

[image: Cover Image]

PYTHON

Second Edition

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” varies from state to state, and might not apply to the purchaser of this product.

(Companion files are also available for downloading by writing to the publisher at info@merclearning.com.)

PYTHON

An Introduction to Programming

Second Edition

James R. Parker
University of Calgary

[image: image]

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display, or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

(800) 232-0223

James R. Parker. PYTHON: An Introduction to Programming, Second Edition.

ISBN: 978-1-683926-24-5

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020952465

212223321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.

For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).
Digital versions of our titles are available at:www.academiccourseware.com and other e-vendors.
All companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book and/or disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

CONTENTS

Preface

Chapter 0: Modern Computers

0.1 Calculations by Machine

0.2 How Computers Work and Why We Made Them

0.2.1 Numbers

Example: Base 4

Convert Binary Numbers to Decimal

Convert Decimal Numbers to Binary

Arithmetic in Binary

0.2.2 Memory

0.2.3 Stored Programs

0.3 Computer Systems Are Built in Layers

0.3.1 Assemblers and Compilers

0.3.2 Graphical User Interfaces (GUIs)

Widgets

0.4 Computer Networks

0.4.1 Internet

0.4.2 World Wide Web

0.5 Representation

0.6 Summary

Chapter 1: Computers and Programming

1.1 Solving a Problem Using a Computer

1.2 Executing Python

1.3 Guess a Number

1.4 Rock–Paper–Scissors

1.5 Solving the Guess a Number Problem

1.6 Solving the Rock-Paper-Scissors Problem

1.6.1 Variables and Values–Experimenting with the Graphical User Interface

1.6.2 Exchanging Information with the Computer

1.6.3 Example 1: Draw a Circle Using Characters

1.6.4 Strings, Integers, and Real Numbers

1.6.5 Number Bases

1.6.6 Example 2: Compute the Circumference of Any Circle

1.6.7 Guess a Number Again

1.7 IF Statements

1.7.1 Else

1.8 Documentation

1.9 Rock-Paper-Scissors Again

1.10 Types Are Dynamic (Advanced)

1.11 Summary

Chapter 2: Repetition

2.1 The WHILE Statement

2.1.1 The Guess-A-Number Program Revisited

2.1.2 Modifying the Game

2.2 Rock–Paper–Scissors Revisited

2.2.1 Random Numbers

2.3 Counting Loops

2.4 Prime or Non-Prime

2.4.1 Exiting from a Loop

2.4.2 Else

2.5 Loops That Are Nested

2.6 Draw a Histogram

2.7 Loops in General

2.8 Exceptions and Errors

2.8.1 Problem: A Final Look at Guess a Number

2.9 Summary

Chapter 3: Sequences: Strings, Tuples, and Lists

3.1 Strings

3.1.1 Comparing Strings

3.1.2 Slicing – Extracting Parts of Strings

3.1.3 Editing Strings

3.1.4 String Methods

3.1.5 Spanning Multiple Lines

3.1.6 For Loops Again

3.2 The Type Bytes

3.3 Tuples

3.3.1 Tuples in For Loops

3.3.2 Membership

3.3.3 Delete

3.3.4 Update

3.3.5 Tuple Assignment

3.3.6 Built-in Functions for Tuples

3.4 Lists

3.4.1 Editing Lists

3.4.2 Insert

3.4.3 Append

3.4.4 Extend

3.4.5 Remove

3.4.6 Index

3.4.7 Pop

3.4.8 Sort

3.4.9 Reverse

3.4.10 Count

3.4.11 List Comprehension

3.4.12 Lists and Tuples

3.4.13 Exceptions

3.5 Set Types

3.5.1 Example: Craps

3.6 Summary

Chapter 4: Functions

4.1 Function Definition: Syntax and Semantics

4.1.1 Problem: Use the function poundn to Draw a Histogram

4.1.2 Problem: Generalize the Histogram Code for Other Years

4.2 Function Execution

4.2.1 Returning a Value

4.2.2 Parameters

4.2.3 Default Parameters

4.2.4 None

4.2.5 Example: The Game of Sticks

4.2.6 Scope

4.2.7 Variable Parameter Lists

4.2.8 Variables as Functions

Example: Find the maximum value of a function

4.2.9 Functions as Return Values

4.3 Recursion

4.3.1 Avoiding Infinite Recursion

4.4 Creating a Python Module

4.5 Program Design Using Functions–The Game of Nim

4.5.1 The Development Process Exposed

4.6 Summary

Chapter 5: Files: Input and Output

5.1 What Is a File? A Little Theory

5.1.1 How Are Files Stored on a Disk?

5.1.2 File Access is Slow

5.2 Keyboard Input

5.2.1 Problem: Read a number from the keyboard and divide it by 2

5.3 Using Files in Python: Less Theory, More Practice

5.3.1 Open a File

File Not Found Exceptions

5.3.2 Reading from Files

End of File

Common File Input Operations

CSV Files

The With Statement

5.4 Writing to Files

Example: Write a table of squares to a file.

5.4.1 Appending Data to a File

Example: Append another 20 squares to the table of squares file.

5.5 Summary

Chapter 6: Classes

6.1 A Casual Introduction to Classes

6.2 Classes and Types

6.3 Classes as Encapsulated Modules

6.4 Classes as Data Abstractions

6.5 The Python Class – Syntax and Semantics

6.5.1 A Really Simple Class

6.5.2 Encapsulation

6.6 Classes and Data Types Again

6.6.1 Example: A Deck of Cards

6.6.2 A Bouncing Ball

6.6.3 Cat-A-Pult

Basic Design

Detailed Design

6.7 Subclasses and Inheritance

6.7.1 Non-Trivial Example: Objects in a Video Game

6.8 Duck Typing

6.9 Summary

Chapter 7: Graphics

7.1 Introduction to Graphics Programming

7.2 Graphics in Python–Pygame

7.3 Initializing Pygame

7.3.1 Colors

7.4 The Event LOOP

7.5 Drawing

Example: Create a Page of Note Paper

Example: Creating a Color Gradient

7.5.1 Lines and Curves

Example: Note Paper Again

7.6 Arcs and Curves

7.6.1 Polygons

7.6.2 Text

7.6.3 Example: A Histogram

7.6.4 Example: A Pie Chart

7.6.5 Images

Pixels, Again

Example: Identifying a green car

Example: Thresholding

Transparency

7.6.6 Generative Art

7.7 Summary

Chapter 8: Manipulating Data

8.1 Dictionaries

8.1.1 Example: A Naïve Latin – English Translation

8.1.2 Functions for Dictionaries

8.1.3 Dictionaries and Loops

8.2 Arrays

8.3 Formatted Text, Formatted I/O

8.3.1 Example: NASA Meteorite Landing Data

8.4 Advanced Data Files

8.4.1 Binary Files

Example: Create a File of Integers

8.4.2 The Struct Module

Example: A Video Game High Score File

8.4.3 Random Access

Example: Maintaining the High Score File in Order

8.5 Standard File Types

8.5.1 Image Files

8.5.2 GIF

8.5.3 JPEG

8.5.4 TIFF

8.5.5 PNG

8.5.6 Sound Files

8.5.7 WAV

8.5.8 Other Files

8.5.9 HTML

8.5.10 EXE

8.6 Summary

Chapter 9: Multimedia

9.1 Mouse Interactions

Example: Draw a Circle at the Mouse Cursor

Example: Change Background Color Using the Mouse

9.1.1 Mouse Buttons

Example: Draw Lines Using the Mouse

Example: A Button

9.2 The Keyboard

Example: Pressing a “q” Creates a Random Circle

Example: Reading a Character String

9.3 Animation

9.3.1 Object Animation

Example: A Ball in a Box

Example: Many Balls in a Box

9.3.2 Frame Animation

Example: Read Frames and Play Them Back as an Animation

Example: Simulation of the Space Shuttle Control Console (A Class That Will Draw an Animation at a Specific Location)

9.4 RGBA Colors – Transparency

9.5 Sound

Example: Play a Sound

Example: Control Volume Using the Keyboard

Example: Play a Sound Effect at the Right Moment: Bounces

Music

9.6 Summary

Chapter 10: Basic Algorithms

10.1 Sorting

10.1.1 Selection Sort

10.1.2 Merge Sort

10.2 Searching

10.2.1 Timings

10.2.2 Linear Search

10.2.3 Binary Search

10.3 Random Number Generation

10.3.1 Linear Congruential Method

10.4 Cryptography

10.4.1 One-Time Pad

10.4.2 Public Key Encryption (RSA)

10.4.3 Example: Encrypt the Message “Depart at Dawn” Using RSA

10.5 Compression

10.5.1 Huffman Encoding

10.5.2 LZW Compression

10.6 Hashing

10.6.1 DJB2

10.6.2 SDBM

10.7 Summary

Chapter 11: Programming for the Sciences

11.1 Finding Roots of Equations

11.2 Differentiation

11.3 Integration

11.4 Optimization: Finding Maxima and Minima

11.4.1 Newton Again

11.4.2 Fitting Data to Curves – Regression

11.4.3 Evolutionary Methods

11.5 Longest Common Subsequence (Edit Distance)

11.5.1 Determining Longest Common Subsequence (LCS)

11.5.2 NumPy

11.5.3 One Dimensional Arrays (Vectors)

11.5.4 Two Dimensional Arrays (Matrices)

11.5.5 Sample Problem: Finding Paths

11.5.6 Linear Regression Again

11.6 Summary

Chapter 12: How To Write Good Programs

12.1 Procedural Programming – Word Processing

12.1.1 Top-Down

12.1.2 Centering

12.1.3 Right Justification

12.1.4 Other Commands

12.2 Object Oriented Programming – Breakout

12.3 Describing the Problem as a Process

12.3.1 Initial Coding for a Tile

12.3.2 Initial Coding for the Paddle

12.3.3 Initial Coding for the Ball

12.3.4 Collecting the Classes

12.3.5 Developing the Paddle

12.3.6 Ball and Tile Collisions

12.3.7 Ball and Paddle Collisions

12.3.8 Finishing the Game

12.4 Rules for Programmers

12.5 Summary

Chapter 13: Communicating with the Outside World

13.1 Email

Example: Sending an email

13.1.1 Reading email

13.1.2 Example: Display the Subject Headers for Emails in the Inbox

13.2 FTP

13.2.1 Example: Download and Display the README File from an FTP Site

13.3 Communication Between Processes

13.3.1 Example: A Server That Calculates Squares

13.4 Twitter

13.4.1 Example: Connect to the Twitter Stream and Print Specific Messages

13.5 Communicating with Other Languages

13.5.1 Example: Find Two Large Relatively Prime Numbers

13.6 Summary

Chapter 14: Parsing–The Structure of Data

14.1 Grammars

14.2 PYJ and JULIA

14.3 Language Symbols and Scanning

14.4 Parsing a Programming Language

14.5 WHILE Statements

14.6 FOR Statements

14.7 IF Statements

14.8 Expressions

14.9 Functions

14.10 Examples

Chapter 15: Communicating Using Graphics: Windows, User Interfaces, and Pygame

15.1 A Paint Program

Interface

15.2 Building the Mondrean Interface

15.3 Selecting

15.4 The Buttons

Drawing

15.5 Images and Surfaces

15.6 Stacks: Undraw and Redraw

15.7 Color Selection

15.8 Image File Selection

Index

Preface

Welcome to the second edition! This is a book that is intended to be used to teach programming to introductory students. There is material here for intro CS, but also for Science and other disciplines. I still believe that programming is an essential skill for all professionals and especially academics in the 21st century and I have tried to make that clear in the contents of this book.

