

 [image: Learn Robotics Programming]

Learn Robotics Programming

Build and control autonomous robots using Raspberry Pi 3 and Python

Danny Staple

BIRMINGHAM - MUMBAI

 Learn Robotics Programming

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Gebin George

Acquisition Editor: Akshay Jethani

Content Development Editor: Priyanka Deshpande

Technical Editor: Mohit Hassija

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Jyoti Chauhan

First published: November 2018

Production reference: 1281118

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-074-7

www.packtpub.com

To my dear wife, Carol, for her love, her inspiration, and her unwavering support.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Danny Staple builds robots and gadgets as a hobbyist, makes videos about his work with robots, and attends community events such as PiWars and Arduino Day. He has been a professional Python programmer, later moving into DevOps, since 2009, and a software engineer since 2000. He has worked with embedded systems, including embedded Linux systems, throughout the majority of his career. He has been a mentor at a local CoderDojo, where he taught how to code with Python. He has run Lego Robotics clubs with Mindstorms. He has also developed Bounce!, a visual programming language targeted at teaching code using the NodeMCU IoT platform.

The robots he has built with his children include TankBot, SkittleBot (now the Pi Wars robot), ArmBot, and SpiderBot.

I would like to thank David Anderson for being a great person to bounce ideas off and for his motivational energy. I would like to thank Ben Nuttall and Dave Jones for GPIOZero, and for helping me out countless times on twitter. Dave Jones kickstarted my journey into computer vision in a restaurant in Cardiff and is the author of the PiCamera Library. Finally, I would like to thank my children, Helena and Jonathan, for their support and patience, even occasionally reviewing diagrams for me.

 About the reviewer

Leo White is a professional software engineer, and a graduate of the University of Kent. His interests include electronics, 3D printing, and robotics. He first started programming on the Commodore 64, later wrote several applications for the Acorn Archimedes, and currently programs set-top boxes for his day job. Utilizing the Raspberry Pi as a base, he has mechanized children's toys and driven robot arms, blogging about his experiences and processes along the way, has given presentations at Raspberry Jams, and entered a variety of robots in the Pi Wars competition.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

	 Title Page
 	 Copyright and Credits
	 Learn Robotics Programming

 	 Dedication
 	 Packt Upsell
	 Why subscribe?
 	 PacktPub.com

 	 Contributors
	 About the author
 	 About the reviewer
 	 Packt is searching for authors like you

 	 Preface
	 Who this book is for
 	 What this book covers
 	 To get the most out of this book
	 Download the example code files
 	 Download the color images
 	 Code in Action
 	 Conventions used

 	 Get in touch
	 Reviews

 	 Introduction to Robotics
	 What does robot mean?
 	 Advanced and impressive robots
	 Robots that look like humans and animals
 	 The Mars rovers

 	 Robots in the home
	 The washing machine
 	 Other household robots

 	 Robots in industry
	 Robot arms
 	 Warehouse robots

 	 Competitive, educational, and hobby robots
 	 Summary
 	 Questions
 	 Further reading

 	 Exploring Robot Building Blocks - Code and Electronics
	 Technical requirements
 	 What is inside a robot?
 	 Types of motors, sensors, and actuators
	 Motors and actuators
 	 Status indicators – displays, lights, and sounds
 	 Types of sensors

 	 Controllers and IO
	 IO pins
 	 Controllers

 	 Planning components and code structure
 	 Planning our robot
 	 Summary
 	 Questions
 	 Further reading

 	 Introducing the Raspberry Pi - Starting with Raspbian
	 Technical requirements
 	 What can the Raspberry Pi do?
	 Speed and power
 	 Connectivity and networking
 	 The recommended Raspberry Pi version

 	 What connections will we use?
	 Raspberry Pi Hats

 	 What is Raspbian?
 	 Preparing an SD card
	 Flashing the card in Etcher
	 Getting Etcher
 	 Using Etcher to write to the card

 	 Summary
 	 Questions
 	 Further reading

 	 Preparing a Raspberry Pi for a Robot - Headless by Default
	 Technical requirements
 	 What does headless mean and why?
 	 Setting up wireless on the Raspberry Pi and enabling SSH
	 The wpa_supplicant.conf file

 	 Finding your Pi on the network
	 Apple macOS
 	 Microsoft Windows
 	 Linux
 	 Testing the setup
 	 What if you cannot reach the Raspberry Pi?

 	 Using PuTTY or SSH to connect to your Raspberry Pi
 	 Configuring Raspbian
	 Renaming your Pi
 	 Securing your Pi (a little bit)
 	 Reboot and reconnect
 	 Updating the software on your Raspberry Pi
 	 What is sudo?
 	 Shutting down your Raspberry Pi

 	 Summary
 	 Questions
 	 Further reading

 	 Backing Up the Code with Git and SD Card Copies
	 Technical requirements
 	 How code can be broken or lost
	 SD card data loss and corruption
 	 Bad changes to the code or configuration
 	 Combinations

 	 Strategy 1 - keep the code on the PC and upload it
 	 Strategy 2 – using Git to go back in time
 	 Strategy 3 – making SD card backups
	 Windows
 	 Mac and Linux
	 Linux
 	 Mac
 	 Cloning with DD

 	 Summary
 	 Questions
 	 Further reading

 	 Building Robot Basics - Wheels, Power, and Wiring
	 Technical requirements
 	 Choosing a chassis kit
	 Size
 	 Wheel count
 	 Wheels and motors
 	 Simplicity
 	 Cost
 	 Conclusion

 	 Choosing a motor controller
	 Integration level
 	 Pin usage
 	 Size
 	 Soldering
 	 Connectors
 	 Conclusion

 	 Powering the robot
 	 Test fitting the robot
 	 Assembling the base
	 Assembling the base, motors, and wheels
	 Plastic motor brackets
 	 Metal motor brackets
 	 Adding the castor wheel
 	 Putting the wheels on
 	 Bringing the cables up

 	 Fitting the Raspberry Pi
 	 Adding the batteries
	 The USB power bank
 	 Mounting the AA battery holder

 	 The completed robot base

 	 Summary
 	 Questions
 	 Further reading

 	 Drive and Turn - Moving Motors with Python
	 Technical requirements
 	 Connecting the motors to the Raspberry Pi
	 Wiring in
 	 Independent power

 	 Writing code to test your motors
	 Preparing libraries
 	 Test – finding the motor hat
 	 Test – the motors move
 	 Troubleshooting
 	 How does this code work?

