration:

 plugins {
 alias(libs.plugins.android.application)
 alias(libs.plugins.kotlin.android)
 alias(libs.plugins.kotlin.compose)
}
android {
 namespace = "com.example.myapplication"
 compileSdk = 35
 defaultConfig {
 applicationId = "com.example.myapplication"
 minSdk = 24
 targetSdk = 35
 versionCode = 1
 versionName = "1.0"
 testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 isMinifyEnabled = false
 proguardFiles(
 getDefaultProguardFile("proguard-android-optimize.txt"),
 "proguard-rules.pro"
)
 }
 }
 compileOptions {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
 }
 kotlinOptions {
 jvmTarget = "11"
 }
 buildFeatures {
 compose = true
 }
}
dependencies {...}

 The plugins for Android, Kotlin, and Jetpack Compose, which are detailed in the build.gradle.kts root file, are applied to your project here in the plugins lines.

 The android block provided by the libs.plugins.android.application plugin is where you configure your Android-specific configuration settings:

 	namespace: This is set from the package name you specified when creating the project. It will be used for generating build and resource identifiers.

 	compileSdk: This is used to define the API level the app has been compiled with, and the app can use the features of this API and lower.

 	defaultConfig: This is the base configuration of your app.

 	applicationId: This is set to your app’s package and is the app identifier that is used on Google Play to uniquely identify your app. It can be changed to be different from the package name if required, but once you upload your app to the Google Play it is used to uniquely identify your app and can’t be changed.

 	minSdk: This is the minimum API level your app supports. This will filter out your app from being displayed in Google Play for devices that are lower than this.

 	targetSdk: This is the API level you are targeting. This is the API level your built app is intended to work on and has been tested with.

 	versionCode: This specifies the version code of your app. Every time an update needs to be made to the app, the version code needs to be increased by one or more.

 	versionName: A user-friendly version name that usually follows semantic versioning of X.Y.Z, where X is the major version, Y is the minor version, and Z is the patch version, for example, 1.0.3.

 	testInstrumentationRunner: This is the test runner to use for your UI tests.

 	buildTypes: Under buildTypes, a release is added that configures your app to create a release build. The isMinifyEnabled value, if set to true, will shrink your app size by removing any unused code, as well as obfuscating your app. This obfuscation step changes the name of the source code references to values such as a.b.c(). This makes your code less prone to reverse engineering and further reduces the size of the built app.

 	compileOptions: This is the language level of the Java source code (sourceCompatibility) and byte code (targetCompatibility).

 	kotlinOptions: This is the jvm library that the kotlin gradle plugin should use.

 	buildFeatures: This is where you configure specific parts of your build. In this case, we are specifying that we will use compose to create the UI rather than the legacy view system.

 	The dependencies block specifies the libraries your app uses on top of the Android platform SDK, as shown here (with added comments):
 dependencies {
 // Kotlin extensions denoted by .ktx
 // Android Kotlin language features
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.lifecycle.runtime.ktx)
 // Jetpack Compose UI
 implementation(libs.androidx.activity.compose)
 // Jetpack Compose Versioning Library
 implementation(platform(libs.androidx.compose.bom))
 // All Android UI SDK and tooling
 implementation(libs.androidx.ui)
 implementation(libs.androidx.ui.graphics)
 implementation(libs.androidx.ui.tooling.preview)
 implementation(libs.androidx.material3)
 // Standard Test libraries for unit tests
 testImplementation(libs.junit)
 // UI Test runner
 androidTestImplementation(libs.androidx.junit)
 // Libraries for creating Android UI tests
 androidTestImplementation(libs.androidx.espresso.core)
 androidTestImplementation(libs.androidx.ui.test.junit4)
 // AndroidX Versioning Library
 androidTestImplementation(platform(
 libs.androidx.compose.bom))
 // Debugging Tooling
 debugImplementation(libs.androidx.ui.tooling)
 debugImplementation(libs.androidx.ui.test.manifest)
}

 The dependencies listed here are a simplified version of the full details of the dependencies. This is configured in a file called the libs.versions.toml configuration file. Tom’s Obvious, Minimal Language (TOML) files are standard industry files designed to make configuring complex dependencies as simple as possible.

 Go to the top-level Gradle folder and open the libs.versions.toml file. You can use the shortcut double Shift in Android Studio to open the file dialog, start typing the file, and be given possible suggestions of what you are looking for. The following or similar will be shown (it is an abridged version and doesn’t show all the dependencies):

 [versions]
agp = "8.9.2"
kotlin = "2.0.21"
coreKtx = "1.16.0"
junit = "4.13.2"
junitVersion = "1.2.1"
espressoCore = "3.6.1"
lifecycleRuntimeKtx = "2.8.7"
activityCompose = "1.10.1"
composeBom = "2024.09.00"
[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx", version.ref = "coreKtx" }
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-junit = { group = "androidx.test.ext", name = "junit", version.ref = "junitVersion" }
androidx-espresso-core = { group = "androidx.test.espresso", name = "espresso-core", version.ref = "espressoCore" }
androidx-lifecycle-runtime-ktx = { group = "androidx.lifecycle", name = "lifecycle-runtime-ktx", version.ref = "lifecycleRuntimeKtx" }
androidx-activity-compose = { group = "androidx.activity", name = "activity-compose", version.ref = "activityCompose" }
androidx-compose-bom = { group = "androidx.compose", name = "compose-bom", version.ref = "composeBom" }
androidx-ui = { group = "androidx.compose.ui", name = "ui" }
androidx-ui-graphics = { group = "androidx.compose.ui", name = "ui-graphics" }
androidx-ui-tooling = { group = "androidx.compose.ui", name = "ui-tooling" }
androidx-ui-tooling-preview = { group = "androidx.compose.ui", name = "ui-tooling-preview" }
androidx-ui-test-manifest = { group = "androidx.compose.ui", name = "ui-test-manifest" }
androidx-ui-test-junit4 = { group = "androidx.compose.ui", name = "ui-test-junit4" }
androidx-material3 = { group = "androidx.compose.material3", name = "material3" }
[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
kotlin-compose = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin" }

 The dependency versions specified in the previous code section and the following sections of this and other chapters are subject to change and are updated over time, so they are likely to be higher when you create these projects.

 The configuration groups of [versions], [libraries], and [plugins] listed here contain the details of the dependencies we saw in the build.gradle.kts app file.

 The dependencies are identified in the [libraries] section by a group and a name, followed by a version. Although the names are simplified in the version catalog, this follows the Maven Project Object Model (POM) convention of using groupId, artifactId, and versionId. The groupId value is the group of dependencies the dependency comes from, artifactId is the unique name of the dependency, and versionId is the version number of the dependency. The versions are grouped together separately for ease of updating.

 The build system locates and downloads these dependencies to build the app from the repositories block detailed in the settings.gradle file, as explained in the following section.

 The implementation notation for adding these libraries in build.gradle.kts means that their internal dependencies will not be exposed to your app, making compilation faster.

 The next Gradle file to examine is settings.gradle, which initially looks like this:

 pluginManagement {
 repositories {
 google {
 content {
 includeGroupByRegex("com\\.android.*")
 includeGroupByRegex("com\\.google.*")
 includeGroupByRegex("androidx.*")
 }
 }
 mavenCentral()
 gradlePluginPortal()
 }
}
dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
 repositories {
 google()
 mavenCentral()
 }
}
rootProject.name = "My Application"
include(":app")

 When you first create a project with Android Studio, there will only be one app module, include(:app,), but when you add more features, you can add new modules that are dedicated to containing the source of a feature rather than packaging it in the main app module.