There are two new chapters and some seriously revised ones. First, the book exclusively uses the Pygame library. The Glib module has been updated but is no longer used in this book. This means that Chapters 7, 9, and 12 are quite different from those in the previous edition. Also, Pygame no longer supports video, so rather than build a new module from scratch, video is not discussed.

The new Chapter 14 concerns parsing. This can be a more advanced topic, but parsing is a good thing to know about for many reasons, not the least of which is to deal with user input effectively. The main example is a programming language for which a parser (and compiler) will be written. The language was developed for this book and is called PyJ: it is a small subset of the Julia language, which in turn is a variation on Python designed for efficiency.

The new Chapter 15 involves graphical input. Here a paint-type program will be developed, so as to clarify ideas in mouse input and graphical output. The resulting program (Mondrean) is actually usable for making drawings.

I use a “just-in-time” approach, meaning that I try to present new information just before or just after the reader needs it. As a result, there are a lot of examples, and those examples were carefully selected to fit into the place they reside in the text. Not too soon, and not too late.

I believe in object-oriented programming. My master’s thesis in the late 1970s was on that subject, and I cut my teeth on Simula, was there when C++ was created, and knew the creator of Java. I do not believe that object-oriented programming is the only solution, though, and realized early that good objects can only be devised by someone who can already program. I am therefore not an “objects first” teacher. I am a “whatever works best” teacher.

A lot of my examples involve games. That’s because undergraduate students play games. They understand them better than, say, accounting or inventory systems, which have been typical early assignments. I believe in presenting students’ assignments that are interesting. Not all students like games, and certainly not computer games, but a large number do. And they come to a game assignment with prior knowledge of the genre.

I have taught computer science for 26 years, and then moved to the arts. That’s because of many things, but my experience teaching in a Drama department and more recently in the Art department has helped me immensely in understanding the role of computing and programming in general. I strongly feel that every student in a university should know how to write, and know how to program a computer. If you can’t understand the computer, you are at the whim of programmers who, unseen in downtown high-rises and basements, who dictate how the world will work by default. The (sometimes poor) design decisions made, and the lack of attention paid to human needs results in actual policy being formed, and that is simply wrong. It’s not always true that the code is bad, but when it is, it can have far reaching consequences.

Here is a truth: nobody wants to run your program. What they want is to get their work done, or play their game, or send their email. If you are an excellent programmer then you will enable that, and nobody will know your name. But nobody will curse your code either. The truth is that good code is invisible. It simply allows things to flow smoothly. Bad code is memorable. It interferes, makes people frustrated and angry. If you believe in karma, then I know what you would prefer.

You see, software (any computer program) is ubiquitous. Cars, phones, fridges, television, and almost everything in our society is computerized. Decisions made about how a program is to be built tend to live on, and even after many modifications can affect how people use that device or system. Creating good software means making a productive and happy civilization. It sounds trite, but if you think about it I’m sure you will agree.

Python is a great language for beginning programmers. It is easy to write the first programs, because the conceptual overhead is small. That is, there’s no need to understand what ‘void’ or ‘public’ means at the outset. Python does a lot of things for a programmer. Do you want something sorted? It’s a part of the language. Lists and hash tables (dictionaries) are a part of the language. You can write classes, but do not have to, so it can be taught objects first or not. The required indentation means that it is much harder to place code incorrectly in loops or if statements. There are hundreds of reasons why Python is a great idea.

And it is free. This book was written using Python version 3.4, and with the PyCharm API. The modules used that require download are few, but include PyGame and tweepy. All free.

Overview of Chapters

Here’s a breakdown of the book, for instructors. It can be used to teach computer science majors or science students who wish to have a competency in programming.

Chapter 0: Historical and technological material on computers. Binary numbers, the fetch-execute cycle. This chapter can be skipped in some syllabi.

Chapter 1: Problem solving with a computer; breaking a problem down so it can be solved. The Python system. Some simple programs involving games that introduce variables, expressions, print, types, and the if statement.

Chapter 2: Repetition in programming: while and for statements. Random numbers. Counting loops, nested loops. Drawing a histogram. Exceptions (try-except)

Chapter 3: Strings and string operations. Tuples, their definition, and use. Lists and list comprehension. Editing, slices. The bytes type. And set types. Example: the game of craps.

Chapter 4: Functions: modular programming. Defining a function, calling a function. Parameters, including default parameters, and scope. Return values. Recursion. The Game of Sticks. Variable parameter lists, assigning a function to a variable. Find the maximum of a mathematical function. Modules. Game of Nim.

Chapter 5: Files. What is a file and how are they represented? Properties of files. File exceptions. Input, output, append, open, close. Comma separated value (CSV) files. Game of Jeopardy. The with statement.

Chapter 6: Classes and object orientation. What is an object and what is a class? Types and classes. Python class structure. Creating instances, __init__ and self. Encapsulation. Examples: deck of playing cards; a bouncing ball; Cat-a-pult. Designing with classes. Subclasses and inheritance. Video game objects. Duck typing.

Chapter 7: Graphics. The Pygame module. Drawing window; color representation, pixels. Drawing lines, curves, and polygons. Filling. Drawing text. Example: Histogram, Pie chart. Images and image display, getting and setting pixels. Thresholding. Generative art.

Chapter 8: Data and information. Python dictionaries. Latin to English translator. Arrays, formatted text, formatted input/output. Meteorite landing data. Non-text files and the struct module. High score file example. Random access. Image and sound file types.

Chapter 9: Digital media: Using the mouse and the keyboard. Animation. Space shuttle control console example. Transparent colors. Sound: playing sound files, volume, pause. Pygame module for sound.

Chapter 10: Basic algorithms in computer science. Sorting (selection, merge) and searching (linear, binary). Timing code execution. Generating random numbers; cryptography; data compression (including Huffman codes and RLE); hashing.

Chapter 11: Programming for Science. Roots of equations; differentiation and integration. Optimization (minimum and maximum) and curve fitting (regression). Evolutionary algorithms. Longest common subsequence or edit distance.

Chapter 12: Writing good code. A walk through two major projects: a word processor written as procedural code and a breakout game written as object-oriented code. A collection of effective rules for writing good code.

Chapter 13: Dealing with real world interfaces, which tend to be defined for you. Examples are Email (send and receive), FTP, inter-process communication (client-server), Twitter, calling other languages like C++.

Chapter 14: Parsing. Introduction to grammars and BNF. Parsing data. A small compiler for a small language.

Chapter 15: Graphical Interaction. Using the mouse in complicated ways. Drawing, erasing, modifying images.

Chapter Coverage for Different Majors

A computer science introduction could use most chapters, depending on the background of the students, but Chapters 0, 7, 9, and / or 11 could be omitted.

An introduction to programming for science could omit Chapters 0, 10, and 12.

Chapter 13 is always optional, but is interesting as it explains how social media software works under the interface.

Basic introduction to programming for non-science should include Chapters 0, 1, 2, 3, 4, 5, and 7.

Companion Files (A disc is included in the physical book or files are available for downloading from the publisher by writing to info@merclearning.com.)

The accompanying disc contains useful material for each chapter.

	Selected exercises are solved, including working code when that is a part of the solution.

	All significant examples are provided as Python code files, which can be compiled and executed, and can be modified as exercises or class projects. This includes sample data files when appropriate.

	All figures are available as images, in full color.

Instructor Ancillaries

	Solutions to almost all of the programming exercises given in the text.

	MS PowerPoint lectures provided for an entire semester (35 files) including some new examples and short videos.

	All of the Python code that appears in the books has been executed, and all complete programs are provided as .py files. Some of the numerous programming examples (over 100) that are explored in the book and for which working code is included:

	An interactive breakout game

	The Game of Nim

	A text formatting system

	Plotting histograms and pie charts

	Reading Twitter feeds

	Play Jeopardy Using a CSV Data Set

	Sending and receiving Email

	A simple Latin to English translator

	Cryptography

	Rock-Paper-Scissors

	Hundreds of answered multiple choice quiz and sample examination questions in MS Word files that can be edited and used in various ways.

Dedicated Website

Please consider contributing material to the on-line community at https://sites.google.com/site/pythonparker/ and do have fun. If you don’t then you’re doing it wrong.

J. Parker
February 2021

CHAPTER 0

MODERN
COMPUTERS

	0.1
	Calculations by Machine
	2

	0.2
	How Computers Work and Why We Made Them
	3

	0.3
	Computer Systems Are Built in Layers
	17

	0.4
	Computer Networks
	21

	0.5
	Representation
	25

	0.6
	Summary
	30

[image: image]

In this chapter

Humans are tool makers and tool users. This is not unique in the animal kingdom, but the facility that humans have with tools and the variety of applications we have for them does make us unique. Starting with mechanical tools (machines) like levers and wheels that could lighten the physical effort of everyday life, more and more complex and specific devices have been created to assist with all facets of our lives. This was extended in the twentieth century to assisting with mental efforts, specifically calculation.

Computers are devices that humans have built to facilitate complex calculations. Early computers were used to do some of the computations needed to design the first nuclear bombs, but now computers seem to be everywhere, embedded within cars and kitchen appliances, and even with our own bodies. The success of these devices in such a wide range of application areas is a result of their ability to be programmed – that is, the device itself is only a potential when first built and has no specific function. It is designed to be configured to do any task that requires calculations, and the configuring process is what we call programming.

To some extent, this has taken the place of a lot of other tool development that used to be done by engineers. When designing a complex machine like an automobile, for example, there used to be a lot of mechanical work involved. The careful timing of the current to the spark plug was accomplished by rotating shafts with sensors, and resulted in the firing of each cylinder at the correct moment. The air to gasoline mixture fed into the engine was controlled by tubes and cables and springs. Now all of these things are done using computers that sense electric and magnetic events, do calculations, and send electrical control signals to actuators in the engine. The same computer can be used to control a refrigerator, make telephone calls on a cellular phone, change channels on a television, and wake you up in the morning. It is the flexibility of the computer that has led to them becoming a dominant technology in human society, and the flexibility comes largely from their ability to be programmed.

 0.1 CALCULATIONS BY MACHINE

People have been calculating things for thousands of years and have always had mechanical aids to help.

When someone programs a computer, they are really communicating with it. It is an imperative and precise communication. Imperative, because the computer has no choice; it is being told what to do and will do exactly that. Precise, because a computer does not apply any interpretation to what it is being told. Human languages are vague and subject to interpretation and ambiguity. There are sentences that are legal in terms of syntax, but have no real meaning: “Which is faster, to Boston or by bus?” is a legal sentence in English that has no meaning. Such vagaries are not possible in a computer language. Computers do not think and so can’t evaluate a command that would amount to “expose the patient to a fatal dose of radiation” with any skepticism. As a result, we, as programmers, must be careful and precise in what we instruct the machine to do.