 	 Steering a robot
	 Types of steering
	 Steerable wheels
 	 Fixed wheels
 	 Other steering systems
 	 Steering the robot we are building

 	 The robot object – code for our experiments to talk to the robot
	 Why make this object?
 	 What will we put in the robot object?

 	 Write a script to follow a predetermined path
 	 Summary
 	 Questions
 	 Further reading

 	 Programming Line-Following Sensors Using Python
	 Technical requirements
 	 Attaching line sensors to the robot and Raspberry Pi
	 What are optical line sensors?
 	 What other new parts will we use?
 	 Construction plan
 	 Getting the correct length
 	 Mounting sensor modules
 	 Wiring the sensor in

 	 Painting the test track
 	 Writing the code – testing the sensors
	 Calibrating the sensors
 	 Test code
 	 Troubleshooting

 	 Writing the line-following behavior
	 Adding the sensors to the Robot object
 	 Creating the line-following behavior code
 	 More troubleshooting
 	 Extra ideas

 	 Summary
 	 Questions
 	 Further reading

 	 Programming RGB Strips in Python
	 Technical requirements
 	 Comparing light strip technologies
	 RGB values

 	 Attaching the light strip to the Raspberry Pi
	 Logic levels
 	 Soldering headers on
 	 Attaching the LED strip to the robot
 	 Wiring the LED strip
 	 Adding a power switch

 	 Making a robot display code object
	 Adding LEDs to the robot object
 	 Testing the LEDs
 	 Troubleshooting

 	 Using the light strip for debugging the line follower robot
	 Line follower basic LEDs
 	 Color systems
	 Hue
 	 Saturation
 	 Value
 	 Converting these

 	 Adding a rainbow

 	 Summary
 	 Questions
 	 Further reading

 	 Using Python to Control Servo Motors
	 Technical requirements
 	 What are servo motors?
	 What is in a servo?
 	 Sending input positions to a servo motor

 	 Positioning a servo
	 Code for turning a servo
 	 Calibrating your servos

 	 Adding a pan and tilt mechanism
	 Building the kit
 	 Attaching the pan and tilt to the robot

 	 Creating pan and tilt code
	 Making a servo object
 	 Adding the servo to the robot class
 	 Creating a behavior
 	 Running it
 	 Troubleshooting

 	 Summary
 	 Questions
 	 Further reading

 	 Programming Distance Sensors with Python
	 Technical requirements
 	 Choosing light versus ultrasonic sensors
	 Optical sensors
 	 Ultrasonic sensors
 	 Why use two sensors?

 	 Attaching and reading an ultrasonic sensor
	 Securing the sensors to the robot
 	 Wiring the distance sensors
	 Voltages and level shifting
 	 Wiring the breadboard

 	 Reading an ultrasonic distance sensor
 	 Troubleshooting

 	 Avoiding walls – a script to avoid obstacles
	 Making our distance sensor object
 	 Adding the sensor to the robot class
 	 Making the obstacle avoid behaviors
	 First attempt at obstacle avoidance
 	 More sophisticated object avoidance

 	 Menu modes – choosing your robot's behavior
	 Managing robot modes
 	 The web service
 	 The template
 	 Running it

 	 Summary
 	 Questions
 	 Further reading

 	 Programming Encoders with Python
	 Technical requirements
 	 What are encoders?
	 Use of encoders
 	 Types of encoders
 	 Encoding direction and speed
 	 The encoders we will be using

 	 Attaching encoders to the robot
	 Lifting up the Raspberry Pi
 	 Preparing the encoders
 	 Wiring the encoders to Pi

 	 Detecting the distance traveled in Python
	 Simple counting
 	 Adding encoders to the Robot object
	 Extracting the class
 	 Adding the device to the Robot object

 	 Turning ticks into millimeters

 	 Driving in a straight line
	 Concepts for correction
 	 Creating a Python PID Control object
 	 Straight line code
 	 Troubleshooting this behavior

 	 Driving a specific distance
	 Refactoring unit conversions into the EncoderCounter class
 	 Setting the constants
 	 Creating the combined behavior

 	 Making a specific turn
	 The drive_arc function
 	 Further ideas

 	 Summary
 	 Questions
 	 Further reading

 	 Robot Vision - Using a Pi Camera and OpenCV
	 Technical requirements
 	 Setting up the Raspberry Pi Camera
	 Attaching the camera to the pan and tilt mechanism
 	 Wiring in the camera

 	 Setting up OpenCV
	 Setting up the Pi Camera software
 	 Getting a picture from the Pi
 	 Installing libraries
 	 Building our first app with these tools
	 OpenCV camera server app overview
 	 The CameraStream object
 	 Building a template
 	 The image server main app

 	 Visual processing with behaviors
	 Web app core
 	 Controllable behaviors
 	 The template
 	 Running the image server

 	 Colors, masking, and filtering – chasing colored objects
	 Getting information about an object
	 Caveat about red objects

 	 Enhancing the PID controller
 	 The behavior code
	 The template
 	 The behavior

 	 Running the behavior
	 Tuning the PID controller settings

 	 Troubleshooting
 	 Enhancements that you could make

 	 Detecting faces with Haar cascades
	 Finding objects in an image
	 Integral images
 	 Basic features

 	 Planning our behavior
 	 The code for face tracking
 	 Using this behavior
 	 Troubleshooting

 	 Summary
 	 Questions
 	 Further reading

 	 Voice Communication with a Robot Using Mycroft
	 Technical requirements
 	 Introducing Mycroft
	 Speech to text
 	 Wake words
 	 Utterances
 	 Intent
 	 Skills
 	 Dialog
 	 Vocabulary

 	 Adding sound input and output to the Raspberry Pi
	 Physical installation
 	 Installing Raspbian for the voice assist Pi
 	 Installing the Respeaker software

 	 Installing Mycroft on the Raspberry Pi
	 Base installation
 	 Getting Mycroft to talk to the sound card
 	 Starting to use Mycroft
 	 Troubleshooting

 	 Programming Mycroft skills for the robot functions
	 Building the intent
	 The settings file
 	 The requirements file
 	 Creating the vocabulary files
 	 Dialog files
 	 Current skill folder

 	 Troubleshooting
 	 Adding another intent
	 Vocabulary
 	 Code
 	 Running with the new intent

 	 Summary
 	 Questions
 	 Further reading

 	 Programming a Gamepad on Raspberry Pi with Python
	 Technical requirements
 	 When speech control won't work - why we need to drive
 	 Choosing a controller
	 Design and overview

 	 Preparing the Raspberry Pi for our controller and driving with it
	 Enhancing the image app core
 	 Writing the behavior
 	 The template (web page)
 	 The stylesheet
 	 Creating the code for the sliders
 	 Running this