 These are called feature modules, and you can supplement them with other types of modules, such as shared modules, which are used by all other modules, such as a networking module. This file also contains the repositories of the plugins and dependencies to download from, in separate blocks for plugins and dependencies.

 Setting the value of RepositoriesMode.FAIL_ON_PROJECT_REPOS ensures that all dependency repositories are defined here; otherwise, a build error will be triggered.

 Exercise 1.04 – Exploring how Material Design in Jetpack Compose is used to theme an app

 In this exercise, you will learn about the design language Material Design, created by Google in 2014 (now in its third version, Material 3), and use it to load a Material-Design-themed app. Material Design adds enriched UI elements based on real-world effects, such as lighting, depth, shadows, and animations. Perform the following steps to complete the exercise:

 	Create a new Android Studio project as you did in Exercise 1.01 – Creating an Android Studio project for your app.

 	The dependency that loads Material Design in build.gradle.kts is as follows:
 implementation(libs.androidx.material3)

 	Next, open the Color.kt file located in the app | src | main | java | com.example.myapplication | ui.theme package (the import statements have been omitted):
 val Purple80 = Color(0xFFD0BCFF)
val PurpleGrey80 = Color(0xFFCCC2DC)
val Pink80 = Color(0xFFEFB8C8)
val Purple40 = Color(0xFF6650a4)
val PurpleGrey40 = Color(0xFF625b71)
val Pink40 = Color(0xFF7D5260)

 The format is based on the alpha, red, green, blue (ARGB) color space, so the first four characters are for alpha (transparency), the next two for red, the next two for green, and the last two for blue. For alpha, 0x00 is completely transparent through to 0xFF, which is completely opaque. For the colors, 00 means none of the color is added to make up the composite color, and FF means all of the color is added.

 	Open the Theme.kt file in the same ui.theme package:
 private val DarkColorScheme = darkColorScheme(
 primary = Purple80,
 secondary = PurpleGrey80,
 tertiary = Pink80
)
private val LightColorScheme = lightColorScheme(
 primary = Purple40,
 secondary = PurpleGrey40,
 tertiary = Pink40
 /* Other default colors to override
 background = Color(0xFFFFFBFE),
 surface = Color(0xFFFFFBFE),
 onPrimary = Color.White,
 onSecondary = Color.White,
 onTertiary = Color.White,
 onBackground = Color(0xFF1C1B1F),
 onSurface = Color(0xFF1C1B1F),
 */
)
@Composable
fun MyApplicationTheme(
 darkTheme: Boolean = isSystemInDarkTheme(),
 // Dynamic color is available on Android 12+
 dynamicColor: Boolean = true,
 content: @Composable () -> Unit
) {
 val colorScheme = when {
 dynamicColor &&
 Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.S -> {
 val context = LocalContext.current
 if (darkTheme)
 dynamicDarkColorScheme(context)
 else
 dynamicLightColorScheme(context)
 }
 darkTheme -> DarkColorScheme
 else -> LightColorScheme
 }
 MaterialTheme(
 colorScheme = colorScheme,
 typography = Typography,
 content = content
)
}

 The main color schemes for light and dark modes are defined as DarkColorScheme and LightColorScheme and use three colors from Color.kt to override some of the principal colors set in the app. This is only a fraction of the colors that are available to override and customize the color palette used in your app.

 MyApplicationTheme is what MainActivity uses within the setContent block to theme your app. Let’s examine the function. darkTheme is set to true depending on the system dark mode setting that is retrieved with the isSystemInDarkTheme() function. This is the darkTheme display toggle in the Settings app on the device. colorScheme is then set to either dynamicColor if it is set to true, or either DarkColorScheme or LightColorScheme, depending on whether darkTheme has been applied. dynamicColor is constructed from colors that are extracted from the device’s home screen and lock screen. Most apps will require setting their own theming rather than a system-derived one, so this is usually not the styling you require and can be removed to leave it as follows:

 val colorScheme = when {
 darkTheme -> DarkColorScheme
 else -> LightColorScheme
 }

 	Next, open the Type.kt file:
 val Typography = Typography(
 bodyLarge = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Normal,
 fontSize = 16.sp,
 lineHeight = 24.sp,
 letterSpacing = 0.5.sp
),
 /* Other default text styles to override
 titleLarge = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Normal,
 fontSize = 22.sp,
 lineHeight = 28.sp,
 letterSpacing = 0.sp
),
 labelSmall = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Medium,
 fontSize = 11.sp,
 lineHeight = 16.sp,
 letterSpacing = 0.5.sp
)
 */
)

 The Material Design specification consists of 13 Text styles. Each one has a default, but you can override them. Here, bodyLarge TextStyle is being overridden with some custom settings – bodyLarge is the default TextStyle value used for all Text composables in your app.

 	Now, go back to the Theme.kt file, and you will see that the Typography property defined in Type.kt is used to set the typography used on the MaterialTheme theme that is created:
 MaterialTheme(
 colorScheme = colorScheme,
 typography = Typography,
 content = content
)

 	The final argument in MaterialTheme is content, which applies the theme in MainActivity:

 The great thing about using a theme is that you can style all your composables in one place instead of individually setting them on each composable. There is always the option to set a style on a composable to override the global setting if you wish.

 	To see dynamic theming in action, open the Type.kt file again, and change it to add the color property with a value of Color.Red to the bodyLarge style. Replace the existing code with the following:
 import androidx.compose.ui.graphics.Color
val Typography = Typography(
 bodyLarge = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Normal,
 fontSize = 16.sp,
 lineHeight = 24.sp,
 letterSpacing = 0.5.sp,
 color = Color.Red
)
)

 	The use of sp in the preceding code block stands for scale-independent pixels. This unit type represents the same values as density-independent pixels, which define the size measurement according to the density of the device that your app is being run on, and also changes the text size according to the user’s preference, defined in Settings | Display | Font style (this might be Font size and style or something similar, depending on the exact device you are using).

 	Now, run the app. The Greeting composable text will be shown in red.

 	Go back to the MainActivity Greeting composable, add the line import androidx.compose.material3.MaterialTheme to the list of imports, and set a style directly on the Text Composable:
 @Composable
fun Greeting(
 name: String, modifier: Modifier = Modifier
) {
 Text(
 style = MaterialTheme.typography.displayLarge,
 text = "Hello $name!",
 modifier = modifier
)
}

 The text color now goes back to black and displays the displayLarge style from MaterialTheme.

 In this exercise, you’ve learned how Material Design in Jetpack Compose can be used to theme an app. Now that you’ve learned how the project is built and configured, in the next section, you’ll explore the project structure in detail, learn how it has been created, and gain familiarity with the core areas of the development environment.

 Android application structure

 Now that we have covered how the Gradle build tool works, we’ll explore the rest of the project. The simplest way to do this is to examine the folder structure of the app. Open up the Project tool window.

 When you select it, you will see a view like the screenshot in Figure 1.20. If you can’t see any window bars on the left-hand side of the screen, then go to the top toolbar and select View | Appearance | Tool Window Bars and make sure it is ticked.