When humans communicate with each other, we use a language. Similarly, humans use languages to communicate with computers. Such languages are artificial (humans invented them for this purpose, all at once), terse (there are few, if any modifiers, and no way to express emotions or graduations of any feeling), precise (each item in the language means one thing), and written (we do not speak to the computer in a programming language).

Computer languages operate at a high level and do not represent the way the computer actually works. There are a few fundamental things that need to be known about computers. It’s not required to know how they operate electronically, but there are basic principles that should be understood to put the process of using computers in a practical context.

 0.2 HOW COMPUTERS WORK AND WHY WE MADE THEM

The reason people use computers is different depending on the point in history in which one looks, but the military always seems to be involved. There have been many calculating devices built and used throughout history, but the first one that would have been programmable was designed by Charles Babbage. The military, as well as the mathematicians of the day, were interested in more accurate mathematical tables, such as those for logarithms. At the time, these were calculated by hand, but the idea that a machine could be built to compute more digits of accuracy was appealing. This would have been a mechanical device of gears and shafts, but it was not completed due to budget and contracting issues.

[image: image]
Figure 0.1 Punched cards for the Analytical Engine.

Babbage continued his work in design and created, on paper, a programmable mechanical device called the analytical engine in 1837. What does programmable mean? A calculation device is manipulated by the operator to perform a sequence of operations: add this to that, then subtract this and divide by something else. On a modern calculator, this would be done using a sequence of key presses, but on older devices, it may involve moving beads along wires or rotating gears along shafts. Now imagine that the sequence of key presses can be encoded on some other media: a set of cams, or plugs into sockets, or holes punched into cards. This is a program.

[image: image]
Figure 0.2 A portion of Babbage’s Analytical Engine

Such a set of punched cards or cams would be similar to a set of instructions written in English and given to a human to calculate, but would instead be coded in a form (language) that the computing device could use immediately. The directions on the cards could be changed so that something new could be computed as needed. The difference engine only found logarithms and trigonometric functions, but a device that could be programmed in this way could, in theory, calculate anything. The analytical engine was programmed by punching holes in stiff cards, an idea that was derived from the Jacquard loom of the day. The location of holes indicated either an operation (e.g., add or subtract) or data (a number). A sequence of such cards was executed one at a time and yielded a value at the end.

Although the analytical engine was never completed, a program was written for it, but not by Babbage. The world’s first programmer may have been a woman, Augusta Ada King, Countess of Lovelace. She worked with Babbage for a few years and wrote a program to compute Bernoulli numbers. This was the first algorithm ever designed for a computer and is often claimed to be the first computer program ever written, although it was never executed.

The concept of programmability is a more important development than is the development of analytical engines. The idea that a machine can be made to do different things depending on a user-defined set of instructions is the basis of all modern computers, while the use of mechanical calculation has become obsolete; it is too slow, expensive, and cumbersome. This is where it began, though, and the concept of programming is the same today.

[image: image]
Figure 0.3 Possibly the word’s first program: The calculation of Bernoulli numbers on the analytical engine.

During World War II, computers were run using electricity. Work on breaking codes and building the atomic bomb required large amounts of computing. Initially, some of this was provided by rooms full of humans operating mechanical calculators, but they could not keep up with the demand, so electronic computers were designed and built. The first was Colossus, designed and built by Tommy Flowers in 1943. It was created to help break German military codes, and an updated version (Mark II) was built in 1944.

[image: image]
Figure 0.4 The Colossus computer breaking a code during World War II with the help of Dorothy Du Boisson (left) and Elsie Booker

In the United States, there was a need for computational power in Los Alamos when the first nuclear weapons were being built. Electro-mechanical calculators were replaced by IBM punched-card calculators, originally designed for accounting. These were only a little faster than the humans using calculators, but could run twenty-four hours a day and made fewer errors. The punch-card computer was programmed by plugging wires into sockets to create new connections between components.

 0.2.1 Numbers

The electronic computers described so far, and those of the 1940s generally, had almost no storage for numbers. Input was through devices like cards, and they had numbers on them. They were transferred to the computation unit, then moved ahead or back, and perhaps read again. Memory was a primitive thing, and various methods were devised to store just a few digits. A significant advance came when engineers decided to use binary numbers.

Electronic devices use current and voltage to represent information, such as sounds or pictures (radio and television). One of the simplest devices is a switch, which can open and close a circuit and turn things like lights on and off. Electricity needs a complete circuit or route from the source of electrons, the negative pole of a battery perhaps, to the sink, which could be the positive pole. Electrons, which is what electricity is, in a simple sense, flow from the negative to the positive poles of a battery. Electricity can be made to do work by putting devices in the way of the flow of electrons. Putting a lamp in the circuit can cause the lamp to light up, for example.

[image: image]
Figure 0.5 The switch is closed and the current is flowing, turning the lamp on. This is a “1.”

A switch makes a break in the circuit, which stops the electrons from flowing; they cannot jump the gap. This causes the lamp to go dark. This seems obvious to anyone with electric lights in their house, but what may not be so obvious is that this creates two states of the circuit, on and off. These states can be assigned numbers. Off is 0, for example, and on is 1. This is how most computers represent numbers: as on/off or 1/0 states. Let’s consider this in regards to the usual way we represent numbers, which is called positional numbering.

[image: image]
Figure 0.6 The switch is off (open) and the lamp is off, indicating a “0.”

Most human societies now use a system with ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The number 123 is a combination of digits and powers of ten. It is a shorthand notation for 100 + 20 + 3, or 1 × 102 + 2*101 + 3*100. Each digit is multiplied by a power of ten and summed to get the value of the number. Anyone who has been to school accepts this and does not think about the value used as the basis of the system: ten. It simply happens to be the number of digits humans have on their hands. Any base would work almost as well.

Example: Base 4

Numbers that use 4 as a base can only have the digits 0, 1, 2, and 3. Each position in the number represents a power of 4. Thus, the number 123 is, in base 4, 1 × 42 + 2*41 + 3*40, which is 1 × 16 + 2*4 + 3 = 16 +=8 +=3 = 27 in traditional base 10 representation.

This could get confusing, what with various bases and such, so the numbers here are considered to be in base 10 unless specifically indicated otherwise by a suffix. For example, 1234 is 123 in base 4, whereas 1238 is 123 in base 8.

Binary numbers can have digits that are 1 or 0. The numbers are in base 2, and can therefore only have the digits 0 and 1. These numbers can be represented by the on/off state of a switch or transistor, an electronic switch, which why they are used in electronic computers. Modern computers represent all data as binary numbers because it is easy to represent those numbers in electronic form; a voltage is arbitrarily assigned to “0” and to “1.” When a device detects a particular voltage, it can then be converted into a digit, and vice-versa. If 2 volts is assigned to a 0, and 5 volts is assigned to a 1, then the circuit shown in Figure 0.7 could signal a 0 or 1, depending on what switch was selected.

[image: image]
Figure 0.7 (a) A configuration giving a 2-volt value, or a zero.
(b) A configuration giving a 5-volt value, or a one.

Convert Binary Numbers to Decimal

Consider the binary number 110112. The subscript “2” here means “base 2.” It can be converted into base 10 by multiplying each digit by its corresponding power of two and then summing the results.

[image: image]

Some observations:

	Terminology: A digit in a binary number is called a bit (for binary digit)

	Any even number has 0 as the low digit, which means that odd numbers have 1 as the low digit.

	Any exact power of two, such as 16, 32, 64, and so on, will have exactly one digit that is a 1, and all others will be 0.

	Terminology: A binary digit or bit that is 1 is said to be set. A bit that is 0 is said to be clear.

Convert Decimal Numbers to Binary

Going from base 10 to base 2 is more complicated than the reverse. There are a few ways to do the calculation, but here’s one that many people find easy to understand. If the lowest digit (rightmost) is 1, then the number is odd, and otherwise it is even. If the number 7310 is converted into binary, the rightmost digit is 1, because the number is odd.

The next step is to divide the number by 2, eliminating the rightmost binary digit, the one that was just identified, from the number. 7310/210 = 3610, and there can be no fractional part so any such part is to be discarded. Now the problem is to convert = 3610 to binary and then append the part already converted to that. Is 3610 even or odd? It is even, so the next digit is 0. The final two digits of 7310 in binary are 01.

The process is repeated:

Divide 36 by 2 to get 18, which is even, so the next digit is 0.

Divide 18 by 2 to get 9, which is odd, so the next digit is 1.

Divide 9 by 2 to get 4, which is even, so the next digit is 0.

Divide 4 by 2 to get 2, which is even, so the next digit is 0.

Divide 2 by 2 to get 1, which is odd, so the next digit is 1.

Divide 1 by 2 to get 0. When the number becomes 0, the process is complete.

The conversion process gives the binary numbers in reverse order (right to left) so the result is that 7310 = 10010012.

Is this correct? Convert this binary number into decimal again:

10010012 = 1 × 20 + 1*23 + 1*26 = 1 + 8 + 64 = 7310.

A summary of the process for converting x into binary for is as follows:

Start at digit n=0 (rightmost)

repeat

 If x is even, the current digit n is 0 otherwise it is 1.

 Divide x by 2

 Add 1 to n

 If x is zero then end the repetition

Arithmetic in Binary

Computers do all operations on data as binary numbers, so when two numbers are added, for example, the calculation is performed in base 2. Base 2 is easier than base 10 for some things, and adding is one of those things. It’s done in the same way as in base 10, but there are only 2 digits, and twos are carried instead of tens. For example, let’s add 010112 to 011102:

 0 1 0 1 12

 0 1 1 1 02

Starting the sum on the right as usual, there is a 0 added to a 1 and the sum is 1, just as in base 10.

 0 1 0 1 12

 0 1 1 1 02

 12

The next column in the sum contains two 1s. 1 + 1 is two, but in binary that is represented as 102. So, the result of 1+1 is 0 with a carry of 1 is as follows:

1

 0 1 0 1 12

 0 1 1 1 02

 0 12

The next column has 1 +=0, but there is a carry of 1 so it is 1 +=0 +=1. That’s 0 with a 1 carried again:

1

 0 1 0 1 12

 0 1 1 1 02

 0 0 12

Now the column is 1 +=1 with a 1 carried, or 1 +=1 +=1. This is 1 with a carry of 1:

1

 0 1 0 1 12

 0 1 1 1 02

 1 0 0 12

Finally, the leading digits are 0+0 with a carry of 1, or 0 +=0 +=1. The answer is 110012. Is this correct? Well, 010112 is 1110 and 011102 is 142, and 1110 +=1410=2510. The answer 110012 is, in fact, 2510.

Binary numbers can be subjected to the same operations as any other form of number (i.e., multiplication, subtraction, division). In addition, these operations can be performed by electronic circuits operating on voltages that represent the digits 1 and 0.