 	 Upgrading the menu and displaying code for full headless
	 Making menu modes compatible with Flask behaviors
 	 Loading video services
 	 Styling the menu
	 Making the menu template into buttons

 	 Making it start when the Pi starts
	 Adding lights to the menu server
 	 Using systemd to automatically start the robot
 	 Enhancement Ideas

 	 Summary
 	 Questions
 	 Further reading

 	 Taking Your Robot Programming Skills Further
	 Online robot building communities – forums and social media
	 YouTube channels to get to know
 	 Technical questions – where to get help

 	 Meeting robot builders – competitions, makerspaces, and meetups
	 Makerspaces
 	 Maker Faires, Raspberry Jams, and Dojos
 	 Competitions

 	 Suggestions for further skills – 3D printing, soldering, PCB, and CnC
	 Design skills
	 2D design for illustration and diagrams
 	 3D CAD

 	 Skills for shaping and building
	 Machine skills and tools
 	 Hand skills and tools

 	 Electronics skills
	 Electronics principles
 	 Taking soldering further
 	 Custom circuits

 	 Finding more information on computer vision
	 Books
 	 Online courses
 	 Social media

 	 Extending into machine Learning
	 Robot Operating System

 	 Summary
 	 Further reading

 	 Planning Your Next Robot Project - Putting It All Together
	 Technical requirements
 	 Visualizing your next robot
 	 Making a block diagram
 	 Choosing the parts
 	 Planning the code for the robot
 	 Letting the world know
 	 Summary

 	 Appendix
	 Finding parts
 	 Converting this code to Python 3
	 Integer division
 	 Print function
 	 Input/raw input
	 Python 2 compatibility

 	 Ranges have become generators

 	 OpenCV versions
	 Find contours

 	 Power smoothing capacitor

 	 Assessments
	 Chapter 1, Introduction to Robotics
 	 Chapter 2, Exploring Robot Building Blocks - Code and Electronics
 	 Chapter 3, Introducing the Raspberry Pi - Starting with Raspbian
 	 Chapter 4, Preparing a Raspberry Pi for a Robot - Headless by Default
 	 Chapter 5, Backing Up the Code with Git and SD Card Copies
 	 Chapter 6, Building Robot Basics - Wheels, Power, and Wiring
 	 Chapter 7, Drive and Turn - Moving Motors with Python
 	 Chapter 8, Programming Line-Following Sensors Using Python
 	 Chapter 9, Programming RGB Strips in Python
 	 Chapter 10, Using Python to Control Servo Motors
 	 Chapter 11, Programming Distance Sensors with Python
 	 Chapter 12, Programming Encoders with Python
 	 Chapter 13, Robot Vision - Using a Pi Camera and OpenCV
 	 Chapter 14, Voice Communication with a Robot Using Mycroft
 	 Chapter 15, Programming a Gamepad on Raspberry Pi with Python

 	 Other Books You May Enjoy
	 Leave a review - let other readers know what you think

 Preface

Learn Robotics is about building and programming a robot with smart behaviors. It covers the skills required to makes, and build, a gadget from parts, including how to choose them. This book follows with how to make the code to make those parts do something interesting. The book uses Python, together with a little bit of HTML/CSS and JS.

The technology shown here is intended to include things that are available and affordable, and the code intended to demonstrate concepts, so that these can be used and combined to create even more interesting code and robots.

It combines aspects of being a programmer, with aspects of being a robot maker, with a number of specialist topics such as computer vision and voice assistants thrown in.

 Who this book is for

This book is intended for someone with a little programming experience. They do not need to be an expert-level programmer, but to have written some lines of code and be comfortable with looping, conditionals, and functions. Object oriented (class and object)-based programming isn't necessary, but is introduced in the book.

The book does not require a specialist workshop, although there will be a little soldering. This will be introduced later in the book.

The reader does not need to have any experience at all of electronics or making things, but hopefully a healthy interest in learning more, since some very basic concepts are introduced throughout the book. Being keen to build a robot, get it to do stuff, and find out what to do with it next is probably the most important aspect of the book.

 What this book covers

Chapter 1, Introduction to Robotics, introduces what a robot is, together with examples.

Chapter 2, Exploring Robot Building Blocks – Code and Electronics, starts looking at the components of a robot. This is where we will start making choices about the robot's parts and it also introduces the block diagrams for both systems and code.

Chapter 3, Introducing the Raspberry Pi - Starting with Raspbian, introduces the Raspberry Pi and its connections, the Raspbian Linux operating system we'll use on it, and also covers the preparation of an SD card for use in a robot.

Chapter 4, Preparing a Raspberry Pi for a Robot - Headless by Default, looks at what a "headless" Raspberry Pi means and getting the Pi ready to run without a keyboard or screen.

Chapter 5, Backing Up the Code with Git and SD Card Copies, outlines how to restore things when they go wrong. This establishes habits to prevent you from losing your work.

Chapter 6, Building Robot Basics - Wheels, Power, and Wiring, introduces the choices and trade-offs for building the robot base, finding out what to buy, and taking your first steps in assembling it.

Chapter 7, Drive and Turn - Moving Motors with Python, covers how to connect our robot to the Raspberry Pi and write code to make the robot move, laying down the foundations for the code in subsequent chapters.

Chapter 8, Programming Line-Following Sensors Using Python, adds line sensors to the robot, explains how to fit them, and explains then how to use them to make line-following code.

Chapter 9, Programming RGB Strips in Python, demonstrates how to add an LED strip to the robot and write code to drive it, which the reader can then use to extend behaviors with colorful lights, for aesthetics, debugging, and information. This chapter also introduces soldering.

Chapter 10, Using Python to Control Servo Motors, gives our robot a set of servo motors, for the purpose of moving a "head" around, and shows the principles by which servo motors can be programmed.

Chapter 11, Programming Distance Sensors with Python, introduces distance sensors. Through the addition of a pair of variable inputs, we can make our robot avoid walls and obstacles autonomously.

Chapter 12, Programming Encoders with Python, demonstrates the concepts of odometry, measuring how far the robot has traveled according to wheel rotations, and uses it to compensate for motor variations and make accurate turns using a proportional-integral controller.

Chapter 13, Robot Vision - Using a Pi Camera and OpenCV, connects our robot to a camera mounted on the servo driven pan and tilt head. We program the robot to follow colored objects, or track faces in the camera, while allowing us to view its activity on a computer or phone.

Chapter 14, Voice Communication with a Robot Using Mycroft, introduces a voice assistant running on a second Pi, Mycroft, which we can program in Python to communicate with our robot and ask it to do things.