 Open the corresponding folders in the Android display. This view neatly groups the app folder structure, so let’s look at it:

 [image: Figure 1.20 – Overview of the files and folder structure in the app]
 Figure 1.20 – Overview of the files and folder structure in the app

 The Kotlin file (MainActivity), which you’ve specified as running when the app starts, is as follows:

 import…
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContent {
 MyApplicationTheme {
 Scaffold(
 modifier = Modifier.fillMaxSize()
) { innerPadding ->
 Greeting(
 name = "Android",
 modifier = Modifier
 .padding(innerPadding)
)
 }
 }
 }
 }
}
@Composable
fun Greeting(name: String, modifier: Modifier = Modifier) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}
@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyApplicationTheme {
 Greeting("Android")
 }
}

 The import statements include the libraries and the source of what this activity uses. The class MainActivity : ComponentActivity() class header creates a class that extends ComponentActivity. In Kotlin, the : character is used for both deriving from a class (also known as inheritance) and implementing an interface.

 ComponentActivity is the foundational base class for activities that provides commonly used component and feature support for Android development.

 Android activities have many callback functions you can override at different points of the activity’s life. This is known as the activity lifecycle. For this activity, as you want to display a screen with a layout, you override the onCreate function, as shown here:

 override fun onCreate(savedInstanceState: Bundle?)

 The override keyword in Kotlin specifies that you are providing a specific implementation for a function defined in the parent class. The fun keyword (as you may have guessed) stands for function. The savedInstanceState: Bundle? parameter is Android’s mechanism for restoring previously saved state. For this simple activity, you haven’t stored any state, so this value will be null. The question mark, ?, that follows the type declares that this type can be null.

 The super.onCreate(savedInstanceState) line calls through to the overridden method of the base class, and finally, setContent {…} loads the content we want to display.

 enableEdgeToEdge() allows your app to use the largest screen display it can to create an immersive experience for your app.

 MyApplicationTheme applies the material theme hierarchically to the composables contained within it. The first composable is Scaffold, which provides the structure of how the screen is made up. It can contain top bars, bottom bars, and other features you will learn about in subsequent chapters. Currently, it just holds an example composable called Greeting, which displays a Text composable. innerPadding accounts for managing the padding between the container, which is Scaffold and its content here. This is usually to ensure that the content does not overlap with UI elements, such as the status bar.

 The Modifier object enables you to add a host of appearance and behaviors to your composables, and the @Preview annotation enables you to preview the result of those changes without having to run the app up. In the top-right corner of the main window, there are icons that change the view of the code editor to see solely code (the left-hand icon), half code and half previews (the middle icon), and just the previews (the right-hand icon).

 [image: Figure 1.21 – Code editing view icons]
 Figure 1.21 – Code editing view icons

 Let’s have a look at some other files (Figure 1.21) present in the folder structure:

 	ExampleInstrumentedTest: This is an example UI test. You can check and verify the flow and structure of your app by running tests on the UI when the app is running.

 	ExampleUnitTest: This is an example unit test. An essential part of creating an Android app is writing unit tests to verify that the source code works as expected.

 	ic_launcher_background.xml and ic_launcher_foreground.xml: These two files together make up the launcher icon of your app in vector format, which will be used by the ic_launcher.xml launcher icon file in Android API 26 (Oreo) and above.

 The ic_launcher.webp files are the .webp launcher icons that have an icon for every different density of devices. This image format was created by Google and has greater compression compared to the .png images. As the minimum version of Android we are using is API 24: Android 7.0 (Nougat), these .webp images are included, as support for the launcher vector format was not introduced until Android API 26 (Oreo).

 Google created density bucket resources so that the correct image would be selected to be displayed depending on how many dots per inch (DPI) the device has. These density bucket resources are created as folders that contain the resources for the different densities. As well as density, the Android SDK supports using bucket resources for device localization, screen sizes, and more. See the full details at the link here: https://packt.link/KIyHQ.

 The different density qualifiers and their details are as follows:

 	nodpi: Density-independent resources

 	ldpi: Low-density screens of 120 DPI

 	mdpi: Medium-density screens of 160 DPI (the baseline)

 	hdpi: High-density screens of 240 DPI

 	xhdpi: Extra-high-density screens of 320 DPI

 	xxhdpi: Extra-extra-high-density screens of 480 DPI

 	xxxhdpi: Extra-extra-extra-high-density screens of 640 DPI

 	tvdpi: Resources for televisions (approx. 213 DPI)

 The baseline density bucket was created at 160 DPI for medium-density devices and is called mdpi. This represents a device where an inch of the screen is 160 dots/pixels, and the largest display bucket is xxxhdpi, which has 640 DPI. Android determines the appropriate image to display based on the individual device.

 The Pixel 9 virtual device has a density of 422 DPI, so it uses resources from the extra-extra-high-density bucket (xxhdpi), which is the closest match. Android has a preference for scaling down resources to best match density buckets, so a device with 400 DPI, which is halfway between the xhdpi and xxhdpi buckets, is likely to display the 480 DPI asset from the xxhdpi bucket. The terms dpi and dp are used interchangeably to mean DPI.

 To create alternative bitmap drawables for different densities, you should follow the 3:4:6:8:12:16 scaling ratio between the six primary densities. For example, if you have a bitmap drawable that’s 48x48 pixels for medium-density screens, all the different sizes should be as follows:

 	36x36 (0.75x) for low density (ldpi)

 	48x48 (1.0x) for medium density (mdpi)

 	72x72 (1.5x) for high density (hdpi)

 	96x96 (2.0x) for extra-high density (xhdpi)

 	144x144 (3.0x) for extra-extra-high density (xxhdpi)

 	192x192 (4.0x) for extra-extra-extra-high density (xxxhdpi)

 For a comparison of these physical launcher icons per density bucket, refer to the following table:

 [image: Figure 1.22 – Comparison of principal density bucket launcher image sizes]
 Figure 1.22 – Comparison of principal density bucket launcher image sizes

 Launcher icons are made slightly larger than normal images within your app, as they will be used by the device’s launcher. As some launchers can scale up the image, this ensures there is no pixelation or blurring of the image.

 Now, you are going to look at some of the resources the app uses. These can be referenced in code, as you have seen in the Color.kt file for creating colors to set up MaterialTheme in Jetpack Compose. They can also be created in XML to be used by the legacy XML UI display.

 In the colors.xml file, you define the colors you want to use in hexadecimal format for XML layouts:

 <?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="purple_200">#FFBB86FC</color>
<color name="purple_500">#FF6200EE</color>
<color name="purple_700">#FF3700B3</color>
<color name="teal_200">#FF03DAC5</color>
<color name="teal_700">#FF018786</color>
<color name="black">#FF000000</color>
<color name="white">#FFFFFFFF</color>
</resources>

 The only way they differ from the colors defined in Color.kt is that the transparency is created with two characters and does not contain the leading 0x.

 If no transparency is required, you can omit the first two characters. So, to create fully blue and 50% transparent blue colors, here’s the format:

 <color name="colorBlue">#0000FF</color>
<color name="colorBlue50PercentTransparent">#770000FF</color>

 The strings.xml file lists all the text displayed in the app:

 <resources>
<string name="app_name">My Application</string>
</resources>

 You can use hardcoded strings in your app, but this leads to duplication. By adding strings as resources, you can also update the string in one place if it is used in different places in the app.