 0.2.2 Memory

Adding memory to computers was another important advancement. A computer memory must hold steady a collection of voltages that represent digits, and the digits are collected into sets, each of which is a number. A switch can hold a binary digit, but switches are activated by people. Computer memory must store and recall (retrieve) numbers when they are required by a calculation without human intervention.

The first memories were rather odd things: acoustic delay lines stored numbers as a sound passing through mercury in a tube. The speed of sound allows a small number of digits, around 500, to be stored in transit from a speaker on one end to a receiver on the other. A phosphor screen can be built that is activated by an electric pulse and draws a bright spot on a screen that needs no power to maintain it. Numbers can be saved as bright and dark spots (1 and 0) and retrieved using light sensitive devices.

Other devices were used in the early years, such as relays and vacuum tubes, but in 1947 the magnetic core memory was patented, in which bits were stored as magnetic fields in small donut-shaped elements. This kind of memory was faster and more reliable than anything used before, and even held the data in memory without power being applied, a handy thing in a power failure. It was also expensive, of course.

[image: image](a) [image: image](b)
Figure 0.8 (a) A diagram of core memory showing six bits.
(b) Actual core memory magnified to show the individual bits.

This kind of memory is almost never used anymore, but its legacy remains in the terminology: memory is still frequently referred to as core, and a core dump is still what many people call a listing of the contents of a computer memory.

Current computers use transistors to store bits and solid state memories that can hold billions of bits (Gigabits), but the way they are used in the computer is still the same as it was. Bits are collected into groups of 8 (a byte) and then groups of multiple bytes to for a word. Words are collected into a linear sequence, each numbered starting at 0. These numbers are called addresses, and each word, and sometimes each byte, can be accessed by specifying the address of the data that is wanted. Acquiring the data element at a particular location is called a fetch, and placing a number into a particular location is a store. A computer program to add two numbers might be specified as follows:

	Fetch the number at location 21.

	Fetch the number at location 433.

	Add those two numbers.

	Store the result in location 22.

This may seem like a verbose way to add two numbers, but remember that this can be accomplished in a tiny fraction of a second.

Memory is often presented to beginning programmers as a collection of mailboxes. The address is a number identifying the mailbox, which also contains a number. There is some special memory in the computer that has no specific address, and is referred to in various ways. When a fetch is performed there is a question concerning where the value that was fetched goes. It can go to another memory location, which is a move operation, or it can go into one of these special locations, called registers.

[image: image]
Figure 0.9 Memory as a set of cubbyholes or mailboxes, each with a unique address.

A computer can have many registers or very few, but they are very fast memory units that are used to keep intermediate results of computations. The simple program above would normally have to be modified to give registers that are involved in the operations:

	Fetch the number at location 21 into register R0.

	Fetch the number at location 433 into register R1.

	Add R1 and R0 and put the result into R3.

	Store R3 (the result) in location 22.

This is still verbose, but more correct.

 0.2.3 Stored Programs

The final critical step in creating the modern computer occurred in 1936 with Alan Turing’s theoretical paper on the subject, but an actual computer to employ the concept was not built until 1948 when the Manchester Small-Scale Experimental Machine ran what is considered to be the first stored program. It has been the basic method by which computers operate ever since.

The idea is to store a computer program in memory locations instead of on cards or in some other way. Programs and data now co-exist in memory, and this also means that computer programs have to be encoded as numbers; everything in a computer is a number. There are many different ways to do this, and many possible different instruction sets that have been implemented and various different configurations of registers, memory, and instructions. The computer hardware always does the same basic thing: first, it fetches the next instruction to be executed, and then it decodes it and executes it. Executing an instruction could involve more accesses to memory or registers.

[image: image]
Figure 0.10 A simple fictional computer used to explain stored programs

This repeated fetch then executes a process called the fetch-execute cycle, which is at the heart of all computers. The location or address of the next instruction resides in a register called the program counter, and this register is incremented every time an instruction is executed, meaning that instructions will be placed in consecutive memory locations and will be fetched and executed naturally in that order. Sometimes the instruction is fetched into a special register too, called the instruction register, so that it can be examined quickly for important components like data values or addresses. Finally, a computer will need at least one register to store data; this is called the accumulator.

The stored program concept is difficult to understand. Imagine a computer that has 12-bit words as memory locations and that possesses the registers described above. This is a fictional machine, but it has some of the properties of an old computer from the 1960s called the PDP/8.

To demonstrate the execution of a program on a stored program computer, let’s use a very simple program: add 21 and 433, and place the answer in location 11. As an initial assumption, assume that the value 21 is in location 9 and 433 is in location 10. The program itself resides in consecutive memory locations beginning at address 0.

Note that this example is very much like the previous two examples, but in this case, there is only one register to put data into, the accumulator. The program could perhaps look like this:

	Fetch the contents of memory location 9 into the accumulator.

	Add the contents of memory location 10 to the accumulator.

	Store the contents of the accumulator into memory location 11.

The program is now complete, and the result 21 +=433 is in location 11. Computer programs are normally expressed in terms that the computer can immediately use, normally as terse and precise commands. The next stage in the development of this program is to use a symbolic form of the actual instructions that the computer will use.

The first step is to move the contents of location 9 to the accumulator. The instruction that does this kind of thing is called Load Accumulator, shorted as the mnemonic LDA. The instruction is in location 0:

0: LDA 9 # Load accumulator with location 9

The text following the “#” character is ignored by the computer, and is really a comment to remind the programmer what is happening. The next instruction is to add the contents of location 10 to the accumulator; the instruction is ADD and it is placed in address 1:

1: ADD 10 # Add contents of address 10 to the accumulator

 The result in the accumulator register is saved into the memory location at address 11. This is a Store instruction:

2: STO 11 # Answer into location 11

 The program is complete. There is a Halt instruction:

3: HLT # End of program</NL>

If this program starts executing at address 0, and if the correct data is in the correct locations, then the result 454 should be in location 11. But these instructions are not yet in a form the computer can use. They are characters, text that a human can read. In a stored program computer, these instructions must be encoded as numbers, and those numbers must agree with the ones the computer was built to implement.

An instruction must be a binary number, so all of the possible instructions have numeric codes. An instruction can also contain a memory address; the LDA instruction specifies a memory location from which to load the accumulator. Both the instruction code and the address have to be placed into one computer word. The designers of the computer decide how that is done.

[image: image]
Figure 0.11 An actual PDP-8 computer. Programs were entered as binary numbers using the switches on the front console. This was the smallest computer of its time.

This computer has 12-bit words. Imagine that the upper 3 bits indicate what the instruction is. That is, a typical instruction is formatted as shown in Figure 0.12.

[image: image]
Figure 0.12 The format of a binary instruction.

There are 9 bits at the lower (right) end of the instruction for an address, and 3 at the top end for the code that represents the instruction. The code for LDA is 3; the code for ADD is 5, and the code for STO is 6. The HLT on most computers is code 0. Here is what the program looks like as numbers:

Code 3 Address 9

Code 5 Address 10

Code 6 Address 11

Code 0 Address 0

These have to be made into binary numbers to be stored in memory. For the LDA instruction, the code 310 is 0112 and the address is 910 = 0000010012, so the instruction as a binary number is 011 0000010012, where the space between the code and the address is only present to make it obvious to a person reading it.

The ADD instruction has code 510, which is 1012, and the address is 10, which in binary is 00010102. The instruction is 101 0000010102.

The STO instruction has code 6, which is 1102 and the address is 11, which is 0010112. The instruction is 110 0000010112.

The HLT instruction is code 0, or in 12-bit binary, 000 0000000002.

The codes are made up by the designers of the computer. Figure 0.13 shows an example of when memory is set up to contain this program.

[image: image]
Figure 0.13 The simple example program as it looks in memory.

This is how memory looks when the program begins. The act of setting up the memory like this so that the program can execute is called loading. The binary numbers in memory locations 9 and 10 are 21 and 433, respectively, which are the numbers to be summed.

Of course, there are more instructions than these in a useful computer. There is not always a subtract instruction, but subtraction can be done by making a number negative and then adding, so there is often a NEGate instruction. Setting the accumulator to zero is a common thing to do so there is a CLA (Clear Accumulator) instruction; and there are many more.

The fetch-execute cycle involves fetching the memory location addressed by the program counter into the instruction register, incrementing the program counter, and then executing the instruction. Execution involves figuring out what instruction is represented by the code and then sending the address or data through the correct electronic circuits.

A very important instruction that this program does not use is a branch. The instruction BRA 0 causes the next instruction to be executed starting at memory location 0. This allows a program to skip over some instructions or to repeat some many times. A conditional branch changes the current instruction if a certain condition is true. An example would be “Branch if Accumulator is Zero (BAZ).” which is only performed if, as the instruction indicates, there is a value of zero in the accumulator. The combination of arithmetic and control instructions makes it possible for a programmer to describe a calculation to be performed very precisely.

 0.3 COMPUTER SYSTEMS ARE BUILT IN LAYERS

Entering a program as binary numbers using switches is a very tedious, time-consuming process. Lacking a disk drive, the early computers depended on other kinds of storage: punch cards or paper tape. It should be understood that because there was no permanent storage, booting one of these machines often meant toggling a small “boot loader” program, then reading a paper tape. Now the computer would respond sensibly to its peripheral devices, like a printer or card reader. The paper tape contained a primitive ‘operating system’ that would control the few devices available. That’s what operating systems do: allocate resources and control devices.

The boot loader (bootstrap program) is the lowest layer of software. It was provided by the computer manufacturer but had to be entered by the user. The paper tape system was the second layer, and the user did not have to write this program. Gradually, more and more layers were written to provide the user with a high level of abstraction rather than having to understand the entire machine.

When disk drives became available, the operating system was stored on them, and a bootstrap loader was saved in a special section of memory that could not be erased (read only memory) so that when the computer was turned on, it would run the loader, which would load the operating system. This is essentially what happens today on Windows.

This operating system on the disk drive is a third layer of software. It provides basic hardware allocation functionality and also gives the user access to some programs to use for printing and saving things on disk – a file system.

 0.3.1 Assemblers and Compilers

Programming a computer could still be a daunting task if done in binary, so the first thing that was provided was an assembler. This was a program that permitted a programmer to enter a text program that could be converted into a binary executable. It allowed memory locations to be named instead of using an absolute number as an address, and would convert text operation codes and addresses into a binary program. The addition program from the previous section could be written in assembler as follows:

 LDA Data1

 ADD Data2

 STO Res

 HLT

Data1: 21

Data2: 433:

Res: 0

Usually, one line of text in an assembler corresponds to a single instruction or memory location. It’s the same program, but is easier for a programmer to understand because of the named memory locations and mnemonic instruction names.

It is much harder to describe how a compiler works, but relatively easy to explain what it does. A compiler translates high level language statements into assembler, which in turn converts it into binary code. Compilers translate statements like

A = 21

B = 433

C = A+B

into executable code. It is a very complex process, but essentially it allows the programmer to declare that certain names represent integers, that values are to be assigned, and that arithmetic can be done. There are also more complex statements, like the conditional execution of code and function calls with parameters, as will be seen in later chapters.

