
		
			[image: Cover.png]
		

	
		
			Real-World Svelte

			Supercharge your apps with Svelte 4 by mastering advanced web development concepts

			Tan Li Hau

			[image:]

			BIRMINGHAM—MUMBAI

			Real-World Svelte

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Bhavya Rao

			Book Project Manager: Aishwarya Mohan

			Content Development Editor: Debolina Acharyya

			Technical Editor: K Bimala Singha

			Copy Editor: Safis Editing

			Proofreader: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Ponraj Dhandapani

			DevRel Marketing Coordinators: Nivedita Pandey, Namita Velgekar, and Anamika Singh

			First published: November 2023

			Production reference: 1011123

			Published by Packt Publishing Ltd.

			Grosvenor House 11 St Paul’s Square Birmingham B3 1RB, UK

			ISBN 978-1-80461-603-1

			www.packtpub.com

			To my beloved wife, Chai Ying, whose love and belief in me have been my anchor, and to my parents, Eng Swee and Sook Hwa, who have always been my guiding stars – this book is dedicated to you, my pillars of strength and inspiration.

			– Tan Li Hau

			Foreword

			One of the hardest parts of maintaining an open source project is finding people to maintain it with. It’s not enough for someone to be a good programmer, though that is certainly an essential ingredient. They must also be gifted at communication (working in public means constantly explaining yourself to an unseen audience), empathetic (understanding users’ frustrations and needs is a large part of a maintainer’s responsibility), patient (on a large-enough project, seemingly simple changes can take months to land), farsighted (anticipating how apparently unrelated things might interact with each other in future is very important), and aligned with the values and goals of the wider community. Above all, they must be fun to work with, otherwise what’s the point?

			Such people are exceedingly rare.

			Tan Li Hau epitomizes these rare qualities. His contributions to the Svelte project are wide-ranging and significant — only two people have made more code commits to the core repository — and he has developed elegant solutions for some of the thorniest problems. Everyone who uses the framework has benefitted from his work.

			And yet that’s not what Li Hau is best known for, because in addition to being an excellent steward of the code base, he is a widely followed educator, whose “hello, hello” catchphrase introduces countless informative videos on every aspect of Svelte and other related tools.

			As such, I can’t think of anyone better qualified to write the book that you’re now reading. Within these pages, you’ll learn everything you need to build Svelte apps of all different shapes and sizes and gain an expert-level understanding of the underlying concepts. You’ve made a great choice, and we’re very excited to have you as part of the Svelte community. Welcome!

			Rich Harris, creator of Svelte

			October 2023

			Contributors

			About the author

			Tan Li Hau is a frontend developer at Shopee and a core maintainer of Svelte. He has delivered multiple conference talks and workshops on Svelte. Passionate about sharing his knowledge, Li Hau regularly contributes to the community through blog posts, YouTube videos, and books. He aspires to inspire others to explore and learn about Svelte and other modern web technologies.

			I want to thank the people who have been close to me and supported me, especially my wife, Chai Ying, my parents, Eng Swee and Sook Hwa, and my siblings, Li Khai and Li Huey.

			About the reviewer

			Shareej V K has over 14 years of experience in frontend, Node.js, and full stack development and leadership. He currently works as an educator as well as a consultant, focusing on full stack development training and SvelteKit consulting.

			He is a frontend and full stack framework specialist, experienced in many of the frontend frameworks, including Angular, React, Vue, and Svelte, and the full stack meta-frameworks SvelteKit and Next.js.

			He has a master’s degree in psychology and believes tech educators can do more if they understand the psychological aspects of learning. According to him, learning is a process that demands time and perseverance. He loves exploring and implementing effective methods for technical training.

		

	
		
			Table of Contents

			Preface

			Part 1: Writing Svelte Components

			1

			Lifecycles in Svelte

			Technical requirements

			Understanding the Svelte lifecycle functions

			Initializing the component

			Mounting the component

			Updating the component

			Destroying the component

			The one rule for calling lifecycle functions

			Refactoring lifecycle functions

			Which component to register?