 Common styles you would like to use in the XML UI display throughout your app are added to themes.xml:

 <?xml version="1.0" encoding="utf-8"?>
<resources>
 <style
 name="Theme.MyApplication"
 parent="android:Theme.Material.Light.NoActionBar"
 />
</resources>

 You’ve now explored the core areas of the app. In the next exercise, you will be introduced to UI elements allowing the user to interact with your app.

 Exercise 1.05 – Building a Jetpack Compose UI to display a bespoke greeting to the user

 The goal of this exercise is to add the capability for users to add and edit text and then submit this information to display a bespoke greeting with the entered data. You will need to add editable text composables to achieve this. The TextField composable is typically how this is done. Let’s look at an example and see how it renders on the screen:

 var firstName by remember { mutableStateOf("") }
TextField(
 value = firstName,
 onValueChange = {firstName = it},
 label = { Text("First Name") },
)

 This uses the default Material style to display a title, as shown in Figure 1.23:

 [image: Figure 1.23 – TextField with a label]
 Figure 1.23 – TextField with a label

 There are a few fundamental concepts of Compose to explore here. First, is the concept of state, which, in Compose, is any value that is subject to change. When a property has a state, then changes to that state cause a recomposition.

 Recomposition is a redrawing of the UI in response to state changes. Depending on the state that is updated, the whole UI may not be redrawn. Compose evaluates the parts of the UI that are affected by the change in state and only redraws the necessary composables that render the state.

 In order to tell Compose that there is a state that has to be observed for changes, you have to create these state objects. mutableStateOf("Alex")} creates one of the state objects with an initial value of Alex. The mutable naming signifies it is subject to change.

 Returning to the TextField example, every time the value of this state changes, the UI updates. So, within the onValueChange parameter, every time a character in TextField is added or deleted, the UI will recompose.

 The remember function in Compose works hand in hand with MutableState. Changes to State trigger a recomposition, but the value will not be remembered and the UI updated unless the remember function is used. MutableState is a state holder, which has one property named value. You can access the value property using the by keyword, which delegates getting and setting the value to MutableState:

 var firstName by remember { mutableStateOf("") }
firstName = "Alex"
println(firstName)

 If remember is not used, then only the initial value of the state will be shown, which happens when the composition happens for the first time.

 Every time a user interacts with TextField by entering text, the value of firstName is updated. This is done with the onValueChange parameter. It’s a callback that is triggered whenever the text changes. Within onValueChange, the parameter named it is the value of the updated text. In the preceding example, we are updating the firstName property with this field.

 There is another editable text composable called OutlinedTextField, which adds some more attractive styling with an outline around the text:

 var firstName by remember { mutableStateOf("Alex")}
OutlinedTextField(
 value = firstName,
 onValueChange = {firstName = it},
 label = { Text("First Name") },
)

 The output is as follows:

 [image: Figure 1.24 – OutlinedTextField material with a hint]
 Figure 1.24 – OutlinedTextField material with a hint

 You will now change the default Greeting composable text in your app so a user can enter their first and last name and display a greeting by pressing a button. To do this, perform the following steps:

 	Create a new Android Studio project, as you did in Exercise 1.01 – Creating an Android Studio project for your app, called My Application.

 	Create the labels and text you are going to use in your app by adding these entries to app | src | main | res | values | strings.xml:
 <string name="first_name">First name:</string>
<string name="last_name">Last name:</string>
<string name="enter_button">Enter</string>
<string name="welcome_to_the_app">Welcome to the app
</string>
<string name="please_enter_a_name">Please enter a full name!</string>

 	Next, add the required imports to the end of the import list in MainActivity:
 import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.ui.res.stringResource
import androidx.compose.foundation.layout.Arrangement
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.foundation.layout.fillMaxWidth
import androidx.compose.foundation.layout.padding
import androidx.compose.material3.Button
import androidx.compose.material3.OutlinedTextField
import androidx.compose.ui.Alignment
import androidx.compose.ui.platform.LocalContext
import androidx.compose.ui.unit.dp

 	Create three properties to store the first name, last name, and full name at the top of the Scaffold composable and remove the Greeting composable:
 var firstName by remember { mutableStateOf("") }
var lastName by remember { mutableStateOf("") }
var fullName by remember { mutableStateOf("") }

 	Next, add the two string resources, which will be used to display the welcome message and also the error text. In Compose, in order to access a string resource, you use the stringResource composable, passing in the ID of the string you want to retrieve from the strings.xml file:
 var welcomeMessage =
 stringResource(id = R.string.welcome_to_the_app)
var enterNameErrorMessage =
 stringResource(id = R.string.please_enter_a_name)

 	Next, we need to add a layout composable to arrange how we add the content. Add a Column layout composable to display the content in a column:
 Column(
 modifier = Modifier
 .fillMaxSize()
 .padding(innerPadding)
 .padding(16.dp),
 horizontalAlignment =
 Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.spacedBy(16.dp)
) {
 // Content goes here
}

 Column has a Modifier extension function of fillMaxSize() to make the column fill all the available height and width. innerPadding sets the content area of the app padding, taking the Android system UI into account, such as the status bar. This is followed by adding padding, which is the space between the inside of the composable and its content, which should be 16.dp. Modifiers serve as fundamental building blocks of Compose UIs. They are used to decorate and also modify a composable’s behavior and appearance. Successive changes can be added by chaining some Modifier properties (with the . notation), so setting these as individual named arguments is not required, making the code more concise.

 horizontalAlignment is the horizontal alignment of the content within the Column layout, which is centered. verticalArrangement is how the content is spaced from top to bottom. In this case, the distance between the embedded composables will be 16 DPI.

 	Add two OutlinedTextField composables for the first name and last name in the Column layout composable displaying the firstName and lastName MutableState properties, and update the mutable properties as text gets entered:
 OutlinedTextField(
 modifier = Modifier.fillMaxWidth(),
 value = firstName,
 onValueChange = { firstName = it },
 label = {
 Text(
 text = stringResource(
 id = R.string.first_name
)
)
 },
)
OutlinedTextField(
 modifier = Modifier.fillMaxWidth(),
 value = lastName,
 onValueChange = { lastName = it },
 label = {
 Text(
 text = stringResource(
 id = R.string.last_name
)
)
 }
)

 	Now, we add the interaction to display a welcome message with validation of the text input. Add a button with behavior to display the user’s full name and welcome them to the app, or show an error message if either of the OutlinedTextField composables are empty:
 val context = LocalContext.current
Button(
 modifier = Modifier.fillMaxWidth(),
 onClick = {
 if (
 firstName.isNotBlank() &&
 lastName.isNotBlank())
 fullName = "$firstName $lastName"
 else {
 fullName = ""
 val toast = Toast.makeText(
 context,
 enterNameErrorMessage,
 Toast.LENGTH_LONG
)
 toast.setGravity(Gravity.CENTER, 0, 0)
 toast.show()
 }
 }
) {
 Text("Enter")
}
if (fullName.isNotBlank()) {
 Text(text = "$welcomeMessage $fullName!")
}

 The code block within onClick here is a callback of the action that happens when the user clicks the button. It checks that firstName and lastName are not blank, which means no characters have been entered, and also that no whitespace characters, such as tabs or spaces, have been entered. If the validation is successful, then the welcome message is formatted with Kotlin’s string templates, Text(text = "$welcomeMessage $fullName!"), which enables text to be evaluated and output using the $ (dollar) sign.