Chapter 15, Programming a Gamepad on Raspberry Pi with Python, is where we use HTML/CSS and JS to turn a phone into a smart game-like controller for our robot so that we can manually drive it, and launch autonomous behaviors at a touch, while seeing through the robot's camera.

Chapter 16, Taking Your Robot Programming Skills Further, looks at the wider world of robotics, what communities there are, how to get in touch with other robot builders and makers, potential development areas, and where to compete with a robot.

Chapter 17, Planning Your Next Robot Project - Putting It All Together, is the final chapter, where we summarize what you have seen in the book, while encouraging you to plan the construction of your next robot.

Chapter 18, Appendix, will cover extra information to help build your robot.

 To get the most out of this book

Before you begin with this book, you need to have programmed a little in a text programming language. I am assuming some familiarity with variables, conditional statements, looping, and functions.

In terms of manual skills, I assume that you can use a screwdriver, that you can deal with occasional fiddly operations, and that you won't be too scared off by the possibility of soldering things.

Please find a well-lit work surface to build the robot on when those sections come, and somewhere to store it where it won't get dropped or damaged.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learn-Robotics-Programming. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf.

 Code in Action

Visit the following link to check out videos of the code being run:

http://bit.ly/2FLWiIr

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "This creates the myrobot.img file as a clone of the whole SD card in your home directory."

A block of code is set as follows:

import socket
print('%s is alive!' % socket.gethostname())

Any command-line input or output is written as follows:

C:\Users\danny>ping raspberrypi.local

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "You'll see two download links, Download Torrent and Download Zip. Click the Download Zip button and save this file."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 Introduction to Robotics

Throughout this book, we will build a robot and create programs for it that give the robot behaviors that make it feel intelligent and able to make decisions. We will write code to use sensors to observe the robot's surroundings, and build real-world examples of advanced topics such as vision, speech recognition, and talking.

You will see how the simple build techniques, when combined with a little bit of code, will result in a machine that feels like some kind of pet. You will also see how to debug it when things go wrong, which they will, and how to give the robot ways to indicate problems back to you, along with selecting the behavior you would like to demonstrate. We will connect a joypad to it, give it voice control, and finally show you how to plan a further robot build.

Before we start building a robot, it's worth spending a little time on an introduction to what robotics really is, or what a robot is. We can explore some of the types of robots, along with the basic principles that distinguish a robot from another type of machine. We will think a little about where the line between robot and non-robot machines are, then perhaps muddy that line a little bit with the somewhat fuzzy truth. We will then look at the types of robots that people start building in the hobbyist and amateur robotics scene.

In this chapter, we will be covering the following topics:

	What does robot mean? Where the word comes from, and what exactly defines a robot.

	Top robots, where we'll take a look at some amazing real robots.

	Robots in industry, to explore robots seen in factories and warehouses.

	Robots in the home, to show how robots are already with us in our lives.

	We'll look at competitive, educational, and hobby robots where people are using robots for fun, learning, and showing off.

 What does robot mean?

A robot is a machine that is able to make autonomous decisions based on input from sensors. A software agent is a program that is designed to automatically process input and produce output. Perhaps a robot can be best described as an autonomous software agent with sensors and moving outputs. Or, it could be described as an electromechanical platform with software running on it. Either way, a robot requires electronics, mechanical parts, and code.

The word robot conjures up images of fantastic sci-fi creations, devices with legendary strength and intelligence. These often follow the human body plan, making them an android, the term for a human-like robot. They are often given a personality and behave like a person who is in some simple way naive. Refer to the following diagram:

Science fiction and real-world robots. Images used are from the public domain OpenClipArt library

The word robot comes from sci-fi. The word is derived from the Czech for slave, and was first used in the 1921 Karel Capek play, Rossums Universal Robots. The science fiction author Isaac Asimov coined the word robotics as he explored intelligent robot behavior.

Most real robots in our homes and industries have a few cutting edge and eye catching examples standing out. Most do not stand on two legs, or indeed any legs at all. Some are on wheels, and some are not mobile but still have many moving parts and sensors.

Robots like washing machines, autonomous vacuum cleaners, fully self regulating boilers, and air sampling fans have infiltrated our homes and are part of everyday life. They aren't threatening, and have became just another machine around us. The 3D printer, robot arm, and learning toys are a bit more exciting though. Take a look at the following diagram:

The robot, reduced

At their core, robots can all be simplified down to what is represented in the preceding diagram with outputs, such as a motor, inputs, and a controller for processing or running code. So, the basis of a robot, represented as a list, would look something like this:

	A robot has inputs, and sensors to measure, and sample a property of its environment

	A robot has outputs, motors, lights, sounds, valves, sounds, heaters, or other types of output to alter it's environment

	A robot will use the data from its inputs to make autonomous decisions about how it controls its outputs

 Advanced and impressive robots

Now you have an overview of robots in general, I'll introduce some specific examples that represent the most impressive robots around, and what they are capable of. These robots are technical demonstrations, and with the exception of the Mars robots, have favored their closeness to human or animal adaptability and form over their practical and repeated use.

 Robots that look like humans and animals

Take a look at the following picture and understand the similarities between robots and humans/animals:

A selection of human and animal-like robots. Cog: an Mit Project, Honda ASIMO By Morio, Nao From Softbank Robotic, Boston Dynamics Atlas, Boston Dynamics BigDog (https://commons.wikimedia.org/)

What these robots have in common is that they try to emulate humans and animals in the following ways:

	The first robot on the left is Cog, from the Massachusetts Institute of Technology. Cog attempted to be human-like in its movements and sensors.

	The second robot is the Honda ASIMO, which walks and talks a little like a human. ASIMO's two cameras perform object avoidance, and gestures and face recognition, and have a laser distance sensor to sense the floor. It can follow marks on the floor with infrared sensors. ASIMO is able to accept voice commands in English and Japanese.

	The third robot in this selection is the Nao robot from Softbank Robotics. This rather cute, 58 cm tall robot was designed as a learning and play robot for users to program. It has sensors to detect its motion, including if it is falling, and ultrasonic distance sensors to avoid bumps. Nao uses speakers and a microphone for voice processing. Nao includes multiple cameras to perform similar feats to the ASIMO.

	The fourth robot is Atlas from Boston Dynamics. This robot is speedy on two legs and is capable of natural looking movement. It has a laser radar (LIDAR) array, which it uses to sense what is around it to plan and avoid collisions.