			Reusing lifecycle functions in Svelte components

			Exercise 1 – Update counter

			Composing lifecycle functions into reusable hooks

			Coordinating lifecycle functions across components

			Exercise 2 – Scroll blocker

			Summary

			2

			Implementing Styling and Theming

			Technical requirements

			Styling Svelte components in six different ways

			Styling with the style attribute

			Using style: directives

			Adding the <style> block

			Adding the class attribute

			Simplifying the class attribute with the class: directive

			Applying styles from external CSS files

			Choosing which method to style Svelte components

			Styling Svelte with Tailwind CSS

			Setting up Tailwind CSS

			Theming Svelte components with CSS custom properties

			Defining CSS custom properties

			Example – implementing a dark/light theme mode

			Allowing users to change the styles of a component

			Aligning the fallback value

			Summary

			3

			Managing Props and State

			Technical requirements

			Defining props and state

			Defining props

			Defining state

			Props versus state

			Understanding bindings

			One-way versus two-way data flow

			Deriving states from props with a reactive declaration

			Managing complex derived states

			Updating props using derived states

			Summary

			4

			Composing Components

			Technical requirements

			Manipulating how a child component looks

			Passing dynamic content through slots

			Providing default slot content

			Having multiple slots with named slots

			Passing data through slot props

			Rendering different HTML element or component types

			Creating recursive components for recursive data

			Example – a JSON tree viewer

			The Container/Presentational pattern

			Summary

			Part 2: Actions

			5

			Custom Events with Actions

			Technical requirements

			Defining actions

			Reusing DOM event logic with custom events

			Encapsulating logic into a component

			Encapsulating logic into an action

			Passing parameters to an action

			Example – validating form inputs with custom events

			Exercise – creating a drag-and-drop event

			Summary

			6

			Integrating Libraries with Actions

			Technical requirements

			Integrating vanilla JavaScript UI libraries into Svelte

			Why use Svelte actions to integrate a UI library?

			Using Svelte actions

			Adding data to Svelte actions

			An alternative to Svelte actions

			Choosing between Svelte actions and Svelte components

			Example – integrating Tippy.js

			Example – integrating CodeMirror

			Using UI libraries written in other frameworks

			Creating components in various frameworks

			Cleaning up the components in various frameworks

			Updating the component in various frameworks

			Integrating react-calendar into Svelte

			Summary

			7

			Progressive Enhancement with Actions

			Technical requirements

			What is progressive enhancement?

			Progressively enhancing the web experience

			Building web pages in layers

			Svelte actions for progressive enhancements

			Example – previewing a link with a <a> element

			Example – progressively enhancing a form

			The default form behavior

			Implementing the enhance action

			Summary

			Part 3: Context and Stores

			8

			Context versus Stores

			Defining Svelte context

			Using an object as a context key

			Changing the context value

			Defining the Svelte store

			Using the observer pattern

			Defining the subscribe function

			Defining a Svelte store

			Creating Svelte stores with built-in functions

			Auto-subscribing to a Svelte store

			Choosing between a Svelte context and a Svelte store

			Passing dynamic context using a Svelte store

			Summary

			9

			Implementing Custom Stores

			Technical requirements

			Creating a Svelte store from user events

			Ensuring the event listener is only added once

			Exercise

			Creating an undo/redo store

			Implementing the undo/redo logic

			Exercise

			Creating a debounced higher-order Svelte store

			Debouncing store value changes

			Subscribing and unsubscribing original store on demand

			Deriving a new Svelte store with the derived() function

			Using the derived method

			Exercise

			Summary

			10

			State Management with Svelte Stores

			Technical requirements

			Managing states with Svelte stores

			Tip 1 – simplify complex state updates with unidirectional data flow

			Tip 2 – prefer smaller self-contained state objects over one big state object

			Tip 3 – derive a smaller state object from a bigger state object

			Using state management libraries with Svelte

			Example – using Valtio as a Svelte store

			Exercise – transforming an XState state machine into a Svelte store

			Summary

			11

			Renderless Components

			Technical requirements

			What are renderless components?

			Exploring reusable renderless components

			Example – building a renderless carousel component

			Writing a renderless carousel component

			Exercise 1 – a renderless autocomplete component

			Turning a declarative description into imperative instructions

			Writing declarative Canvas components

			Exercise 2 – expanding shape components

			Summary

			12

			Stores and Animations

			Technical requirements

			Introducing the tweened and spring stores

			Using the tweened and spring stores

			Using tweened and spring stores with arrays and objects

			Examples – creating an animated graph with the tweened and spring stores

			Exercise – creating an animating line graph

			Creating custom tweened interpolators

			Examples – creating an animated image preview

			Summary

			Part 4: Transitions

			13

			Using Transitions

			Technical requirements

			Adding transitions to elements

			Svelte’s built-in transitions

			Customizing a transition

			When are the transitions played?