Compilers also implement input and output from the user (reading from a keyboard and writing to the video screen), sophisticated data types, and mathematical functions. An interpreter, which is what the language Python is, does a part of the compilation process but does not produce executable code. Instead it simulates the execution of the code, doing most of the work in software. The Java language does a similar thing in many cases.

The programs that someone writes (software) creates another layer for someone to use. An example might be a database management system that gives a user access to a computer that can query data for certain kinds of values. A graphics system gives a programmer access to a set of operations that can draw pictures.

 0.3.2 Graphical User Interfaces (GUIs)

Most users now interface with their computers through a keyboard, one of the first devices to be interfaced to a computer, a mouse, the first device to permit 2D navigation on a screen, and Windows, a graphical construction that allows many independent connections to a computer to share a single video screen. GUIs are popular because they improve the user’s perception of what is happening on a computer. Previous computer interfaces were completely text based, so if there was a problem that the user could not see, it would go unnoticed.

GUIs, however, are difficult to program. Just opening a new window in a Microsoft-based operating system can require scores of lines of C++ code that would take a great deal of time to understand. Naturally, it is the job of a programmer to be able to do this, but it means that the average user could not create their own software that manipulated the interface in any reasonable way. So, what is a window and what’s involved in a GUI?

[image: image]
Figure 0.14 The first computer mouse. https://commons.wikimedia.org/wiki/File:Telefunken_Rollkugel_RKS_100-86.jpg

[image: image]
Figure 0.15 Englebart’s computer mouse.

A window, in the operating system sense, is a rectangle on the computer screen within which an exchange of information takes place between the user and the system. The rectangle can generally be resized, removed from the screen temporarily (minimized), moved, and closed. It can be thought of as a virtual computer terminal in that each one can do what the entire video screen was needed to do in early systems. When the window is active, a user can type information to be received by the program controlling it, and can manipulate graphical objects within the window using a mouse, or more recently by using their fingers on a touch screen.

The mouse is a variation on the tracker ball, the German engineering company Telefunken devised a working version and was the first to sell it. A mouse is linked through software to a cursor on the screen, and left-right motions of the mouse cause left-right motions of the cursor; forward and backward motions of the mouse cause the cursor to move up and down the screen. When the cursor is inside of a window then that window is active. A mouse has buttons, and pressing a mouse button activates whatever software object is related to the cursor position on the screen.

Widgets

A widget is a graphical object drawn in a window or otherwise on a computer screen that can be selected and/or operated using the mouse and mouse buttons. It is connected to a software element that is sent a control signal or numerical parameter by virtue of the widget being manipulated. A widget is exemplified by the button, a very commonly used widget on Web pages and interfaces. Buttons can be used to display information as well as to control a program. Some popular widgets are as follows:

[image: image]
Figure 0.16 A button.

Button: When the mouse cursor is within the boundaries of the button on the screen, the button is said to be activated. Pressing a mouse button when the button widget is activated causes the software connected to the button to perform its function.

Radio Button: A set of two or more buttons used to select from a set of discrete options. Only one of the buttons can be selected at a time, meaning that the options are mutually exclusive.

[image: image]
Figure 0.17 A radio button.

Check Box: A way to select a set of options from a larger set. This widget consists of a collection of boxes or buttons that can be chosen by clicking on them. When chosen, they indicate that fact by using a graphical change, sometimes a check mark but sometimes a color or other visual effect.

[image: image]
Figure 0.18 A check box.

Slider: A horizontal or vertical control with a selection tool that can be slide along the control. The relative position of the control dictates the value that the widget provides. This value is often displayed in a text box, and the range is also commonly displayed.

[image: image]
Figure 0.19 Slider.

Drop-down List: A box containing text that displays a complete set of options that can be displayed when the mouse button is clicked within it. Then any one of the options can be selected using the mouse and the mouse button.

[image: image]
Figure 0.20 Drop-down list.

Icon: An icon is a small graphical representation (pictogram) that represents the function of a program or file. When selected the program will execute or the file will be opened.

[image: image]
Figure 0.21 Icon.

There are many other widgets and variations on the ones shown here. There are two basic principles at play:

	The widget represents an activity using a commonly understood symbol, and performs that activity, or one related to the symbol, when selected using the mouse. This is a graphical and tactile operation that replaces the typing of a command in previous computer systems.

	The software that implements the widget is a module, software that can be reused and reconfigured for various circumstances. A button can be quickly created to perform any number of tasks because the program that implements it is designed for that degree of flexibility.

 0.4 COMPUTER NETWORKS

Schools, offices, and some homes are equipped with computer networks, which are wires that connect computers together and software and special hardware that allows the computers to communicate with each other. This allows people to send information to each other through their computers. But how does this really work?

Computers use electricity to perform calculations on binary numbers. Arbitrary voltages represent 0 and 1, and those voltages are sent along a wire no matter how long it is and still be numbers at the receiving end. As long as two computers are connected, this works well, but if two wires are needed to connect any two computers, then six wires are needed to fully connect three computers to each other and twelve to connect four computers. A room with thirty networked computers would be full of wires (870 to each computer)!

Hawaii has an unusual problem when it comes to computer network communication. It is a collection of islands. Linking them by cables is an expensive proposition. In the early 1970s, the technicians at the University of Hawaii decided to link the computers using radio. Radio transmission is similar to wire transmission in many practical ways, and allocating 35 radio frequencies to connect one computer on each island to all of the others would have been possible, but their idea was better. They used a single radio link for all computers. When a computer wanted to send information along the network, it would listen to see if another computer was already doing so. If so, it would wait. If not, it would begin to send data to all of the other computers and would include in the transmission a code for which computer was supposed to receive it. All could hear it, but all would know which computer was the correct destination so the others would ignore it. This system was called Alohanet.

[image: image]
Figure 0.22 Packets transmitted on a network. Red ones are collisions.

There is a problem with this scheme. Two or more computers could try to send at almost the same time, having noted that no other computer was sending when they checked. This is called a collision, and is relatively easy to detect; the data received is nonsense. When that happens, each computer waits for a random time, checks again, and tries again to send the data. An analogy would be a meeting where many people are trying speak at once.

Obviously, the busier the network is, the more likely a collision will be, and the re-transmissions will make things worse. Still, this scheme works very well and is functioning today in the form of the most common networking system in earth – Ethernet.

Ethernet is essentially Alohanet along a wire. Each computer has one connection to it, rather than connections to each of the possible destinations, and collisions are possible. There is another consideration that makes this scheme work better, and that it is use of packets. Information along these networks is sent in fixed-size packages of a few thousand bytes. In this way, the time needed to send a packet should be more or less constant, and it’s more efficient than sending a bit or a byte at a time.

Each packet contains a set of data bytes intended for another computer, so within that packet should be some information about the destination, the sender, and other important data. For instance, if a data file is bigger than a packet, then it is split up into parts to be sent. Thus, a part of the packet is a sequence number indicating which packet it is (e.g., number 3 of 5). If a particular packet never gets received, then the missing one is known, and the receiver can ask the sender for that packet to be resent. There are also codes to determine whether an error has occurred.

 0.4.1 Internet

The Internet is a computer network designed to communicate reliably over long distances. It was originally created to be a reliable communications system that could survive a nuclear attack, and was funded by the military. It is distributed, in that data can be sent from one computer to another in a chain until it reaches its destination.

Imagine a collection of a few dozen computers, and that each one is connected to multiple others, but not directly to all others. Computer A wishes to send a message to computer B, and does so using a packet that includes the destination. Computer A sends the message to all computers that it is connected to. Each of those computers sends it to all of the computers that they are connected to, and so on until the destination is reached. All of the computers will receive every message, which is inefficient, but so long as there exists some path from A to B, the message will be delivered.

It would be hard to tell when to stop sending a message in this scheme. Another way to do it is to have a table in each computer saying which computers in the network are connected to which others. A message can be sent to a computer known to be a short path to the destination, one computer at a time, and in this case not all computers see the message, only the ones along the route do. A new computer added to the network must send a special message to all of the others telling them which of the existing computers it is directly connected to, and this message will propagate to all machines, allowing them to update their map. This is essentially the scheme used today.

[image: image]
Figure 0.23 The organization of the Internet.

The Internet has a hierarchy of communication links and processors. First, all computers on the Internet have a unique IP (Internet Protocol) address through which they are reached. Because there are many computers in the world, an IP address is a large number. An example is 172.16.254.1 (obtained from Wikipedia). When a computer in, say, Portland want to send a message to, for example, London, the Portland computer composes a packet that contains the message, its address, and the recipient’s address in London. This message is sent along the connection to its Internet service provider, which is a local computer, at a relatively low speed, perhaps 10 megabits per second. The service provider operates a collection of computers designed to handle network traffic. This is called a Point of Presence (POP), and it collects messages from a local area and concentrates them for transmission further down the line.

Multiple POP sites connect to a Network Access Point (NAP) using much faster connections than users have to connect with the POP. The NAP concentrates even more users, and provides a layer of addressing that can be used to send the data to the destination. The NAP for the Portland user delivers the message to a relatively local NAP, which sends it to the next NAP along a path to the destination in London using an exceptionally fast (high bandwidth) data connection. The London NAP sends the message to the appropriate local POP, which in turn sends it to the correct user.

An important consideration is that the message can be read by any POP nor NAP server along the route. Data sent along the Internet is public unless it is properly encrypted by the users.

 0.4.2 World Wide Web

The World Wide Web, or simply the Web, is a layer of software above the Internet protocols. It is a way to access files and data remotely through a visual interface provided by a program that runs on the user’s computer, a browser. When someone accesses a Web page, a file that describes that page is downloaded to the user’s browser and displayed. That file is text in a particular format, and the file name usually ends in .html or .htm. The file holds a description of how to display the page: what text to display, where images can be found that are part of the page, how the page is formatted, and where other connected pages (links) are found on the Internet. Once the file is downloaded, the local (receiving) computer performs the work concerned with the display of the file, such as playing sounds and videos, and drawing graphics and text.

The Web is the basis for most of the modern advances in social networking and public data access. The Internet provides the underlying network communications facility, while the Web uses that to fetch and display information requested by the user in a visual and auditory fashion. Podcasts, blogs, and wikis are simple extensions of the basic functionality.

The Web demands the ability for a user in Portland to request a file from a user in London and to have that file delivered and made into a graphical display, all with a single click of a mouse button. Web pages are files that reside on a computer that has an IP address, but the IP address is often hidden by a symbolic name called the Universal Resource Locator (URL). Almost everyone has seen one of these (http://www.facebook.com is one example). Web pages have a unique path or address based on a URL. Anyone can create a new web page that uses its very own unambiguous URL at any time, and most of the world would be able to view it.

The Web is an example of what programmers call a client-server system. The client is where the person requesting the Web page lives, and is making a request. The server is where the Web page itself exists, and it satisfies the request. Other examples of such systems would be online computer games, Email, Skype, and Second Life.