	The right-most robot is the Boston Dynamics BigDog, a four legged robot, or quadruped, which is able to run and is one of the most stable four legged robots, capable of being pushed, shoved, and walking in icy conditions while remaining stable.

We will incorporate some features like these in the robot we will build, using distance sensors to avoid obstacles, a camera for visual processing, line sensors to follow marks on the floor, and voice processing to follow and respond to spoken commands. We will use ultrasonic distance sensors like Nao, and experiment with distance sensors a little like Asimo. We will also look at pan and tilt mechanisms for camera a little like the head used in Cog.

 The Mars rovers

The Mars rover robots are designed to function on a different planet, where there is no chance of human intervention if something goes wrong. They are robust by design. New code can only be sent to a Mars rover via a remote connection as it is not practical to send up a person with a screen and keyboard. The Mars rover is headless by design. Refer to the following photo:

The Curiosity Mars rover by NASA

Mars rovers depend on wheels instead of legs, since this is far simpler to make a robot stable, and there is far less that can go wrong. Each wheel on the Mars rovers has it's own motor. They are arranged to provide maximum grip and stability to tackle the rocky terrain and reduced gravity on Mars.

The Curiosity rover was deposited on Mars with its sensitive camera folded up. After landing, the camera was unfolded and positioned with servo motors. The camera package can be positioned using a pan and tilt mechanism so it can take in as much of the Mars landscape as it can, sending back footage and pictures to NASA for analysis.

Like the Mars robot, the robot we will build in this book will use motor-driven wheels. Our robot will also be designed to run without a keyboard and mouse, being headless by design. As we expand the capabilities of our robot in this book, we will also use servo motors to drive a pan and tilt mechanism.

 Robots in the home

Many robots have already infiltrated our homes. They are overlooked as robots because on first glance they appear commonplace and mundane. However, they are more sophisticated than they seem.

 The washing machine

Let's start with the washing machine. This is used every day in some homes, with a constant stream of clothes to wash, spin, and dry. But how is this a robot? Let us understand this by referring to the following diagram:

The humble washing machine as a robot

The preceding diagram represents a washing machine as a block diagram. There is a central controller connected to the display, and with controls to select a program. The lines going out of the controller are outputs, and the lines going into the controller are data coming in from sensors. The dashed lines from outputs to the sensors show a closed loop of output actions in the real world causing sensor changes; this is feedback, an essential concept in robotics.

The washing machine uses the display and buttons to let the user choose the settings and see the status. After the start button is pressed, the machine will check the door sensor and sensibly refuse to start if the door is open. Once the door is closed and the start button is pressed, it will output to lock the door. After this, it uses heaters, valves, and pumps to fill the drum with heated water, using sensor feedback to regulate the water level and temperature.

Each process could be represented by a set of statements like these, which simultaneously fill the drum and keep it heated:

start water pump
turn on water heater
while water is not filled and water is not at the right temperature:
 if water filled then
 stop water pump
 if water is at the right temperature then
 turn off heater
 else
 turn on water heater

Note the else there, which is in case the water temperature drops below the right temperature a bit. The washing machine then starts the drum spinning sequence: slow turns, fast spins, sensing the speed to meet the criteria. It will drain the drum, spin the clothes dry, release the door lock, and stop.

This washing machine is in every respect a robot. A washing machine has sensors and outputs to affect its environment. Processing allows it to follow a program and use sensors with feedback to reach and maintain conditions. A washing machine repair person may be more of a roboticist than I.

 Other household robots

A gas central heating boiler has sensors, pumps, and valves and uses feedback mechanisms to maintain the temperature of the house, water flow through heating, gas flow, and ensure that the pilot light stays lit.

Smart fans use sensors to detect room temperature, humidity, and air quality, then output through the fan speed and heating elements.

A computer printer is also a robot, with moving part outputs and sensors to detect all those pesky paper jams.

Perhaps the most obvious home robot is the robot vacuum cleaner. Refer to the following diagram:

A robotic vacuum cleaner (PicaBot By Handitec)

This wheeled mobile robot is like the one we will build here, but prettier. They are packed with sensors to detect walls, bag levels, and barrier zones, and avoid collisions. They most represent the type of robot we are looking at.

As we build our robot, we will explore how to use its sensors to detect things and react to them, forming the same feedback loops we saw in the washing machine.

 Robots in industry

Another place robots are commonly seen is in industry. The first useful robots have been used in factories, and have been there for a long time.

 Robot arms

Robot arms range from very tiny and delicate robots for turning eggs, to colossal monsters moving shipping containers. Robot arms tend to use stepper and servo motors. We will look at servo motors in the pan and tilt mechanism used in this book. An impressive current industrial arm robot is Baxter from Rethink Robotics:

The Rethink Robotics Baxter Robot

Many robot arms are unsafe to work next to and could result in accidents. Not so with Baxter; it can sense a human and work around or pause for safety. In the preceding image, these sensors can be seen around the "head." The arm sensors and soft joints also allow Baxter to sense and react to collisions.

Baxter also has a training and repeat mechanism for workers to adapt it to work, using sensors in the joints to detect their position when being trained or playing back motions. Our robot will use encoder sensors so we can precisely program wheel movements.

 Warehouse robots

Another common type of robot used in industry is those that move items around a factory floor or warehouse.

There are giant robotic crane systems capable of shifting pallets in storage complexes. They receive instructions on where goods need to be moved from and to within shelving systems:

Intellicart Line Following Robot

Smaller item-moving robot vehicles often employ line sensing technology, by following lines on the floor, wire underneath the floor via magnetic sensing, or marker beacons like ASIMO does. Our robot will follow lines like these. These line-following carts frequently use wheeled arrangements because these are simple to maintain and can form stable platforms.

 Competitive, educational, and hobby robots

The most fun robots can be those built by amateur robot builders. This is an extremely innovative space.

Robotics always had a home in education, with academic builders using them for learning and experimentation platforms. Many commercial ventures have started in this setting. University robots tend to be group efforts, with access to increasingly hi-tech academic equipment to create them, as shown in the following picture:

Kismet and OhBot

Kismet was created at MIT in the late 90s. There are a number of hobbyist robots that are derived from it. It was groundbreaking at the time, using servo motors to drive face movements intended to mimic human expressions. This has been followed in the community with OhBot, an inexpensive hobbyist kit using servo motors, which can be linked with a Raspberry Pi, using voice recognition and facial camera processing to make a convincing display.