			Handling mixed transition and static elements

			Other Svelte logical blocks for transitions

			The global modifier

			How Svelte transition works under the hood

			Creating animations with CSS

			Creating animations with JavaScript

			Animating transitions in Svelte

			Summary

			14

			Exploring Custom Transitions

			Technical requirements

			The transition contract

			The css function

			The tick function

			Writing a custom CSS transition using the css function

			Writing a custom JavaScript transition using the tick function

			Summary

			15

			Accessibility with Transitions

			Technical requirements

			What is web accessibility?

			Understanding user preference with prefers-reduced-motion

			Reducing motion for Svelte transition

			Having alternative transitions for inaccessible users

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			In today’s digital age, web development is ever-evolving, with new tools and frameworks emerging almost daily. Among them, Svelte stands out, being voted in the top place as the most beloved framework in a recent developer survey (https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-web-frameworks-and-technologies). Svelte brings a fresh perspective by optimizing performance and providing an intuitive design, as well as being fully featured.

			While other resources out there cover Svelte’s vast features, this book offers a unique lens and approach. We’ll delve deep into key Svelte features, demystifying core concepts. Through hands-on, real-world examples, we’ll not only teach the “how” but also the “why” behind each approach. By understanding the underlying principles and thought processes, you’ll be equipped to seamlessly integrate what you learn into your Svelte projects.

			Who this book is for

			This book is tailored for web developers and software engineers who possess a foundational understanding of JavaScript, CSS, and general web development practices. Whether you're new to Svelte and are eager to dive deep or have dabbled with its basics but seek to elevate your expertise through real-world examples and patterns, this guide is for you. Beyond mere instruction, the content delves into the 'why' and 'how' behind each concept, ensuring readers not only grasp the material but can also effectively apply it in professional contexts and diverse projects. If you're ready to not just learn about Svelte but to master its intricacies and practical applications, then this book is your next essential read.

			What this book covers

			Chapter 1, Lifecycles in Svelte, provides an overview of Svelte’s lifecycles, their respective functions, the rules for invoking them, and strategies to reuse and compose these lifecycle functions.

			Chapter 2, Implementing Styling and Theming, dives into six unique methods to style Svelte components. You will also learn the essentials of theming Svelte components, from defining themes to enabling user customization.

			Chapter 3, Managing Props and State, deepens your understanding of props and state within Svelte. This chapter demystifies props, state, and bindings, and discusses the distinctions between one-way and two-way data bindings. It also showcases deriving state from props.

			Chapter 4, Composing Components, provides techniques to control content within child components from their parent components. You will explore the <slot> element and various Svelte special elements, such as <svelte:self> and <svelte:fragment>.

			Chapter 5, Custom Events with Actions, kickstarts your exploration of Svelte actions over three chapters. This chapter starts by exploring the idea of creating custom events using Svelte actions.

			Chapter 6, Integrating Libraries with Actions, provides a hands-on guide to integrating a third-party JavaScript library into Svelte using actions.

			Chapter 7, Progressive Enhancements with Svelte Actions, unpacks the concept of progressive enhancements and helps you understand how Svelte actions can be leveraged to progressively enhance your Svelte application.

			Chapter 8, Context versus Stores, delves into Svelte context and stores. You’ll learn how and when to use Svelte context and stores.

			Chapter 9, Implementing Custom Stores, teaches you how to implement custom Svelte stores through a practical step-by-step guide, going through multiple real-world examples along the way.

			Chapter 10, State Management with Svelte Stores, arms you with practical tips on managing application state in Svelte applications. You will also learn how to use third-party state management libraries in Svelte.

			Chapter 11, Renderless Components, explores the concept of the renderless component, a type of reusable component that does not render any HTML elements of its own. We will systematically go through implementing such a component.

			Chapter 12, Stores and Animations, explores the built-in tweened and spring stores. You’ll learn how to apply them in your Svelte application, and how to customize the interpolation for these animating stores.

			Chapter 13, Using Transitions, provides a comprehensive understanding of transitions in Svelte. You’ll learn how to use transitions in Svelte, when and how transitions are played, and how they work under the hood.

			Chapter 14, Exploring Custom Transitions, explores the idea of writing a custom transition in Svelte. You’ll learn about the Svelte transition contract, and with practical examples, you’ll be guided step by step through creating a custom transition in Svelte.