 	If the form fields have not been filled in correctly, then fullName is cleared and a Toast message is displayed:
 else {
 fullName = ""
 val toast = Toast.makeText(
 context,
 enterNameErrorMessage,
 Toast.LENGTH_LONG
)
 toast.setGravity(Gravity.CENTER, 0, 0)
 toast.show()
}

 The Toast object specified is a small text dialog that appears above the main layout for a short time to display a message to the user if validation fails.

 	Run the app, enter text into the fields, and verify that a greeting message is shown when both text fields are filled in, and a pop-up message appears with why the greeting hasn’t been set if both fields are not filled in. You should see the following display for each one of these cases:

 	
 [image:]

 	
 [image:]

 Figure 1.25 – The app with the name filled in correctly and with an error

 The preceding exercise introduced you to adding interactivity to your app with OutlinedTextField, adding clicklistener to respond to button events, and performing some validation.

 With the knowledge gained from the chapter, let’s start with the following activity.

 Activity 1.01 – Producing an app to create RGB colors

 In this activity, we will look into a scenario that uses validation. Suppose you have been tasked with creating an app that shows how the RGB channels of red, green, and blue are added together in the RGB color space to create a color.

 Each RGB channel should be added as two hexadecimal characters, where each character can be a value of 0–9, A–F, or a–f. The values will then be combined to produce a six-character hexadecimal string that is displayed as a color within the app.

 This activity aims to produce a form with editable fields in which the user can add two hexadecimal values for each color. After filling in all three fields, the user should click a button that takes the three values and concatenates them to create a hexadecimal color string. This should then be converted to a color and displayed in the UI of the app.

 The following steps will help you complete the activity:

 	Create a new Android Studio project, as you did in Exercise 1.01 – Creating an Android Studio project for your app.

 	Add a title Text composable.

 	Add a brief description telling the user how to complete the form.

 	Add three MutableState properties for each of the three colors and another for a default color with mutableStateOf(androidx.compose.ui.graphics.Color.White).

 	Add three material OutlinedTextField composables with labels of Red Channel, Green Channel, and Blue Channel, initialized with an empty string.

 	Add a restriction to each field to allow entry of only two hexadecimal characters.

 You can achieve this with the following function:

 fun isValidHexInput(input: String): Boolean {
 return input.filter {
 it in '0'..'9' ||
 it in 'A'..'F' ||
 it in 'a'..'f'
 }.length == 2
}

 	Add a button that takes the inputs from the three color fields.

 	Add a view that displays the produced color in the layout. This can be achieved by creating a color string starting with a # character and then using Kotlin string templates to concatenate the colors together.

 	Convert the string to a color using Color(colorString.toColorInt()), and set it as the background of Text with Modifier.background(colorToDisplay).padding(24.dp).

 	Finally, display the RGB color created from the three channels in the layout. The final output should look like this (the color will vary depending on the inputs):

 [image: Figure 1.26 – Output when the color is displayed]
 Figure 1.26 – Output when the color is displayed

 The solution to this activity can be found at https://packt.link/Y0uCY.

 Summary

 This chapter has covered a lot about the foundations of Android development. You started with how to create Android projects using Android Studio and then created and ran apps on a virtual device.

 The chapter then progressed by exploring the AndroidManifest file, which details the contents of your app and the permission model, followed by an introduction to Gradle and the process of adding dependencies and building your app.

 This was then followed by going into the details of an Android application and the files and folder structure. Jetpack Compose was introduced, and exercises were iterated to illustrate how to construct UIs with an introduction to Google’s Material Design.

 The next chapter will build on this knowledge by learning about the activity lifecycle, activity tasks, and launch modes, persisting and sharing data between screens, and how to create robust user journeys through your app.

 	
 Unlock this book’s exclusive benefits now

 Scan this QR code or go to packtpub.com/unlock, then search this book by name.

 	
 [image:]
 [image:]

 	
 Note: Keep your purchase invoice ready before you start.

 2

 Building User Screen Flows

 In this chapter, you’ll learn how the Android system interacts with your app through the Android lifecycle, how you are notified of changes to your app’s state, and how you can use the Android lifecycle to respond to these changes.

 You will start developing the UI with Jetpack Compose and use some of the core composables and layout groups to achieve this.

 You’ll progress to learning how to create user journeys through your app and how to share data between screens. You’ll be introduced to different techniques to achieve these goals so that you’ll be able to use them in your own apps and recognize them when you see them used in other apps.

 You’ll also learn how activities and launch modes function and how to save and restore the state of your activity, use logs to report on the flow of the app, and share data between screens.

 By the end of the chapter, you will have learned the fundamentals of working with activities and building user screen flows. You will have been shown how to use Jetpack Compose to create a UI, and you will also have learned how to save state and handle changes made by a user’s interaction with your apps.

 We will cover the following topics in the chapter:

 	The activity lifecycle

 	Saving and restoring the activity state

 	Activity interaction with intents

 	Intents, tasks, and launch modes

 Technical requirements

 The complete code for all the exercises and the activities in this chapter is available on GitHub at https://packt.link/IGQP7.

 The activity lifecycle

 In Chapter 1, Creating Your First App, we used the onCreate(saveInstanceState: Bundle?) method to display the composable UI for our screen. Now, we’ll explore in more detail how the Android system interacts with our application to make this happen. As soon as an activity is launched, it goes through a series of steps to take it through initialization, from preparing to be displayed to being partially displayed and then being fully visible.

 There are also steps that correspond with your application being hidden, backgrounded, and then destroyed. This process is called the activity lifecycle. For every one of these steps, there is a callback that your activity can use to perform actions such as creating and changing the display, saving data when your app has been put into the background, and then restoring that data after your app comes back into the foreground.

 These callbacks are made on the parent activity, and it’s up to you to decide whether you need to implement them in your own activity to take any corresponding action. Each of these callback functions has the override keyword. The override keyword in Kotlin means that either this function is providing an implementation of an interface or an abstract method; or, in the case of your activity here, which is a subclass, it is providing the implementation that will override its parent.

 Now that you know how the activity lifecycle works in general, let’s go into more detail about the principal callbacks you will work with in order, from creating an activity to the activity being destroyed:

 	override fun onCreate(savedInstanceState: Bundle?): This is the callback that you will use the most for activities that draw a full-sized screen. At this stage, after the method has finished, it is still not displayed to the user, although it will appear that way if you don’t implement any other callbacks. You usually set up the UI of your activity here by calling the setContent{…} method and carrying out any initialization that is required.

 This method is only called once in its lifecycle, unless the activity is created again. This happens by default for some actions (such as rotating the phone from portrait to landscape orientation). The savedInstanceState parameter of the Bundle? type (? means the type can be null) in its simplest form is a map of key-value pairs optimized to save and restore data.