Hobby robotics is strongly linked with open source and blogging, sharing designs, and code, leading to further ideas. Hobbyist robots can be created from kits available on the internet, with modifications and additions. The kits cover a wide range of complexity from simple three-wheeled bases to drone kits and hexapods. They come with or without the electronics included. An investigation of kits will be covered in Chapter 6, Building Robot Basics - Wheels, Power, and Wiring. I used a hexapod kit to build SpiderBot to explore walking motion. Refer to the following photo:

Spiderbot - built by me, based on a kit. Controller is an esp8266 + Adafruit 16 Servo Controller

Skittlebot was my Pi Wars 2018 entry, built using toy hacking, repurposing a remote control excavator toy into a robot platform. Pi Wars is an autonomous robotics challenge for Raspberry Pi-based robots, which has both manual and autonomous challenges. There were entries with decorative cases and interesting engineering principles. Skittlebot uses three distance sensors to avoid walls, and we will investigate this kind of sensor in Chapter 11, Programming Distance Sensors with Python. Skittlebot uses a camera to seek out colored objects, as we will see in Chapter 13, Robot Vision - Using A Pi Camera And OpenCV. Here is a photo of Skittlebot:

Skittlebot - My PiWars 2018 Robot - based on a toy

Some hobbyist robots are built from scratch, using 3D printing, laser cutting, vacuum forming, woodwork, CNC, and other techniques to construct the chassis and parts. Refer to the following set of photos:

Building Armbot

I built the robot from scratch, for the London robotics group the Aurorans, in 2009. The robot was known as eeeBot in 2009, since it was intended to be driven by an Eee PC laptop. The Aurorans were a community who met to discuss robotics. The robot was later given a Raspberry Pi, and a robot arm kit seemed to fit it, earning it the name Armbot. In the current market, there are many chassis kits and a beginner will not need to measure and cut materials in this way to make a functioning robot. This was not built to compete, but to inspire other robot builders and kids to code. Towards the end of the book, we will cover some of the communities where robots are being built and shared, along with starting points on using construction techniques to build them from scratch.

The television series Robot Wars is a well known competitive robot event with impressive construction and engineering skills. There is no autonomous behavior in Robot Wars though; these are all manually driven, like remote control cars. Washing machines, although less exciting, are smarter, so they could be more strictly considered robots.

 Summary

In this chapter, we have looked at what the word robot means, and the facts and fiction with robots. We have defined what a real robot is, and gained some idea of what a machine needs to do to be considered a robot.

We've investigated the robots seen in the home, and in industry, and those that are designed to amaze or have traveled to other planets. We've also looked at hobbyist and education robots, and how some of these are just built for fun. You've seen some block diagrams of real-world devices that may not have been considered robots, and have seen how our homes may already have a number of robots present.

Now we know what robots are, let's move on to the next chapter, in which we'll look at how to plan a robot so we can build it.

 Questions

Based on the topics covered in this chapter, answer the following questions:

	What element of a robot is used to monitor its environment?

	What type of robot element do motors represent?

	What are the three elements of a robotic system?

	Where have robots been operating the longest in regular usage?

	Why are wheels used more often than legs?

	What is the principle connecting output, input, and control in a loop?

	Why might a household washing machine be considered more robotic than a UK Robot Wars entry?

 Further reading

Refer to the following links:

	Honda Asimo: http://asimo.honda.com/

	Baxter at Rethink Robotics: https://www.rethinkrobotics.com/baxter/

	Kistmet at MIT: http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html

	The OhBot: http://www.ohbot.co.uk/

	The Mars Science Laboratory at NASA: https://mars.nasa.gov/msl/

 Exploring Robot Building Blocks - Code and Electronics

In this chapter, we will go over the parts and systems that make up robots. What are the parts of a robot? These parts will be both software (code, and other) and hardware. How do they go together? When starting to make a robot, it's valuable to think about the parts you want and how they relate to each other. I recommend you sketch a plan of your robot—a block diagram as a guide to the connected code and parts.

In this chapter, we will be covering the following topics:

	What is inside a robot? We will take apart a robot and examine its parts

	Types of motors, sensors, and actuators - details on these robot parts

	Controllers and IO - we will look at the main controllers and input/output functions

	Planning components and code structure—we will make block diagrams to describe code, and components anywhere

	A plan of our robot—example plans of the robot we will build in this book

 Technical requirements

For this chapter, you will require basic drawing materials, such as a pen and paper. While software such as Draw.io, Dia, Pencil, Inkscape, or Visio could be used, a back-of-an envelope sketch of a block diagram is a great start to robot planning. Most of my robots start that way.

 What is inside a robot?

We can start by looking at a robot as a physical system. However, instead of looking at it all joined together, you can see how a typical hobby rover looks when totally disassembled in the following diagram:

A hobby rover with components laid out

A robot can also be visualized as a block diagram of connected parts. Block diagrams use simple shapes to show a rough idea of how things may be connected. Refer to the following diagram:

A robot block diagram

The preceding diagram is a block diagram. This is not a formal notation; the important factor is that you can clearly see the blocks of functionality you intend in the hardware, with the high-level flow of data between them. This can be a sketch on the back of a bit of scrap paper. The key I've created is off the top of my head, but it must be something that helps distinguish sensors, outputs, and controllers.

An important thing to note is this is not a schematic, nor a scale diagram of a finished robot. It does not even attempt to represent the actual electronic connections, or small details such as having to signal an HCSR04 sensor before it responds; it just gives a general idea of the data flow. This is the right sketch to show how many motors there are, the kinds of motors, how many sensors, and, if known, what additional control circuitry is needed.

It is from this diagram that you can start to flesh out more detail, such as examining the electrical connections, thinking about the power requirements, the actual hardware, and how much space will be needed. For a bit of fun, pick up some paper and sketch a block diagram for a robot you'd like to create. This is the first step toward making it happen.

 Types of motors, sensors, and actuators

A motor is an output device that results in rotation when power is applied. An actuator is an output device, which is any device that creates movements from an electrical signal. Examples of actuators are solenoids, valves, and pneumatic rams. Motors are a subset of actuators too.

A sensor is a device that provides input to a robot, allowing it to sense its environment. There are more sensor types than a single book can list, so we'll keep to the commonly available and fun-to-use ones.

 Motors and actuators

I've laid out some of the different kinds of motors, all of which are used in robotics. Let's take a look at what each one does, and how we might use them for different kinds of motion, as shown in the following photo:

Different motor types

I've shown some common motor types in the preceding photo. Let's understand them in detail:

	The most common type of motor is the DC motor. This has the property of spinning in proportion to the amount of voltage running through it.