			Chapter 15, Accessibility with Transitions, sheds light on accessibility considerations in transitions, particularly for users with vestibular disorders. You’ll gain insights into crafting responsible transitions that respect user preferences and cater to all.

			To get the most out of this book

			You will need to have basic knowledge of web development and a basic understanding of JavaScript, CSS, and HTML.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Svelte 4

						
							
							Windows, macOS, or Linux

						
					

					
							
							JavaScript

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Real-World-Svelte. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

			A block of code is set as follows:

			
const folder = [
 { type: 'file', name: 'a.js' },
 { type: 'file', name: 'b.js' },
 { type: 'folder', name: 'c', children: [
 { type: 'file', name: 'd.js' },
]},
];
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
<!-- filename: JsonTree.svelte -->
<script>
 export let data;
</script>

 {#each Object.entries(data) as [key, value]}

 {key}:
 {#if typeof value === 'object'}
 <svelte:self data={value} />
 {:else}
 {value}
 {/if}

 {/each}

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “When you have a <form> element, by default when you hit the Submit button, it will navigate to the location indicated by the action attribute, carrying along with it the value filled in the <input> elements within the <form> element.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Real-World Svelte, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804616031

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	

		
			Part 1: Writing Svelte Components

			In this section, we will lay the foundation for writing Svelte components. We will kick things off by delving into the lifecycles of Svelte components. Then, we will learn how to style and theme our Svelte components. After that, we will explore the intricacies of data passing between components and finally wrap up with techniques to compose components into a cohesive Svelte application.

			This part has the following chapters:

			
					Chapter 1, Lifecycles in Svelte

					Chapter 2, Implementing Styling and Theming

					Chapter 3, Managing Props and State

					Chapter 4, Composing Components

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Lifecycles in Svelte

			Svelte is a frontend framework. You can use Svelte to build websites and web applications. A Svelte application is made up of components. You write a Svelte component within a file with .svelte extension. Each .svelte file is one Svelte component.

			When you create and use a Svelte component, the component goes through various stages of the component lifecycle. Svelte provides lifecycle functions, allowing you to hook into the different stages of the component.

			In this chapter, we will start by talking about the various lifecycles and the lifecycle functions in Svelte. With a clear idea of lifecycles in mind, you will then learn the basic rule of using the lifecycle functions. This is essential, as you will see that this understanding will allow us to use the lifecycle functions in a lot of creative ways.

			This chapter contains sections on the following topics:

			
					What are Svelte lifecycle functions?

					The rule of calling lifecycle functions

					How to reuse and compose lifecycle functions

			

			Technical requirements

			Writing Svelte applications is very easy and does not require any paid tools. Despite the added value of most paid tools, we decided to use only free tools to make the content of this book available to you without any limitations.

			You will require the following:

			
					Visual Studio Code as the integrated development environment (https://code.visualstudio.com/)

					A decent web browser (Chrome, Firefox, or Edge, for instance)

					Node.js as the JavaScript runtime environment (https://nodejs.org/)

			

			All the code examples for this chapter can be found on GitHub at: https://github.com/PacktPublishing/Real-World-Svelte/tree/main/Chapter01

			Code for all chapters can be found at https://github.com/PacktPublishing/Real-World-Svelte.

			Understanding the Svelte lifecycle functions

			When using a Svelte component, it goes through different stages throughout its lifetime: mounting, updating, and destroying. This is similar to a human being. We go through various stages in our lifetime, such as birth, growth, old age, and death, throughout our lifetime. We call the different stages lifecycles.

			Before we talk about lifecycles in Svelte, let’s look at a Svelte component.

			
<script>
 import { onMount, beforeUpdate, afterUpdate, onDestroy } from 'svelte';
 let count = 0;
 onMount(() => { console.log('onMount!'); });
 beforeUpdate(() => { console.log('beforeUpdate!'); });
 afterUpdate(() => { console.log('afterUpdate!'); });
 onDestroy(() => { console.log('onDestroy!'); });
</script>
<button on:click={() => { count ++; }}>
 Counter: {count}
</button>
			Can you tell me when each part of the code is executed?

			Not every part of the code is executed at once; different parts of the code are executed at different stages of the component lifecycle.

			A Svelte component has four different lifecycle stages: initializing, mounting, updating, and destroying.

			Initializing the component

			When you create a component, the component first goes through the initialization phase. You can think of this as the setup phase, where the component sets up its internal state.