 0.5 REPRESENTATION

When applying a computer to a task or writing a program to deal with a type of data that seems to be non-numeric, the issue of how to represent the data on the computer invariably arises. Everything stored and manipulated on a computer has to be a number. What if the data is not numeric?

A fundamental example of this is character data. When a user types at the computer keyboard, what actually happens? Each key, and some key combinations (e.g., the shift key and “1” held down at the same time), when pressed result in electrical signals being sent along a set of wires that connect to an input device on the computer, a USB port perhaps. Pressing a key results in an identifiable combination of wires being given a voltage. This is, in fact, a representation of the character, and one that underlies the one that will be used on the computer itself. As described previously, voltages can be used to represent binary numbers.

The representation of characters on a computer amounts to an assignment of a number to each possible character. This assignment could be arbitrary, and for some data it is. The value of the letter “a” could be 1, “b” could be 12, and “c” could be 6. This would work, but it would be a poor representation because characters are not in an arbitrary order. The letter “b” should be between “a” and “c” in value because it is positioned there in the data set, the set of characters. In any case, when creating a numeric representation the first rule is as follows:

	If there are a relatively small number of individual data items, assign them consecutive values starting at 0. If there is a practical reason to start at some other number, then do so.

The second rule considers the existing ordering of the elements:

	In cases where data items are assigned consecutive values, assign them in a manner that maintains any pre-defined order of the elements.

This means that in a definition of characters the letter ‘a’, ‘b’, and ‘c’ should appear in that order.

	In cases where data items are assigned consecutive values, assign them in a manner that maintains any pre-existing distance between the elements.

This means that the letters “a,” “b,” and “c” would be adjacent to each other in the numeric representation because they are next to each other in the alphabet. The character classes also have consecutive codes so that the code for “0” is adjacent to, and smaller than, the code for “1,” and so on. This set of three rules creates a reliable mapping of characters to numbers. However, there are more rules for making representations.

	In cases where the data items are assigned consecutive values, assign them in a manner that simplifies the operations that are likely to be performed on the data.

In the present example of character data, there are relatively few places where this rule can be invoked, but one would be when comparing characters to each other. A character “A” is usually thought to come before “a,” so this means that all of the uppercase letters come before all lowercase ones, in a numerical sense. Similarly, “0” comes before “A,” so all digits come before all letters in the representation. A space would come before (i.e., have a smaller value) than any character that prints.

One of the most common character representations, named the American Standard Code for Information Interchange or ASCII has all of these properties, and a few others. The standard ASCII character set lists 128 characters with numerical codes from 0 to 127. In the table below, each character is listed with the code that represents it. They appear in numerical order. The characters in orange are telecommunications characters that are never used by a typical computer user; green characters are non-printing characters that are used for formatting text on a page; letters and numbers for English are red; special characters, like punctuation, are blue. The space character is in some sense unique, and it is black.

Table 0.01 American Standard Code for Information Interchange

	[image: image]

If there is a very large number of possible data values, then enumerating them would be unreasonable. There are other ways to solve that sort of problem.

	Try to break the data into enumerable parts.

Dates can be an example of this kind of data. There are too many dates to store as discrete values, as there is no actual day 0, and there is no practical final day in the general case. However, a common way to state a date is to give a year, a month, and a day. This is awkward from a computer’s perspective because of the variable number of days in each month, but it works well for humans. Each component is enumerable, so a possible representation for a date would be as three numbers: year, month, day. It would be YYYYMMDD, where YYYY is a four-digit year, MM is a number between 0 (January) and 11 (December), and DD is a number between 0 and 30, which is the day of the month.

This representation should keep the dates in the correct sequence, so December 9, 1957, (19571108) comes after Aug 24, 1955 (19550723). However, another common operation on dates is to find the number of days between two specified dates. This is difficult, and the only representation that would simplify it would be to start counting days at a zero point. If that zero point is Jan 1, 1900 then the representation for the date October 31, 2017 is 43037. The number of days between two dates is then found by subtraction. However, printing the date in a form for humans to read is difficult. When selecting a representation, the most common operations on the data should be the easiest ones to perform.

Another example of this sort or representation is color, which will be discussed in detail in a later chapter.

	When the data is part of a continuous stream of real values, then it may be possible to sample them and/or quantize them.

Sampling means to represent a sequence by using a subset of the values. Imagine a set of numbers coming from a seismometer. The number sequence represents measurements of the motion of the ground captured continuously by a mechanical device. It is normally acceptable to ignore some of these values, knowing that between a value of 5.1 (whatever that means) and a value of 6.3, the numbers would have taken on all possible values between those two; that’s what continuous means.

[image: image]
Figure 0.24 A continuous set of data has a measurable value between any other two.

Instead of capturing an infinite number of values, which is not possible, why not capture a value every second, or tenth of a second, or at whatever interval makes sense for the data concerned? Some data will be lost. The important thing is not to lose anything valuable.

[image: image]
Figure 0.25 Sampling means picking an interval and only keeping the data values at those locations. The vertical lines here are sampling positions.

The same thing can be done spatially. If someone is building a road, then it must be surveyed. A set of height values for points along the area to be occupied by the road is collected so that a model of the 3D region can be built. But between any two points that can be sampled there is another point that could be sampled, on to infinity. Again, a decision is made to limit the number of samples so that the measurements are made every few yards. This limits the accuracy, but not in a practical way. The height at some specific point may not have been measured, but it can be estimated from the numbers around it.

[image: image]
Figure 0.26 The resulting signal is not as smooth as the original (lower resolution).

The distance between two sample points is referred to as the resolution. In spatial sampling, it is expressed in distance units, and says something about the smallest thing that can be precisely known. In time sampling, it is expressed in seconds.

Quantization means how accurately each measurement is known. In high school science, numbers that are measurements are given to some number of significant figures. Measuring a weight as 110.9881 pounds would seem impossibly accurate, and 111 would be a more reasonable number. Quantization in computer terms would be restricting the number of bits used to represent the value. Something that is stored as an 8-bit number can have 256 distinct values, for example. If the world’s tallest person is under 8 feet tall, then using 8 bits to represent height would mean that 8 feet would be broken up into 256 parts, which is 0.375 inches; that is 8 feet × 12 inches/foot = 96 inches, and dividing this into 256 parts = 0.375. The smallest difference in height that could be expressed would be this value, a little over a third of an inch.

Quantization is reflected in the representation as a possible error in each value. The greater the number of bits per sample, the more accurately each one is represented. The use of sampling and quantization is very common, and is used when saving sounds (MP3), images (JPEG), and videos (AVI).

There are other possible options for creating a representation for data, but the six basic ideas here will work most of the time, alone or in combination. A programmer must understand that she or he will need to wisely choose the representations for the data. A poor choice will result in more complex code, which generates more errors and less overall satisfaction with the result. Spending a little extra time at the beginning analyzing the possibilities can save a lot of effort later.

 0.6 SUMMARY

Computers are devices that humans built to facilitate complex calculations and are tools for rapidly and accurately manipulating numbers. When humans communicate with each other, we use a language. Similarly, humans use languages to communicate with computers. A computer program can be thought of as a sequence of operations that a computer can perform to accomplish a calculation. The program must be expressed in terms that the computer can do.

Early computers were mechanical, using gears to represent numbers. Electronic computers usually use two electrical states or voltages to represent numbers, and those numbers are in binary or base-2 form. Electronic computers have memories that can store numbers, and everything stored in memory must be in numeric form. That includes the instructions that the computer can execute.

Computers have been around long enough to provide many layers of computer programs that can assist in their effective use: graphical user interfaces, assemblers, compilers for programming languages, Web browsers, and accounting packages provide a user with a different view of a computer and a different way to use it. Computers can exchange data between each other using wires over short distances (computer network) and long ones (Internet). The World Wide Web sits atop the Internet and provides an easy and effective way for computers all over the world to exchange information in any form.

Everything stored and manipulated on a computer has to be a number. What if the data is not numeric? In that case a numeric representation has to be devised that effectively characterizes the information while permitting its efficient manipulation.

 Exercises

	Convert the following binary numbers into decimal:

a) 0100000

b) 0000100

c) 0000111

d) 0101010

e) 0110100101

f) 0111111

g) 110110110

	2.Convert the following decimal numbers into binary:

a) 10

b) 100

c) 64

d) 128

e) 254

f) 5

g) 999

	Core memory would not erase itself when its power source was removed. Give reasons why this is a valuable property.

	Specify a device that is used for:

a) Output only

b) Input only

c) Both input and output

	Ada, Countess of Lovelace, is generally considered to be the first programmer, but some contrary information has come to light recently. Search the literature for two articles on each side of the argument and formulate a conclusion.

	What is the difference between a compiler and an interpreter? Give an example of each.

	Identify a GUI widget that was not discussed in this chapter. Sketch its appearance and describe its operation. Give an example of a situation where it might be used.

	Give the ASCII codes for the following characters:

a) 'P'

b) ';'

c) 'r'

d) ','

e) '='

	What is the value of the ASCII code for the character “1” minus the code for the character “0”? What is 2-0? What does this say about converting from the character form of a number into its numeric value in general?

	Consider the imaginary computer devised in this chapter. It has a memory in which each location has 12 binary digits (bits) to store a number. In one of the memory locations the value 101000000000 is seen. What is this? Is it an instruction, a number, a character, an address, or something else? How can this be determined?

 Notes and Other Resources

http://www.vandermark.ch/pdp8/index.php?n=PDP8.Emulator

	L. Carlitz (1968), Bernoulli Numbers, Fibonacci Quarterly 6: 71–85.

	Digital Equipment Corporation (1972) Introduction to Programming, PDP-8 handbook series. (Online version http://www.mirrorservice.org/sites/www.bitsavers.org/pdf/dec/pdp8/handbooks/IntroToProgramming1969.pdf)

	James Essinger (2004). Jacquard’s web. Oxford University Press, Oxford. ISBN 978-0-19-280578-2.

	Tony Sale, The Colossus Computer 1943–1996: How It Helped to Break the German Lorenz Cipher in WWII, M.&M. Baldwin, Kidderminster, 2004; ISBN 0-947712-36-4.

	Stephen Stephenson (2013), Ancient Computers, Part I - Rediscovery, Edition 2, ISBN 1-4909-6437-1.

	A. M. Turing (1936). On Computable Numbers, with an Application to the Entscheidungsproblem.

	Michael R. Williams (1998). The “Last Word “ on Charles Babbage. IEEE Annals of the History of Computing 20 (4): 10–4. doi:10.1109/85.728225.