 It will be null if this is the first time that an activity has been run after the app has started, if an activity is being created for the first time, or if an activity is being recreated without any state being saved.

 	override fun onRestart(): When an activity restarts, this is called immediately before onStart(). It is important to be clear about the difference between restarting an activity and recreating an activity. When an activity is backgrounded by pressing the Home button, when it comes back into the foreground again, onRestart() will be called. Recreating an activity is what happens when a configuration change happens, such as the device being rotated. The activity is finished and then created again, in which case, onRestart() will not be called.

 	override fun onStart(): This is the first callback made when an activity is brought from the background to the foreground.

 	override fun onRestoreInstanceState(savedInstanceState: Bundle?): If the state has been saved using onSaveInstanceState(outState: Bundle?), this is the method that the system calls after onStart(), where you can retrieve the Bundle state instead of restoring the state using onCreate(savedInstanceState: Bundle?).

 	override fun onResume(): This callback is run as the final stage of creating an activity for the first time, and also when the app has been backgrounded and then is brought into the foreground. Upon the completion of this callback, the activity is ready to be used and receive user events.

 	override fun onSaveInstanceState(outState: Bundle?): If you want to save the state of an activity, this function can do this for you. You add key-value pairs using one of the convenience functions, depending on the data type. The data will then be available if your activity is recreated in onCreate(saveInstanceState: Bundle?) and onRestoreInstanceState(savedInstanceState: Bundle?).

 	override fun onPause(): This function is called when an activity starts to be backgrounded or another dialog or activity comes into the foreground.

 	override fun onStop(): This function is called when an activity is hidden, either because it is being backgrounded or another activity is being launched on top of it.

 	override fun onDestroy(): This is called by the system to kill an activity when system resources are low, when finish() is called explicitly on the activity, or, more commonly, when an activity is killed by the user swiping up to close the app from the Overview menu.

 The flow of callbacks/events is illustrated in the following diagram:

 [image: Figure 2.1 – Activity lifecycle]
 Figure 2.1 – Activity lifecycle

OEBPS/Images/B30938_01_02.png
New Project

Empty Activity

Create a new empty activity with Jetpack Compose.

ame (s ptemion
Package name ‘com.example.myapplication

swveloaton ks A ppcatonswit K- T EdiniChapiar0Zyhgpicaian
- 2120 Chowgar: At 70

© Your app willrun on approximately 98.6% of devices.
Help me choose

Build configuration language () | Kotlin DSL (build gradle kts) (Recommended]

Cancel | | Previous

OEBPS/Images/B30938_01_Figure_1.3.png

OEBPS/Images/B30938_02_01.png
User navigates
tothe Actuy

e

Apps with igher
prority need memory

Activity Lifecycle.

Activity Launched

onCreated

onstart)

e

Activiyisiso

R

[om0

T

Aciviyisoctve

Activity Running

Actity becomesinactive
‘o< anothar Actvity comes.
Tnto forsground

Userretormsto
e Actity

E R —

Actiityisno
onger visibe

r—l—

Usernavigates
‘ot Actiity

[onstont
Lo]

The Activiy s fishing o beng
destroyed by thesystem

Activity Shutdown

OEBPS/Images/Unlock3.png

OEBPS/Images/blockquote-top.png

OEBPS/Images/cloud-computing.png

OEBPS/Images/B30938_01_10.png
Device Manager

B8 LT
Name
Pixel 9

2 Android 16.0 (‘Baklava®) | armé4.

APl

Type

Virtual

=]

OEBPS/Images/B30938_01_Figure_1.1.png

OEBPS/Images/B30938_01_01.png
e e New Project

Templates.

Phone and Tablet

Wear 05

cmn
Q +

Television

Automot

No Activity Empty Activity Gemini API Starter

Basic Views Activity Bottom Navigation Views Activity Empty Views Activity

=

Navigation Drawer Views Activity Responsive Views Activity Game Activity (C++)

OEBPS/Images/tip.png

OEBPS/Images/Unlock.png

OEBPS/Images/B30938_01_Figure_1.2.png
b

OEBPS/Images/cover.png
How to Build Android
Applications with Kotlin

A hands-on guide to developing, testing, and
publishing production-grade Android 16 apps

ALEX FORRESTER | ERAN BOUDJNAH
ALEXANDRU DUMBRAVAN | JOMAR TIGCAL

OEBPS/Images/B30938_01_21.png
First name:

OEBPS/Images/B30938_01_09.png
Confirm Download
Download Google Play ARM 64 v8a System

Image (1.7 GB)?

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B30938_01_17.png
-

Android

v [3app
~ [manifests
) AndroidManifest.xmi
~ [Jkotlin+java
~ [com.example.myapplication
~ [uitheme
[X Colorkt
[X Themekt
(X Typekt
(X MainActivity kt
~ [com.example.myapplication (androidTest)
(@ ExamplelnstrumentedTest
~) com.example.myapplication (test)
(G ExampleUnitTest
v Cares
~ [drawable
</> ic_launcher_background.xml
</> ic_launcher_foreground.xmi
~) mipmap
~ Bic_launcher (6)
ic_launcher.webp (hdpi)
E9 ic_launcher.webp (mdpi)
£ ic_launcher.webp (xhdpi)
£ ic_launcher.webp (xxhdpi)
£ ic_launcher.webp (xxxhdpi)
</> ic_launcher.xml (anydpi-v26)
> BJic_launcher_round (6)
v [values
</> colors.xml
</> strings.xml
</>themes.xml
> Exml
[2res (generated)
> &7 Gradle Scripts

S

><

OEBPS/Images/B30938_01_04.png
Verify Settings

If you want to review or change any of your installation settings, click Previous.

Current Settings:

Setup Type:

Standard

SDK Folder:

[Users/alexforrester/Library/Android/sdk

Total Download Size:

486 MB

SDK Components to Download:
Android Emulator 293 MB
Android SDK Build-Tools 36 73.3 MB
Android SDK Platform 36 61.3MB
Android SDK Platform-Tools ~ 11.9 MB

Sources for Android 36 46.4 MB

concel | preious

OEBPS/Images/Packt_Logo_New.png
<pAackn

OEBPS/Images/Unlock-01.png
& g |
LUNLOCK NOW‘

OEBPS/Images/B30938_01_22_b.png
10430 © B

First name:

|/Me1‘|

‘ Last name:

© Please enter a full name!

OEBPS/Images/B30938_01_16.png
G

Before you continue to Google

Weuse and data to
% Deliver and maintain Google services.

Track outages and protect against spam,
fraud and abuse

Measure audience engagement and site
Statistics to understand how our services are
used and enhance the quality of those

If you choose to ‘Accept af, we will also use
cookies and data to

% Develop and improve new services
Deliver and measure the effectiveness of ads

‘Show personalised content, depending on
your settings.

‘Show personalised ads, depending on your

@ settings

1f you choose to Reject al, we will not use cookies.
for these additional purposes.

Non-personalised content s Influenced by things
Iike the content that you're currently viewing,
activity n your active Search session, and your
location. Non-personalised ads are influenced by
the content that you're currently viewing and your
general location. Personalised content and ads can
also Include more relevant results,

Readmore v

OEBPS/Images/B30938_01_03.png
Bea9

[

L T R P s SO r—
e

y

omonte

A T
frtiorie ettt

Scatonaosiien « e FEASE200) {Snoroatinn
et

i vt ettt

i eeting(sn St mossrir: ossrin « ositiar) (
t

OEBPS/Images/highlighter.png

OEBPS/Images/B30938_01_20.png
First name:

Alex|

OEBPS/Images/pdf.png

OEBPS/Images/B30938_01_15.png
-
Webpage not available

The webpage at https://www.google.com/ could not be
loaded because:

net:ERR_CACHE_MISS

OEBPS/Images/B30938_01_07.png
Form Factor
© Phone
Tablet

) Wear 0S

) Desktop.