	A bare DC motor like this tends to spin a little too fast to be useful bare, and is very easily stopped. This is a DC Gear motor—a DC motor fitted with a gearbox, providing a reduction in speed and increase in mechanical advantage so it can move a larger load. Note that this gear motor is missing soldered leads! These types are most useful in the wheels of a robot. We will be attaching gear motors very much like the second image to our robot in chapter 6, Building Robot Basics - Wheels, Power, and Wiring and chapter 7, Drive and Turn - Moving Motors with Python.

	This is the servo motor (or servomechanism). A controller sends a signal to this type of motor telling it what angular position to move to, with code working in degrees. The motor will attempt to reach and hold that position using it's own internal feedback loop, which means it can repeatably reach the same position. Servo motors are used in pan and tilt mechanisms to position sensors, robot arms, or other limbs and appendages, where the ease of positioning makes them more suitable than other motor types. We will be programming servo motors in Chapter 10, Using Python to Control Servo Motors.

	This is a stepper motor. These have coils powered in a sequence to allow the motor to step a certain number of degrees, so it can be used for very precise motions. Stepper motors tend to be slower and generate a lot of heat compared with DC motors or servo motors, but are most suitable for fine control, like that needed in 3D printers and high-end robot arms. They are also more expensive than the other types.

All motors will require some sort of hardware so a microcontroller/computer like the Pi can drive them. This hardware allows the Pi to switch power hungry devices without destroying them. Don't connect DC motors, stepper motors, or solenoids directly to a Raspberry Pi!

Linear actuators are devices where electrical signals are converted into motion along a single axis. These can be a stepper motor driving a screw in a fixed enclosure or magnetic systems that work like mag-lev trains and move very smoothly. Refer to the following photo:

Linear actuators: By Rollon91

A solenoid is a simple linear actuator using an electromagnetic coil with a metal core that is pulled or pushed away when power is applied to it. A common use of this type is in a doorbell mechanism. They are also used to operate valves on hydraulic or pneumatic actuators, which can create powerful motions like those seen in excavators and large industrial robotic arms.

 Status indicators – displays, lights, and sounds

Another helpful output device is a display—a simple light (or LED) to indicate the status of some part of the robot, or an array of LEDs, a display that can show some text, or a full graphical display like those found on a mobile phone. We will be connecting an LED strip to the robot as a display in Chapter 9, Programming RGB Strips in Python.

Speakers and beepers can be used for a robot to communicate with humans by making sounds. The sound output from these can range from simple noises up to speech or playing music.

Many robots do not have any mounted status indicators and rely on a connected phone or laptop to display their status for them.

 Types of sensors

I have a small selection of common sensors I use—similar to those that will be covered in this book. These have been used in robots I have built. Let's examine each one, and what we would use it for. Note that these may look different from the same sensor types seen before - there is a large variation in sensors that perform the same task, and when we get to adding them into the robot, we will cover their variants in more detail. Refer to the following set of photos:

A selection of sensors from my robots

Let's understand each image in detail:

	This is a Raspberry Pi Camera module, which connects directly into a Raspberry Pi. We will be using this camera for our visual processing programming in Chapter 13, Robot Vision - Using A Pi Camera And OpenCV. This module can capture single images or video sequences. It can generate a lot of data quickly, which is one of the complications for robot vision. It is sensitive to lighting conditions.

	This is a distance sensor, the VL53L0X Time of Flight laser ranging sensor. It uses an infrared laser to bounce off objects and detect how far away they are. This type of sensor sends a detected range directly to the controller. It can be sensitive to lighting conditions. The VL53L0X sensors use I2C, which means they send information as data directly to the Raspberry Pi, and can share their two communication pins with many other devices. I2C is good for when you have lots of sensors and outputs, and you are starting to run out of places to connect things. I2C sensors are handy, but they tend to be more expensive than sensors without this capability.

	This is another distance/ranging sensor - the HCSR04 ultrasonic distance sensor - which bounces sound pulses off objects instead. It's more sensitive to the types of material an object is made from and will fail to detect some surfaces, but is impervious to lighting conditions. The HC-SR04 requires the controller to trigger a pulse of sound, and then time the echo, which we will have to manage in our code for it. It has a far greater range than the VL53L0x laser sensor, and is far cheaper, but is also less sensitive at near distances. We will be programming both sound and light-based range sensors in Chapter 11, .

	This is a set of three line sensors, that use light to detect transitions from light to dark. They can be adjusted to sense in different conditions. There are a few variations of these modules. We will use a set of these sensors for line following in Chapter 8, Programming Line-Following Sensors Using Python. These will each provide an on or off signal, depending on light or dark areas beneath it. They are the simplest of the sensors we will use in this book.

	The fifth sensor is a pair of microphones with some tape to stick them crudely to a robot. These can connect directly to PCM pins on a Pi, but other microphones may need to be connected to electronics to process their signal further, into something the Raspberry Pi uses. There are arrays of four microphones or a single microphones that can be used, and in some contexts can detect the direction of sound as well. Microphones will be used for voice processing in Chapter 14, Voice Communication With A Robot Using Mycroft.

	The last sensor is an optical interrupt sensor, which passes infra-red light through a gap between two posts to detect whether something is between them, interrupting the beam. These are used with notched wheels to sense rotations, which can determine how far a robot has gone and introduce more accuracy into movements. Using an offset pair of these sensors with a wheel can encode the direction of the movement as well as its speed, and such an arrangement is known as an encoder. There are complete encoder assemblies available as sensors too, making it mechanically simpler to use them. We will investigate using encoders in Chapter 12, Programming Encoders with Python.

There are many more sensors not covered here to detect positions of limbs, light, smoke, heat sources, and magnetic fields. These can all be used to make more advanced robots and add more interesting behavior.

 Controllers and IO

At the center of the robot block diagram are the controllers. Robots usually have a main controller, a computer of some kind. They may also have some secondary controllers, and some more unusual robots have many controllers. Sticking with the conventional main controller, this is the system that your code will run. It is the part that connects all the other components together and forms the basis of their interactions.

 IO pins

IO pins are used for input and output from the controller; they give the controller its ability to connect to real-world sensors and motors.

The number of IO pins on the controller can be a major limiting factor in what you can connect to a robot without using secondary controllers. You may also see the term General Purpose Input Output (GPIO). Controller IO pins have different capabilities.