	Javier Yanes (2015) Ada Lovelace: Original and Visionary, but No Programmer, OpenMind, 09 December 2015. https://www.bbvaopenmind.com/en/ada-lovelace-original-and-visionary-but-no-programmer/

CHAPTER 1

COMPUTERS
PROGRAMMING

	1.1
	Solving a Problem Using a Computer
	36

	1.2
	Executing Python
	37

	1.3
	Guess a Number
	39

	1.4
	Rock–Paper–Scissors
	40

	1.5
	Solving the Guess a Number Problem
	40

	1.6
	Solving the Rock-Paper-Scissors Problem
	41

	1.7
	IF Statements
	51

	1.8
	Documentation
	55

	1.9
	Rock-Paper-Scissors Again
	57

	1.10
	Types Are Dynamic (Advanced)
	60

	1.11
	Summary
	62

[image: image]

In this chapter

The vast majority of computers fthat most people encounter are digital computers. This refers to the fact that the computer works on numbers. Other kinds of computer do exist but are not as common. Analog computers operate in a number of other ways, but are usually electrical (they manipulate electrical voltages and currents). They may be mechanical and use gears and shafts to calculate a mechanical response.

The fact that any problem must be expressed in numerical form can be challenging. I’m not good at math is a common complaint, and the belief that computer programming requires a knowledge of advanced mathematics is used as a reason to not study programming. The kind of math commonly needed for programming would more properly be called arithmetic, not math.

In order for a problem to be solved using a computer, the problem must be expressed in a way that manipulates numbers and the data involved must be numeric. This is often accomplished by some kind of encoding of the data. It is so common that the process is invisible on modern computers. Most data have a variety of encodings that have been used for years and are taken for granted: images in JPEG format or sounds in MP3 are examples of commonly used encoding of data into numbers.

What can computers do with numbers? Addition, subtraction, multiplication, and division are the basic operations, but computers can compare the value of numbers, too.

 1.1 SOLVING A PROBLEM USING A COMPUTER

The process of solving a problem using a computer begins with a detailed specification of the problem to be solved. Unless the problem is completely understood, its solution on a computer is impossible. Then we examine the problem to see what methods that we know about and what programs we already have could be used in its solution. At this stage we’re diving the problem in to the part that we know how to solve right away, and the part that we do not. The latter part has to be examined in more detail until a solution can be proposed. Then we create an outline of the solution, often on paper using human language; this is pseudocode, and differs in style from person to person. This is translated into computer language and then typed into computer form using a keyboard. The resulting text file is called a script, source code, or more commonly just the computer program.

A program called a compiler takes this program and converts it into a form that can be executed on the computer. Basically, all programs are converted into a set of numbers called machine code which the computer can execute.

We are going to learn a language called Python. It was developed as a general-purpose programming language and is a good language for teaching because it makes a lot of things easy. Quite a few applications are built using Python, such as the games Eve Online and Civilization IV, BitTorrent, and Dropbox. It is a bit like a lot of other languages in use these days in terms of structure (syntax) but has some simplifying ideas that will be discussed in later chapters.

In order to use a programming language there are some basic concepts and structures that need to be understood at a basic level. Some of these concepts are introduced in this chapter and the rest of the book teaches you to program by example; in all cases, coding examples are introduced by stating a problem to be solved. The problems to be solved in this chapter include a simple guess-a-number game and the game of rock-paper-scissors. These problems serve as the motivation for learning more about either the Python language itself or about methods of solving problems. Any computer programs in this book will execute on a computer running any major operating system once the free Python language download has been installed.

 1.2 EXECUTING PYTHON

Installing Python is not too difficult, and involves downloading the installer, running it, and perhaps configuring a few specific details. This process can be found in Appendix I. Once installed, there are a few variations that can be used with it, the simplest probably being the Python Graphical User Interface or GUI. If you are running Python on a Windows PC, look at the Start menu for Python and click a link named “IDLE (Python GUI),” as shown in Figure 1.1. Click on this and the user interface will open. Click the mouse in the GUI window so that you can start typing characters there.

Python can be run interactively in the GUI window. The characters “>>>” are called a prompt, and indicate that Python is waiting for something to be typed at the keyboard. Anything typed here will be presumed to be a Python program, or at least part of one. As a demonstration, type “1” followed by pressing the Enter key. Python responds by printing “1.” Why? When “1” was typed, it was a Python expression, something to be evaluated. The value of “1” is simply “1,” so that was the answer Python computed.

[image: image]
Figure 1.1 Running the Python GUI.

Now type “1+1.” Python responds with “2.” Python inputs what the user/programmer types, evaluates it as a mathematical (in Python form) expression, and prints the answer. This is not really programming yet, because a basic two-dollar calculator can do this, but it is certainly a start.

IDLE is good for many things, but eventually a more sophisticated environment is needed, one that can indent automatically, detect some kinds of errors, and allow programs to be run and debugged and saved as projects. This kind of system is called an integrated development environment, or IDE. There are many of these available for Python, some that are expensive and some that are freely downloadable. The code in this book has been compiled and tested using PyCharm, but most IDEs are acceptable. It is largely a matter of personal preference. Basic PyCharm is free, but there is a more advanced version that costs a small amount of money.

An advantage of an IDE is that it is easy to type in a whole program, run it, find the errors, fix them, and run it again. This process is repeated until the program works as desired. Multiple parts of a large program can be saved as separate files and collected together by the IDE, and they can be worked on individually and tested together. A good IDE uses color to indicate syntax features that Python understands and can show some kinds of error while the code is being entered.

A program, just like any sentence or paragraph in English, consists of symbols, and order matters. Some symbols are special characters with a defined meaning. For example, “+” usually means add, and “-” usually means subtract. Some symbols are words. Words defined by the language, like if, while, and true, cannot also be also defined by a programmer – they mean what the language says they mean, and are called reserved words. Some names have a definition given by the system but can be reused by a programmer as needed. These are called predefined names or system variables. However, some words can be defined by the programmer, and are the names for things the programmer wants to use in the program: variables and functions are examples.

 1.3 GUESS A NUMBER

Games that involve guessing are common, and are sometimes used to resolve minor conflicts, such as who gets the next piece of cake or who gets the first kick at a football. It’s also sometimes a way to occupy time, and can simply be fun. How can we write a program to have the user guess a number that the program has chosen?

Contents

	Cover page

	Title page

	Copyright

	Contents

	Preface

	Chapter 0: Modern Computers

	0.1 Calculations by Machine

	0.2 How Computers Work and Why We Made Them

	0.2.1 Numbers

	Example: Base 4

	Convert Binary Numbers to Decimal

	Convert Decimal Numbers to Binary

	Arithmetic in Binary

	0.2.2 Memory

	0.2.3 Stored Programs

	0.3 Computer Systems Are Built in Layers

	0.3.1 Assemblers and Compilers

	0.3.2 Graphical User Interfaces (GUIs)

	Widgets

	0.4 Computer Networks

	0.4.1 Internet

	0.4.2 World Wide Web

	0.5 Representation

	0.6 Summary

	Chapter 1: Computers and Programming
	1.1 Solving a Problem Using a Computer

	1.2 Executing Python

	1.3 Guess a Number

	1.4 Rock–Paper–Scissors

	1.5 Solving the Guess a Number Problem

	1.6 Solving the Rock-Paper-Scissors Problem

	1.6.1 Variables and Values–Experimenting with the Graphical User Interface

	1.6.2 Exchanging Information with the Computer

	1.6.3 Example 1: Draw a Circle Using Characters

	1.6.4 Strings, Integers, and Real Numbers

	1.6.5 Number Bases

	1.6.6 Example 2: Compute the Circumference of Any Circle

	1.6.7 Guess a Number Again

	1.7 IF Statements

	1.7.1 Else

	1.8 Documentation

	1.9 Rock-Paper-Scissors Again

	1.10 Types Are Dynamic (Advanced)

	1.11 Summary

	Chapter 2: Repetition
	2.1 The WHILE Statement

	2.1.1 The Guess-A-Number Program Revisited

	2.1.2 Modifying the Game

	2.2 Rock–Paper–Scissors Revisited

	2.2.1 Random Numbers

	2.3 Counting Loops

	2.4 Prime or Non-Prime

	2.4.1 Exiting from a Loop

	2.4.2 Else

	2.5 Loops That Are Nested

	2.6 Draw a Histogram

	2.7 Loops in General

	2.8 Exceptions and Errors

	2.8.1 Problem: A Final Look at Guess a Number

	2.9 Summary

	Chapter 3: Sequences: Strings, Tuples, and Lists
	3.1 Strings

	3.1.1 Comparing Strings

	3.1.2 Slicing – Extracting Parts of Strings

	3.1.3 Editing Strings

	3.1.4 String Methods

	3.1.5 Spanning Multiple Lines

	3.1.6 For Loops Again

	3.2 The Type Bytes

	3.3 Tuples

	3.3.1 Tuples in For Loops

	3.3.2 Membership

	3.3.3 Delete

	3.3.4 Update

	3.3.5 Tuple Assignment

	3.3.6 Built-in Functions for Tuples

	3.4 Lists

	3.4.1 Editing Lists

	3.4.2 Insert

	3.4.3 Append

	3.4.4 Extend

	3.4.5 Remove

	3.4.6 Index

	3.4.7 Pop

	3.4.8 Sort

	3.4.9 Reverse

	3.4.10 Count

	3.4.11 List Comprehension

	3.4.12 Lists and Tuples

	3.4.13 Exceptions

	3.5 Set Types

	3.5.1 Example: Craps

	3.6 Summary

	Chapter 4: Functions
	4.1 Function Definition: Syntax and Semantics

	4.1.1 Problem: Use the function poundn to Draw a Histogram

	4.1.2 Problem: Generalize the Histogram Code for Other Years

	4.2 Function Execution

	4.2.1 Returning a Value

	4.2.2 Parameters

	4.2.3 Default Parameters

	4.2.4 None

	4.2.5 Example: The Game of Sticks

	4.2.6 Scope

	4.2.7 Variable Parameter Lists

	4.2.8 Variables as Functions

	Example: Find the maximum value of a function

	4.2.9 Functions as Return Values

	4.3 Recursion

	4.3.1 Avoiding Infinite Recursion

	4.4 Creating a Python Module

	4.5 Program Design Using Functions–The Game of Nim

	4.5.1 The Development Process Exposed

	4.6 Summary

	Chapter 5: Files: Input and Output
	5.1 What Is a File? A Little Theory

	5.1.1 How Are Files Stored on a Disk?

	5.1.2 File Access is Slow

	5.2 Keyboard Input

	5.2.1 Problem: Read a number from the keyboard and divide it by 2

	5.3 Using Files in Python: Less Theory, More Practice

	5.3.1 Open a File

	File Not Found Exceptions

	5.3.2 Reading from Files

	End of File

	Common File Input Operations

	CSV Files

	The With Statement

	5.4 Writing to Files

	Example: Write a table of squares to a file.

	5.4.1 Appending Data to a File

	Example: Append another 20 squares to the table of squares file.