™
Automotive

Show obsolete device
profiles

New hardware profile...

Add Device

([search for a device by name J®
Name Play APl Width Helght Density
% Small Phone B 24+ 720 1280 3200pi
% Medium Phone B 24+ 1080 2400 4200pi
% Pixel 9 Pro XL B 35+ 134 2002 4800pi
% Pixel 9 Pro Fold B 3se 200 2152 3900pi
% Pixel 9 Pro B a5+ 1280 2856 4800pi
& Pixel 9 B 35+ 1080 2626 4200pi
@ Pivel 8 » 34+ 1080 2400 4200pi
% Pixel 8Pro B 34+ 134 2002 480pi
& Pixel s » 34+ 1080 2400 4200pi
% Pixel Fold B a4s 208 1840 4200pi
& Pixel 72 B 34+ 1080 2400 420dpi
% Pixel 7Pro B 3%+ 1440 3120 560dpi
% Pixel7 B 3%+ 1080 2400 420dpi
% Pixel 62 » 33 1080 2400 4200pi
% Pixel 6 Pro 3 a0 320 560dpi
& Pixel & 3+ 1080 2400 420pi
& Pixel s 30+ 1080 2340 440pi
& Pixel 40 30+ 1080 2340 440dpi
% Pixel 4 XU 20+ 1440 3040 560dpi
% Pixel 4 B> 29+ 1080 2280 4400pi
28+ 1080 2160 400dpi
& Pixel 33 » 28 1080 220 4400pi

Import hardware prof... Goncel || Previous || Next inish

OEBPS/Images/B30938_01_22_a.png
1045

> © o

Firstname:

(Alex
Lostname.
|’ Forrester

Welcome to the app Alex Forrester!

OEBPS/Images/B30938_01_06.png
Device Manager

B+ 2 M

N¢ Create Virtual Device API Type

Select Remote Devices

OEBPS/Images/sparkler.png

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Get in touch

 		Share Your Thoughts

 		Android Foundation

 		Creating Your First App

 		Getting the most out of this book – get to know your free benefits

 		Next-gen reader

 		Interactive AI assistant (beta)

 		DRM-free PDF or ePub version

 		Technical requirements

 		Creating an Android project with Android Studio

 		Exercise 1.01 – Creating an Android Studio project for your app

 		Setting up a virtual device and running your app

 		Exercise 1.02 – Setting up a virtual device and running your app on it

 		The Android manifest file

 		Exercise 1.03 – Configuring the Android manifest internet permission

 		Using Gradle to build, configure, and manage app dependencies

 		The project-level build.gradle.kts file

 		The app-level build.gradle.kts file

 		Exercise 1.04 – Exploring how Material Design in Jetpack Compose is used to theme an app

 		Android application structure

 		Exercise 1.05 – Building a Jetpack Compose UI to display a bespoke greeting to the user