			This is where lines 2–7 are being executed.

			The count variable is declared and initialized. The onMount, beforeUpdate, afterUpdate, and onDestroy lifecycle functions are called, with callback functions passed in, to register them at the specific stages of the component lifecycles.

			After the component is initialized, Svelte starts to create elements in the template, in this case, a <button> element and text elements for "Counter: " and {count}.

			Mounting the component

			After all the elements are created, Svelte will insert them in order into the Document Object Model (DOM). This is called the mounting phase, where elements are mounted onto the DOM.

			If you add Svelte actions to an element, then the actions are called with the element:

			
<script>
 function action(node) {}
</script>
<div use:action>
			We will explore Svelte actions in more depth in Chapter 5 to 7.

			If and when you add event listeners to the element, this is when Svelte will attach the event listeners to the element.

			In the case of the preceding example, Svelte attaches the click event listener onto the button after it is inserted into the DOM.

			When we add bindings to an element, the bound variable gets updated with values from the element:

			
<script>
 let element;
</script>
<div bind:this={element} />
			This is when the element variable gets updated with the reference to the <div> element created by Svelte.

			If and when you add transitions to an element, this is when the transitions are initialized and start playing.

			The following snippet is an example of adding a transition to an element. You can add a transition to an element using the transition:, in:, and out: directives. We will explore more about Svelte transitions in Chapter 13 to 15:

			
<div in:fade />
			After all the directives, use: (actions), on: (event listeners), bind: bindings, in:, transition: (transitions), are processed, the mounting phase comes to an end by calling all the functions registered in the onMount lifecycle functions.

			This is when the function on line 4 is executed, and you will see "onMount!" printed in the logs.

			Updating the component

			When you click on the button, the click event listener is called. The function on line 9 is executed. The count variable is incremented.

			Right before Svelte modifies the DOM based on the latest value of the count variable, the functions registered in the beforeUpdate lifecycle function are called.

			The function on line 5 is executed, and you will see the text "beforeUpdate!" printed in the logs.

			At this point, if you attempt to retrieve the text content within the button, it would still be "Counter: 0".

			Svelte then proceeds to modify the DOM, updating the text content of the button to "Counter: 1".

			After updating all the elements within the component, Svelte calls all the functions registered in the afterUpdate lifecycle function.

			The function on line 6 is executed, and you will see the text "afterUpdate!" printed in the logs.

			If you click on the button again, Svelte will go through another cycle of beforeUpdate, and then update the DOM elements, and then afterUpdate.

			Destroying the component

			A component that is conditionally shown to a user will remain while the condition holds; when the condition no longer holds, Svelte will proceed to destroy the component.

			Let’s say the component in our example now enters the destroy stage.

			Svelte calls all the functions registered in the onDestroy lifecycle function. The function on line 7 is executed, and you will see the text "onDestroy!" printed in the logs.

			After that, Svelte removes the elements from the DOM.

			Svelte then cleans up the directives if necessary, such as removing the event listeners and calling the destroy method from the action.

			And that’s it! If you try to recreate the component again, a new cycle starts again.

			The Svelte component lifecycle starts with initializing, mounting, updating, and destroying. Svelte provides lifecycle methods, allowing you to run functions at different stages of the component.

			Since the component lifecycle functions are just functions exported from 'svelte', can you import and use them anywhere? Are there any rules or constraints when importing and using them?

			Let’s find out.

			The one rule for calling lifecycle functions

			The only rule for calling component lifecycle functions is that you should call them during component initialization. If no component is being initialized, Svelte will complain by throwing an error.

			Let’s look at the following example:

			
<script>
 import { onMount } from 'svelte';
 function buttonClicked() {
 onMount(() => console.log('onMount!'));
 }
</script>
<button on:click={buttonClicked} />
			When you click on the button, it will call buttonClicked, which will call onMount. As no component is being initialized when onMount is being called, (the component above has initialized and mounted by the time you click on the button), Svelte throws an error:

			
Error: Function called outside component initialization
			Yes, Svelte does not allow lifecycle functions to be called outside of the component initialization phase. This rule dictates when you can call the lifecycle functions. What it does not dictate is where or how you call the lifecycle functions. This allows us to refactor lifecycle functions and call them in other ways.

			Refactoring lifecycle functions

			If you look carefully at the rule for calling lifecycle functions, you will notice that it is about when you call them, and not where you call them.