	5.5 Summary

	Chapter 6: Classes
	6.1 A Casual Introduction to Classes

	6.2 Classes and Types

	6.3 Classes as Encapsulated Modules

	6.4 Classes as Data Abstractions

	6.5 The Python Class – Syntax and Semantics

	6.5.1 A Really Simple Class

	6.5.2 Encapsulation

	6.6 Classes and Data Types Again

	6.6.1 Example: A Deck of Cards

	6.6.2 A Bouncing Ball

	6.6.3 Cat-A-Pult

	Basic Design

	Detailed Design

	6.7 Subclasses and Inheritance

	6.7.1 Non-Trivial Example: Objects in a Video Game

	6.8 Duck Typing

	6.9 Summary

	Chapter 7: Graphics
	7.1 Introduction to Graphics Programming

	7.2 Graphics in Python–Pygame

	7.3 Initializing Pygame

	7.3.1 Colors

	7.4 The Event LOOP

	7.5 Drawing

	Example: Create a Page of Note Paper

	Example: Creating a Color Gradient

	7.5.1 Lines and Curves

	Example: Note Paper Again

	7.6 Arcs and Curves

	7.6.1 Polygons

	7.6.2 Text

	7.6.3 Example: A Histogram

	7.6.4 Example: A Pie Chart

	7.6.5 Images

	Pixels, Again

	Example: Identifying a green car

	Example: Thresholding

	Transparency

	7.6.6 Generative Art

	7.7 Summary

	Chapter 8: Manipulating Data
	8.1 Dictionaries

	8.1.1 Example: A Naïve Latin – English Translation

	8.1.2 Functions for Dictionaries

	8.1.3 Dictionaries and Loops

	8.2 Arrays

	8.3 Formatted Text, Formatted I/O

	8.3.1 Example: NASA Meteorite Landing Data

	8.4 Advanced Data Files

	8.4.1 Binary Files

	Example: Create a File of Integers

	8.4.2 The Struct Module

	Example: A Video Game High Score File

	8.4.3 Random Access

	Example: Maintaining the High Score File in Order

	8.5 Standard File Types

	8.5.1 Image Files

	8.5.2 GIF

	8.5.3 JPEG

	8.5.4 TIFF

	8.5.5 PNG

	8.5.6 Sound Files

	8.5.7 WAV

	8.5.8 Other Files

	8.5.9 HTML

	8.5.10 EXE

	8.6 Summary

	Chapter 9: Multimedia
	9.1 Mouse Interactions

	Example: Draw a Circle at the Mouse Cursor

	Example: Change Background Color Using the Mouse

	9.1.1 Mouse Buttons

	Example: Draw Lines Using the Mouse

	Example: A Button

	9.2 The Keyboard

	Example: Pressing a “q” Creates a Random Circle

	Example: Reading a Character String

	9.3 Animation

	9.3.1 Object Animation

	Example: A Ball in a Box

	Example: Many Balls in a Box

	9.3.2 Frame Animation

	Example: Read Frames and Play Them Back as an Animation

	Example: Simulation of the Space Shuttle Control Console (A Class That Will Draw an Animation at a Specific Location)

	9.4 RGBA Colors – Transparency

	9.5 Sound

	Example: Play a Sound

	Example: Control Volume Using the Keyboard

	Example: Play a Sound Effect at the Right Moment: Bounces

	Music

	9.6 Summary

	Chapter 10: Basic Algorithms
	10.1 Sorting

	10.1.1 Selection Sort

	10.1.2 Merge Sort

	10.2 Searching

	10.2.1 Timings

	10.2.2 Linear Search

	10.2.3 Binary Search

	10.3 Random Number Generation

	10.3.1 Linear Congruential Method

	10.4 Cryptography

	10.4.1 One-Time Pad

	10.4.2 Public Key Encryption (RSA)

	10.4.3 Example: Encrypt the Message “Depart at Dawn” Using RSA

	10.5 Compression

	10.5.1 Huffman Encoding

	10.5.2 LZW Compression

	10.6 Hashing

	10.6.1 DJB2

	10.6.2 SDBM

	10.7 Summary

	Chapter 11: Programming for the Sciences
	11.1 Finding Roots of Equations

	11.2 Differentiation

	11.3 Integration

	11.4 Optimization: Finding Maxima and Minima

	11.4.1 Newton Again

	11.4.2 Fitting Data to Curves – Regression

	11.4.3 Evolutionary Methods

	11.5 Longest Common Subsequence (Edit Distance)

	11.5.1 Determining Longest Common Subsequence (LCS)

	11.5.2 NumPy

	11.5.3 One Dimensional Arrays (Vectors)

	11.5.4 Two Dimensional Arrays (Matrices)

	11.5.5 Sample Problem: Finding Paths

	11.5.6 Linear Regression Again

	11.6 Summary

	Chapter 12: How To Write Good Programs
	12.1 Procedural Programming – Word Processing

	12.1.1 Top-Down

	12.1.2 Centering

	12.1.3 Right Justification

	12.1.4 Other Commands

	12.2 Object Oriented Programming – Breakout

	12.3 Describing the Problem as a Process

	12.3.1 Initial Coding for a Tile

	12.3.2 Initial Coding for the Paddle

	12.3.3 Initial Coding for the Ball

	12.3.4 Collecting the Classes

	12.3.5 Developing the Paddle

	12.3.6 Ball and Tile Collisions

	12.3.7 Ball and Paddle Collisions

	12.3.8 Finishing the Game

	12.4 Rules for Programmers

	12.5 Summary

	Chapter 13: Communicating with the Outside World
	13.1 Email

	Example: Sending an email

	13.1.1 Reading email

	13.1.2 Example: Display the Subject Headers for Emails in the Inbox

	13.2 FTP

	13.2.1 Example: Download and Display the README File from an FTP Site

	13.3 Communication Between Processes

	13.3.1 Example: A Server That Calculates Squares

	13.4 Twitter

	13.4.1 Example: Connect to the Twitter Stream and Print Specific Messages

	13.5 Communicating with Other Languages

	13.5.1 Example: Find Two Large Relatively Prime Numbers

	13.6 Summary

	Chapter 14: Parsing–The Structure of Data
	14.1 Grammars

	14.2 PYJ and JULIA

	14.3 Language Symbols and Scanning

	14.4 Parsing a Programming Language

	14.5 WHILE Statements

	14.6 FOR Statements

	14.7 IF Statements

	14.8 Expressions

	14.9 Functions

	14.10 Examples

	Chapter 15: Communicating Using Graphics: Windows, User Interfaces, and Pygame
	15.1 A Paint Program

	Interface

	15.2 Building the Mondrean Interface

	15.3 Selecting

	15.4 The Buttons

	Drawing

	15.5 Images and Surfaces

	15.6 Stacks: Undraw and Redraw

	15.7 Color Selection

	15.8 Image File Selection

	Index

OEBPS/css/page-template.xpgt

	
		
	

	
		
	

	
		
	

	
		
	

	
		
				
			
				
		
	

	

OEBPS/images/pub.jpg
MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

OEBPS/images/0.25.jpg
rH h “\ ’.‘ AN
f "H i Hx My
”\t] LDI J f

OEBPS/images/0.26.jpg

OEBPS/images/cover.jpg
PYTHON

An Introduction
To Programming

4 53dd back the desellected mirror modifier object

bpy ive - modifier_ob
pe ier_ob)) # modifier ob is the active ob
35+ 0ja] das

—

[] JAmEs R. PARKER .

OEBPS/images/0.23.jpg

OEBPS/images/0.24.jpg
A

oA

OEBPS/images/chap-dots.jpg

OEBPS/images/47.01.jpg
COde Char Code Char Code Char Code Char Code Char (:ode Char COde Char code Char

0 : 32 iSpace: 48 : 0 P : ¢
1 1 Q A
2 2 R B

3} 35 # 51 3 @ 83 S 99 €
4 36$ 524 D 84 T]()OD
5 37 % 535 E 85 U101E
6 38 & 5461: 86 V102F

<
W
)
=2
Q

=

._.
=)
@
Q

o
=]
fus
~
ran,

© ;95 i §111§o;127DEL

OEBPS/images/0.18.jpg

OEBPS/images/0.19.jpg
Slider

OEBPS/images/1.1.jpg
|-

| Notepad++

L. NVIDIA Corporation
). NVIDIA Demos

'} OBJ Viewer

)i Opencv Documents
L OpenNI2
)i Orbiter 2010 Pictures
i Origin
i Oxelon Media Converter File Edit Shell Debug Options Windows Help
‘ Parachute Game Python 3.4.2 (v3.4.2:2b2c02329432, Oct 6 2014, 22:15:05) [MSC v.1600 32 bit (In_‘
i Parhelia Tools Compoter tel)] on win32

Type "copyright", "credits" or "license()" for more information.

Control Panel >>>

Music

J. Participatory Culture Foundation
L. Pazera Free Audio Extractor

. PDFImage Extraction Wizard

i PDF Reverser

)i POFCreator

J Prism Video Converter =
)i Python27 Help and Support Ln:3Col:4

Devices and Printers

Default Programs

55
[Python 34 Manuals
1) Uninstall Python 3.4 (32 bit)

4 Back

Shut down |

OEBPS/images/0.21.jpg

OEBPS/images/0.22.jpg
s

et | -

s

OEBPS/images/0.2.jpg
i
et

[T =k | AR

R

OEBPS/images/0.20.jpg

OEBPS/images/0.12.jpg
TR Bressuece
== i

OEBPS/images/0.11.jpg

OEBPS/images/0.14.jpg

OEBPS/images/0.13.jpg
mery.

om0
bk

o

OEBPS/images/0.16.jpg
el

S PO —

_S
! ()))lu)u\

OEBPS/images/0.15.jpg

OEBPS/images/0.17.jpg

OEBPS/images/0.9.jpg
N\ N NENE NS NN

OEBPS/images/0.8a.jpg

OEBPS/images/0.8b.jpg
3 Q/o-Q 0.0(_4.0_.0.0-.
oc.oO— » 0/0-‘./ gL

_y_o-o/.o-b/o B e o

e Y AT S 8 ’Q/’.-‘

Sl 5 QY X 4 o-Q/o-Q,a.
PN R YV — AL

2 @ o A B B N VLIV

OEBPS/images/0.4.jpg

OEBPS/images/28.01.jpg
:Postion A 3 i, 2 L e
S . .2_4.....1.6. £SO TR e R S
Dlglt*power 16 8 0 2

OEBPS/images/0.5.jpg
Battery Switch

+||‘|_ —
|1 { }

OEBPS/images/0.3.jpg
T

Nemes of Operstion.
Nature of Operstin.

Diagram for the comptation by the Engine of the Nunbers of leruoull.Sec Note G. (page

Werklg Varisbles

[Jeeco0.

[Jeee0

1 Ix
2 |-
3+
a1
| EH g el
1 el
o [e
6 | = Fa-m,y, E o
{8 2
E) I) [e !;.-;,
1 = =1 ELETY .
' =
o e s
i
i = =l 5 s |
= e | 2a-i| 3 l
|
|

+

BV: e

v,

Vi o]

Y
i

Wyt
s
el

v\) W)

21 ’.-!
-1, Ry
NEB M+
- —3 (= 1)

=

- - | Be-%

- - e . .

L - | e Ha-g 4

== o (O |

e e et] P S o
& e &)l |12

T O v o o

B

{A.n..—n..q- na}

OEBPS/images/0.10.jpg

OEBPS/images/0.6.jpg
S
e

<))

OEBPS/images/0.1.jpg

OEBPS/images/0.7.jpg
2V