The simplest IO pins are only able to output an on/off signal, or read an on/off signal, like in the following image; these are known as Digital IO pins. However, these can be programmed to perform more complicated tasks by detecting timing between signals, which is exactly the principle used in the HC-SR04 distance sensor. Refer to the following diagram:

A digital signal

Some IO pins may be able to read varying levels, like that in the following image; these are analog input pins. If a sensor produces a changing resistance or continuous scale of values, then an analog pin may be the suitable place to connect it. Refer to the following diagram:

 An analog signal

Pulse Width Modulation (PWM) pins are able to output a cycling digital waveform, allowing the code to select the frequency and how much time they are on for. The simple idea is that the length of ontime vs offtime in a cycle will change to vary an output signal and is often used to control the speed of motors. We will spend more time on PWM pins in Chapter 6, Building Robot Basics - Wheels, Power, and Wiring, and Chapter 7, Drive and Turn - Moving Motors with Python. Refer to the following diagram:

A PWM signal

Some IO pins can be used to form data transmission lines, like serial, I2S, I2C, and SPI buses. They are known as data buses. This can be used to send data to or from other controllers and intelligent sensors. We will encounter these as we program with them in part 2 of the book. Many controllers allow the usage mode of pins to be configured in the software you run on them, but some capabilities are restricted to certain pins.

 Controllers

Although it is possible to use bare controller chips with the right skills to create surrounding electronics and your own PCBs, we will keep things simple in this book by using controller modules. These tend to come in packaged and easy-to-use systems. The next set of photos shows a few of them:

A selection of controller modules

The preceding photo shows a selection of some of my favorite controllers. They can all be powered via a USB connection of some kind, and for all but the Raspberry Pi, programmed over the same connection. They all have easy-to-use connectors for making use of their IO pins. For each of the controllers, what are they, and what are their pros and cons? Let's understand them:

	The Raspberry Pi 3B+, the latest in the Raspberry Pi line at the time of writing, is the most powerful in this lineup, and is the controller we are using for our robot, as it is the most capable of visual processing from a camera. This fast and capable controller is closer to a phone in complexity. It's IO pins support many of the databus types, and digital IO, but for analog reading and some other IO functions, external controllers are needed. It is also the most expensive in this group and uses the most power.

	The Raspberry Pi Zero W is an inexpensive, lighter weight alternative to the full Raspberry Pi. It supports a camera and speakers. The Zero WH model includes the headers for IO too. It will perform speech and visual recognition, but will be slower at these than a Raspberry Pi 3. Their small size makes them an interesting option for a remote control pad though.

	This is the ESP8266 or NodeMCU. This controller has built-in Wi-Fi, and in this NodeMCU format can be programmed very easily from a PC using the same system as the Arduino, with Micropython or in Lua. It has plenty of IO pins, but only one is able to read analog signals. It supports many data bus types. It is somewhat faster and can hold larger programs than the Arduino. It is the cheapest controller in this lineup.

	The Micro:bit was released in 2015 for use in education, and is ideal for children. Its use in robotics requires a further adapter if you need more than the 3 IO pins shown, but it is still a pretty capable robot controller and comes with a nice built-in LED matrix. This can be programmed in Micropython, C, JavaScript, and a number of other languages.

	The last panel is an Arduino Leonardo, based around the Atmega 328 chip, and is a controller module that formed the basis of most of my robots around 2010-2012. The Arduino was important for the ease with which it could be connected to a PC via USB and programmed to immediately interact with devices attached to its IO pins. The Arduino is mostly programmed in the C++ language. In terms of IO, it has built-in pins to read analog devices, many digital pins, PWM output pins, and can be set up to handle most data buses. The Arduino is very flexible, but the processor is very simple; it is not capable of visual or speech processing tasks. The Arduino has the lowest power consumption of all the options shown here.

An honorable mention should go to the PIC microcontroller, not pictured here. These were used for hobby robotics long before any of the others, and have a thriving community since they are small, have low power consumption, and are extremely cheap.

Here is a comparison of controllers based on pro's and con's:

	Controller Name
	Pros
	Cons

	Arduino
	Very low power consumption, very flexible IO.
	Quite large, least capable processor, not suitable for visual processing or speech.

OEBPS/assets/1c54b4ed-436b-46cb-91be-bf5845eb93de.png

OEBPS/assets/337f8e76-c2a5-44f4-8bbd-efeecb62801b.png

OEBPS/assets/5b35974b-6b65-43d3-9977-d54627e8a754.png
00Y¥YNO37

OEBPS/assets/febf9f69-640c-4980-9d61-e36c05869c5c.png

OEBPS/assets/8f2805c4-02af-4ad1-b435-2bdd8e4f089f.png
Packb

OEBPS/assets/ee85e86c-b607-43ab-a090-8b878d92f405.png

OEBPS/assets/12472b0d-546e-4a1b-882c-d7c8c41c0123.png
Mapt

OEBPS/assets/65438070-65dd-461a-aa6b-4017d99e743f.png
Water

Temperature
Sensor

1
1
Spin Motor
- Water Heater

Speed Sensor

-
Water Level

| Sensor

Door Open
Sensor

OEBPS/assets/8c4865c5-a1c5-4354-8317-973081acff2b.png
Robotics
Programming

Build and control autonomous robots using Raspberry Pi 3 and Python

OEBPS/assets/4d50c0ad-a4a8-44d5-bf4e-b75ddc35cbd7.jpg

OEBPS/assets/b81664eb-d2f6-42e2-992c-71e0ff434709.png

OEBPS/assets/bee49137-b67e-4693-b395-330311feb638.jpg

OEBPS/assets/cb33f81b-c6d9-4222-8b8e-b81b14f3122d.png
3D Printer

OEBPS/assets/c2962451-fbb7-4bd5-a82f-c45c03d4cb63.jpg

OEBPS/assets/9761b9c1-71a2-4567-80f7-70689540ca6e.png

OEBPS/assets/35aaeb9b-770f-4e61-8700-6b43a6f14974.png

OEBPS/assets/5dd9da4a-385d-49a9-818b-d3cfec8bf7e7.png
OUTPUT (make a
change in the world)

INPUT (sense
the state of the world)

OEBPS/assets/2794ed8c-b1fb-4afa-90b7-1d42a4b163ad.jpg

OEBPS/assets/ddd3d212-3828-47df-8fa4-08f0fce4390e.jpg

OEBPS/assets/7e8381d8-d9b2-4635-9cdd-d07cca02aa3a.jpg

OEBPS/assets/a3350e8a-6f12-4d58-a2e2-2c016a5b9f0d.jpg

OEBPS/assets/bf20e6c1-6e78-45c5-86be-4123a6206351.jpg

OEBPS/assets/aa67517c-6aa2-4f51-ba1c-1e3cc5a5e5dd.jpg

OEBPS/assets/69cd9526-efac-4669-b148-00f71b46c381.jpg

OEBPS/assets/c9811911-d033-4dd5-b930-9a6f454fae64.png