 		Activity 1.01 – Producing an app to create RGB colors

 		Summary

 		Building User Screen Flows

 		Technical requirements

 		The activity lifecycle

 		Exercise 2.01 – logging activity callbacks

 		Saving and restoring the activity state

 		Exercise 2.02 – saving and restoring the state

 		Exercise 2.03 – saving and restoring state in Compose

 		Activity interaction with intents

 		Exercise 2.04 – an introduction to intents

 		Exercise 2.05 – retrieving a result from an activity

 		Intents, tasks, and launch modes

 		Exercise 2.06 – setting the launch mode of an activity

 		Activity 2.01 and/or Activity 2.02 – creating a login form

 		Summary

 		Developing the UI with Jetpack Compose

 		Technical requirements

 		Transitioning from XML layouts to Jetpack Compose

 		Exercise 3.01 – Creating a counter app with legacy views

 		Exercise 3.02 – Creating an Android app with Compose

 		Essential composable functions

 		Text

 		Button

 		Icon

 		Image

 		Text input fields

 		Checkbox

 		Switch

 		Slider

 		RadioButton

 		Progress indicators

 		AlertDialog

 		Exercise 3.03 – Creating a Settings screen

 		Jetpack Compose layout groups

 		Box

 		Surface

 		Card

 		Column

 		Row

 		Exercise 3.04 – Creating a Profile page

 		Activity 3.01 – Creating a business metrics dashboard

 		Summary

 		Building App Navigation

 		Technical requirements

 		Creating a screen structure with a Scaffold composable and slots

 		Building a navigation graph

 		Exercise 4.1 – Building simple navigation

 		Implementing a navigation drawer

 		Exercise 4.2 – Creating an app with a navigation drawer

 		Adding bottom navigation

 		Exercise 4.3 – Adding bottom navigation to your app

 		Introducing tabbed navigation

 		Exercise 4.4 – Using tabs for app navigation

 		Activity 4.1 – Building primary and secondary app navigation

 		Summary

 		App Components

 		Essential Libraries – Ktor, Kotlin Serialization, and Coil

 		Technical requirements

 		Introducing REST, API, JSON, and XML

 		REST and APIs

 		JSON

 		XML

 		Processing JSON payloads

 		Fetching data from a network endpoint

 		Setting up Ktor and internet permissions

 		Making API requests with Ktor and displaying data

 		Exercise 5.1 – reading data from an API

 		Parsing a JSON response

 		Configuring Kotlin Serialization with Ktor

 		Defining data models for JSON mapping

 		Exercise 5.2 – extracting the image URL from the API response

 		Loading images from a remote URL

 		Exercise 5.3 – loading the image from the obtained URL

 		Activity 5.1 – displaying the current weather

 		Summary

 		Building Lists with Jetpack Compose

 		Technical requirements

 		Adding a lazy list to our layout

 		Exercise 6.01 – Adding an empty LazyColumn to your main activity

 		Populating a LazyColumn composable

 		Exercise 6.02 – Populating your LazyColumn composable

 		Responding to clicks in LazyColumn composables

 		Exercise 6.03 – Responding to clicks

 		Supporting different item types

 		Exercise 6.04 – Adding titles to lazy lists

 		Swiping to remove items

 		Exercise 6.05 – Adding swipe-to-delete functionality

 		Adding items interactively

 		Exercise 6.06 – Implementing an Add Cat button

 		Activity 6.01 – Managing a list of Items

 		Summary

 		Further reading

 		Android Permissions and Google Maps

 		Technical requirements

 		Requesting permission from the user

 		Exercise 7.01 – requesting the location permission

 		Showing a map of the user’s location

 		Exercise 7.02 – obtaining the user’s current location

 		Map clicks and custom markers

 		Exercise 7.03 – adding a custom marker where the map was clicked

 		Activity 7.01 – creating an app to find the location of a parked car

 		Summary

 		Services, WorkManager, and Notifications

 		Technical requirements

 		Starting a background task using WorkManager

 		Exercise 8.01 – Executing background work with the WorkManager class

 		Background operations noticeable to the user – using foreground workers

 		Exercise 8.02 – Tracking your SCA with a foreground worker

 		Canceling or updating ongoing work

 		Exercise 8.03 – Aborting SCA deployment by canceling a worker

 		Activity 8.01 – A reminder to drink water

 		Summary

 		Code Structure

 		Testing with JUnit, Mockito, MockK, and Compose

 		Technical requirements

 		Understanding the types of testing

 		Writing a simple JUnit test

 		Creating and running basic unit tests

 		Handling edge cases and improving test reliability

 		Using Android Studio to run tests

 		Mocking objects

 		Using MockK

 		Exercise 9.01 – Testing the sum of numbers

 		Writing integration tests

 		Robolectric

 		Jetpack ComposeTestRule library

 		Exercise 9.02 – Double integration

 		Running UI tests

 		Exercise 9.03 – Dealing with random events

 		Applying TDD

 		Exercise 9.04 – Using TDD to calculate the sum of numbers

 		Activity 9.01 – Developing with TDD

 		Summary

 		Coroutines and Flow

 		Technical requirements

 		Using Coroutines on Android

 		Coroutine builders

 		Coroutine scope

 		Creating coroutines

 		Coroutine dispatchers

 		Coroutine contexts

 		Coroutine Job elements

 		Exercise 10.01 – using Coroutines in an Android app

 		Using Flow on Android

 		Collecting flows on Android

 		Creating flows with flow builders

 		Using operators with flows

 		Exercise 10.02 – using Flow in an Android application

 		Activity 10.01 – creating a TV guide app

 		Summary

 		Android Architecture Components

 		Technical requirements

 		Understanding Android components’ background

 		Exploring ViewModel

 		Exercise 11.01 – Compose and ViewModel components

 		Combining ViewModel with data streams

 		LiveData

 		Coroutines and flows

 		Exercise 11.02 – Compose, ViewModel components, and flows

 		Saving instance states inside ViewModels

 		Persisting data with Room

 		Entities

 		DAO

 		Setting up the database

 		Third-party frameworks

 		Exercise 11.03 – making a little room

 		Activity 11.01 – shopping notes app

 		Summary

 		Persisting Data

 		Technical requirements

 		Using SharedPreferences and DataStore

 		SharedPreferences

 		Exercise 12.01 – wrapping SharedPreferences

 		DataStore

 		Exercise 12.02 – Preferences DataStore

 		Saving data into files

 		Internal storage

 		External storage

 		FileProvider

 		The Storage Access Framework

 		Asset files

 		Exercise 12.03 – copying files

 		Understanding scoped storage

 		Camera and media storage

 		Exercise 12.04 – taking photos

 		Activity 12.01 – managing multiple persistence options

 		Summary

 		Dependency Injection with Dagger, Hilt, and Koin

 		Technical requirements

 		Handling manual DI

 		Exercise 13.01 – manual injection

 		Using Dagger 2

 		Consumers

 		Providers

 		Connectors

 		Qualifiers

 		Scopes

 		Subcomponents

 		Exercise 13.02 – Dagger injection

 		Switching to Hilt

 		Exercise 13.03 – Hilt injection

 		Using Koin

 		Exercise 13.04 – Koin injection

 		Activity 13.01 – injected repositories

 		Summary

 		Polishing and Publishing an App

 		Architecture Patterns

 		Technical requirements

 		Getting started with MVVM

 		Implementing the Repository pattern

 		Exercise 14.1 – using Repository with Room in an Android project

 		Activity 14.1 – revisiting the TV Guide app

 		Summary

 		Advanced Jetpack Compose

 		Technical requirements

 		Using CompositionLocal

 		Exercise 15.01 – adding CompositionLocal in an app

 		Using side-effects with Jetpack Compose

 		LaunchedEffect

 		DisposableEffect

 		SideEffect

 		Exercise 15.02 – adding side-effects in an app

 		Creating animations using Jetpack Compose

 		Animating a single value

 		Animating the appearance or disappearance of elements

 		Animating multiple values

 		Animating size changes of elements

 		Animating changes between composables

 		Animating values indefinitely

 		Other compose animations

 		Customizing animations

 		Debugging animations

 		Exercise 15.03 – adding animations with Jetpack Compose

 		Activity 15.01 – adding Animations to the TV Guide app

 		Summary

 		Launching Your App on Google Play

 		Preparing your apps for release

 		Versioning apps

 		Creating a keystore

 		Exercise 16.01 – creating a keystore in Android Studio

 		Storing the keystore and passwords

 		Signing your apps for release

 		Android App Bundle

 		Exercise 16.02 – creating a signed app bundle

 		App signing by Google Play

 		Creating a developer account

 		Uploading an app to Google Play

 		Creating a store listing

 		App details

 		Graphic assets

 		Preparing the release

 		App bundle

 		Rolling out a release

 		Managing app releases

 		Release tracks

 		The feedback channel and opt-in link

 		Internal testing

 		Closed testing

 		Open testing

 		Staged rollouts

 		Managed publishing

 		Activity 16.01 – publishing an app

 		Summary

 		Unlock Your Book’s Exclusive Benefits

 		How to unlock these benefits in three easy steps

 		Step 1

 		Step 2

 		Step 3

 		Need help?

 		Other Books You May Enjoy

 		Share Your Thoughts

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/epub_(2).png

OEBPS/Images/B30938_01_23.png
wnme e n

‘Add two hexadecimal characters between 0.9, AF or af
without the # for each channel

channel

Create RGB Color

OEBPS/Images/brightness-and-contrast_(1).png

OEBPS/Images/B30938_01_14.png
Project
[Bookmarks
Q Find
£ Run 4
1¥ Debug ®5
@ Problems %6
8 Structure
® services
% Git

Profiler

© ©

£ App Inspection

(> App Links Assistant
9 App Quality Insights
T Build

& Build Variants

© Coverage

[Device Explorer

[} Device Manager

&7 Gradle

& Hierarchy

%9 Logcat

L* Notifications

2% Pull Requests

8 Resource Manager
[Running Devices

+ Gemini

(=) Terminal X
= TODO

OEBPS/Images/B30938_01_08.png
Configure virtual device Pixel 9
1080 px
Device Additional settings

Name

Pixel o

Select system image.

Use the fiters to help find the system image that you prefer. The combination of evice profile and
system image is only an approximation of the equivalent physical hardware.

il Services
AP 36 "Baklava'; Android 160~ @ Google Play Store ~ | @

2024 px

4, 17 GB system image will
“ be downloaded

© systemimage 01
L Google Play ARM 64 v8a System Image 36 Device
L Pre-Release 16 KB Page Size Google Play ARM 64 v8a System Image 36 €z Google

Supported APl 35+
Levels
System Image
Allevel 36
Services Google Play
81 arméa-véa
Screen
Resolution 1080 x 2424
Density 4200p1

Show system images with SOK extensions ®

‘Show unsupported system images.

cance) [provieus) [e

OEBPS/Images/B30938_01_05.png
Device Manager

B TN

Name

No devices connected.

Add a new device...

API

Type

OEBPS/Images/B30938_01_13.png

OEBPS/Images/3.png

OEBPS/Images/info.png

OEBPS/Images/sparkler1.png

OEBPS/Images/B30938_01_18.png
08

OEBPS/Images/B30938_01_12.png
[% Pixel 9 v appv [

OEBPS/Images/2.png

OEBPS/Images/Unlock1.png

OEBPS/Images/B30938_01_19.png
mdpi

hdpi

xhdpi

xxhdpi

xxxhdpi

OEBPS/Images/21.png

OEBPS/Images/bookmark-white.png

OEBPS/Images/1.png

OEBPS/Images/Unlock2.png

OEBPS/Images/B30938_01_11.png

OEBPS/Images/image_(2).png
Copy Explain

function calculate(a, b) { @ []
return {sum: a + b};

};