			It is not necessary to call lifecycle functions at the top level within the <script> tag.

			In the following example, the setup function is called during component initialization, and in turn calls the onMount function:

			
<script>
 import { onMount } from 'svelte';
 setup();
 function setup() {
 onMount(() => console.log('onMount!'));
 }
</script>
			Since the component is still initializing, this is perfectly fine.

			It is also not necessary to import the onMount function within the component. As you see in the following example, you can import it in another file; as long as the onMount function is called during component initialization, it is perfectly fine:

			
// file-a.js
import { onMount } from 'svelte';
export function setup() {
 onMount(() => console.log('onMount!'));
}
			In the preceding code snippet, we’ve moved the setup function we defined previously to a new module called file-a.js. Then, in the original Svelte component, rather than defining the setup function, we import it from file-a.js, shown in the following code snippet:

			
<script>
 import { setup } from './file-a.js';
 setup();
</script>
			Since the setup function calls the onMount function, the same rule applies to the setup function too! You can no longer call the setup function outside component initialization.

			Which component to register?

			Looking at just the setup function, you may be wondering, when you call the onMount function, how does Svelte know which component’s lifecycle you are referring to?

			Internally, Svelte keeps track of which component is initializing. When you call the lifecycle functions, it will register your function to the lifecycle of the component that is being initialized.

			So, the same setup function can be called within different components and registers the onMount function for different components.

			This unlocks the first pattern in this chapter: reusing lifecycle functions.

			Reusing lifecycle functions in Svelte components

			In the previous section, we learned that we can extract the calling of lifecycle functions into a function and reuse the function in other components.

			Let’s look at an example. In this example, after the component is added to the screen for 5 seconds, it will call the showPopup function. I want to reuse this logic of calling showPopup in other components:

			
<script>
 import { onMount } from 'svelte';
 import { showPopup } from './popup';
 onMount(() => {
 const timeoutId = setTimeout(() => {
 showPopup();
 }, 5000);
 return () => clearTimeout(timeoutId);
 });
</script>
			Here, I can extract the logic into a function, showPopupOnMount:

			
// popup-on-mount.js
import { onMount } from 'svelte';
import { showPopup } from './popup';
export function showPopupOnMount() {
 onMount(() => {
 const timeoutId = setTimeout(() => {
 showPopup();
 }, 5000);
 return () => clearTimeout(timeoutId);
 });
}
			And now, I can import this function and reuse it in any component:

			
<script>
 import { showPopupOnMount } from './popup-on-mount';
 showPopupOnMount();
</script>
			You may be wondering, why not only extract the callback function and reuse that instead?

			
// popup-on-mount.js
import { showPopup } from './popup';
export function showPopupOnMount() {
 const timeoutId = setTimeout(() => {
 showPopup();
 }, 5000);
 return () => clearTimeout(timeoutId);
}
			Over here, we extract only setTimeout and clearTimeout logic into showPopupOnMount, and pass the function into onMount:

			
<script>
 import { onMount } from 'svelte';
 import { showPopupOnMount } from './popup-on-mount';
 onMount(showPopupOnMount);
</script>
			In my opinion, the second approach of refactoring and reusing is not as good as the first approach. There are a few pros in extracting the entire calling of the lifecycle functions into a function, as it allows you to do much more than you can otherwise:

			
					You can pass in different input parameters to your lifecycle functions.Let’s say you wish to allow different components to customize the duration before showing the popup. It is much easier to pass that in this way:

<script>
 import { showPopupOnMount } from './popup-on-mount';
 showPopupOnMount(2000); // change it to 2s
</script>

					You can return values from the function.Let’s say you want to return the timeoutId used in the onMount function so that you can cancel it if the user clicks on any button within the component.
It is near impossible to do so if you just reuse the callback function, as the value returned from the callback function will be used to register for the onDestroy lifecycle function:

<script>
 import { showPopupOnMount } from './popup-on-mount';
 const timeoutId = showPopupOnMount(2000);
</script>
<button on:click={() => clearTimeout(timeoutId)} />
See how easy it is to implement it to return anything if we write it this way:
// popup-on-mount.js
export function showPopupOnMount(duration) {
 let timeoutId;
 onMount(() => {
 timeoutId = setTimeout(() => {
 showPopup();
 }, duration ?? 5000);
 return () => clearTimeout(timeoutId);
 });
 return timeoutId;
}

					You can encapsulate more logic along with the lifecycle functions.Sometimes, the code in your lifecycle functions callback function does not work in a silo; it interacts with and modifies other variables. To reuse lifecycle functions like this, you must encapsulate those variables and logic into a reusable function.
To illustrate this, let’s look at a new example.
Here, I have a counter that starts counting when a component is added to the screen:

<script>
 import { onMount } from 'svelte';
 let counter = 0;
 onMount(() => {
 const intervalId = setInterval(() => counter++, 1000);
 return () => clearInterval(intervalId);
 });
</script>
{counter}
The counter variable is coupled with the onMount lifecycle functions; to reuse this logic, the counter variable and the onMount function should be extracted together into a reusable function:
import { writable } from 'svelte/store';
import { onMount } from 'svelte';
export function startCounterOnMount() {
 const counter = writable(0);
 onMount(() => {
 const intervalId = setInterval(() => counter.update($counter => $counter + 1), 1000);
 return () => clearInterval(intervalId);
 });
 return counter;
}
In this example, we use a writable Svelte store to make the counter variable reactive. We will delve more into Svelte stores in Part 3 of this book.
For now, all you need to understand is that a Svelte store allows Svelte to track changes in a variable across modules, and you can subscribe to and retrieve the value of the store by prefixing a $ in front of a Svelte store variable. For example, if you have a Svelte store named counter, then to get the value of the Svelte store, you would need to use the $counter variable.
Now, we can use the startCounterOnMount function in any Svelte component:
<script>
 import { startCounterOnMount } from './counter';
 const counter = startCounterOnMount();
</script>
{$counter}

			

			I hope I’ve convinced you about the pros of extracting the calling of lifecycle functions into a function. Let’s try it out in an example.

			
			
			
			
						
						
			
			
			
			
			
						
						
						
			
			
			
						
						
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Real-World Svelte

						Foreword

						Contributors

						About the author

						About the reviewer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Writing Svelte Components

						Chapter 1: Lifecycles in Svelte

					

								Technical requirements

								Understanding the Svelte lifecycle functions

							

										Initializing the component

										Mounting the component

										Updating the component

										Destroying the component

							

						

								The one rule for calling lifecycle functions

							

										Refactoring lifecycle functions

										Which component to register?

							

						

								Reusing lifecycle functions in Svelte components

							

										Exercise 1 – Update counter

							

						

								Composing lifecycle functions into reusable hooks

								Coordinating lifecycle functions across components

							

										Exercise 2 – Scroll blocker

							

						

								Summary

					

				

						Chapter 2: Implementing Styling and Theming

					

								Technical requirements

								Styling Svelte components in six different ways

							

										Styling with the style attribute

										Using style: directives

										Adding the <style> block

										Adding the class attribute

										Simplifying the class attribute with the class: directive

										Applying styles from external CSS files

										Choosing which method to style Svelte components

							

						

								Styling Svelte with Tailwind CSS

							

										Setting up Tailwind CSS

							

						

								Theming Svelte components with CSS custom properties

							

										Defining CSS custom properties

										Example – implementing a dark/light theme mode

										Allowing users to change the styles of a component

										Aligning the fallback value

							

						

								Summary

					

				

						Chapter 3: Managing Props and State

					

								Technical requirements

								Defining props and state

							

										Defining props

										Defining state

										Props versus state

							

						

								Understanding bindings

								One-way versus two-way data flow

								Deriving states from props with a reactive declaration

								Managing complex derived states

								Updating props using derived states

								Summary

					

				

						Chapter 4: Composing Components

					

								Technical requirements

								Manipulating how a child component looks

								Passing dynamic content through slots

							

										Providing default slot content

										Having multiple slots with named slots

										Passing data through slot props

							

						

								Rendering different HTML element or component types

								Creating recursive components for recursive data

								Example – a JSON tree viewer

								The Container/Presentational pattern

								Summary

					

				

						Part 2: Actions

						Chapter 5: Custom Events with Actions

					

								Technical requirements

								Defining actions

								Reusing DOM event logic with custom events

							

										Encapsulating logic into a component

										Encapsulating logic into an action

										Passing parameters to an action

							

						

								Example – validating form inputs with custom events

								Exercise – creating a drag-and-drop event

								Summary

					

				

						Chapter 6: Integrating Libraries with Actions

					

								Technical requirements

								Integrating vanilla JavaScript UI libraries into Svelte

							

										Why use Svelte actions to integrate a UI library?

										Using Svelte actions

										Adding data to Svelte actions

										An alternative to Svelte actions

										Choosing between Svelte actions and Svelte components

							

						

								Example – integrating Tippy.js

								Example – integrating CodeMirror

								Using UI libraries written in other frameworks

							

										Creating components in various frameworks

										Cleaning up the components in various frameworks

										Updating the component in various frameworks

							

						

								Integrating react-calendar into Svelte

								Summary

					

				

						Chapter 7: Progressive Enhancement with Actions

					

								Technical requirements

								What is progressive enhancement?

							

										Progressively enhancing the web experience

										Building web pages in layers

										Svelte actions for progressive enhancements

							

						

								Example – previewing a link with a <a> element

								Example – progressively enhancing a form

							

										The default form behavior

										Implementing the enhance action

							

						

								Summary

					

				

						Part 3: Context and Stores

						Chapter 8: Context versus Stores

					

								Defining Svelte context

							

										Using an object as a context key

										Changing the context value

							

						

								Defining the Svelte store

							

										Using the observer pattern

										Defining the subscribe function

										Defining a Svelte store

										Creating Svelte stores with built-in functions

										Auto-subscribing to a Svelte store

							

						

								Choosing between a Svelte context and a Svelte store

							

										Passing dynamic context using a Svelte store

							

						

								Summary

					

				

						Chapter 9: Implementing Custom Stores

					

								Technical requirements

								Creating a Svelte store from user events

							

										Ensuring the event listener is only added once

										Exercise

							

						

								Creating an undo/redo store

							

										Implementing the undo/redo logic

										Exercise

							

						

								Creating a debounced higher-order Svelte store

							

										Debouncing store value changes

										Subscribing and unsubscribing original store on demand

										Deriving a new Svelte store with the derived() function

										Using the derived method

										Exercise

							

						

								Summary

					

				

						Chapter 10: State Management with Svelte Stores

					

								Technical requirements

								Managing states with Svelte stores

							

										Tip 1 – simplify complex state updates with unidirectional data flow

										Tip 2 – prefer smaller self-contained state objects over one big state object

										Tip 3 – derive a smaller state object from a bigger state object

							

						

								Using state management libraries with Svelte

							

										Example – using Valtio as a Svelte store

										Exercise – transforming an XState state machine into a Svelte store

							

						

								Summary

					

				

						Chapter 11: Renderless Components

					

								Technical requirements

								What are renderless components?

								Exploring reusable renderless components

							

										Example – building a renderless carousel component

										Writing a renderless carousel component

										Exercise 1 – a renderless autocomplete component

							

						

								Turning a declarative description into imperative instructions

							

										Writing declarative Canvas components

										Exercise 2 – expanding shape components

							

						

								Summary

					

				

						Chapter 12: Stores and Animations

					

								Technical requirements

								Introducing the tweened and spring stores

							

										Using the tweened and spring stores

										Using tweened and spring stores with arrays and objects

							

						

								Examples – creating an animated graph with the tweened and spring stores

							

										Exercise – creating an animating line graph

							

						

								Creating custom tweened interpolators

								Examples – creating an animated image preview

								Summary

					

				

						Part 4: Transitions

						Chapter 13: Using Transitions

					

								Technical requirements

								Adding transitions to elements

							

										Svelte’s built-in transitions

										Customizing a transition

							

						

								When are the transitions played?

							

										Handling mixed transition and static elements

										Other Svelte logical blocks for transitions

										The global modifier

							

						

								How Svelte transition works under the hood

							

										Creating animations with CSS

										Creating animations with JavaScript

										Animating transitions in Svelte

							

						

								Summary

					

				

						Chapter 14: Exploring Custom Transitions

					

								Technical requirements

								The transition contract

							

										The css function

										The tick function

							

						

								Writing a custom CSS transition using the css function

								Writing a custom JavaScript transition using the tick function

								Summary

					

				

						Chapter 15: Accessibility with Transitions

					

								Technical requirements

								What is web accessibility?

								Understanding user preference with prefers-reduced-motion

								Reducing motion for Svelte transition

								Having alternative transitions for inaccessible users

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B18887_QR_Free_PDF.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png
<packt>

-

cEds s aa -
me—e e
e
e === =

Real-World Svelte

Supercharge your apps with Svelte 4 by mastering advanced

web development concepts

TAN LI HAU

Foreword by Rich Harris, creator of Svelte

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

