

[image:]

Inhaltsverzeichnis

 Impressum

 Vorwort

 Einleitung

 Kapitel 1: Das erste Projekt

 In Babylon einsteigen

 Ein Objekt positionieren

 Die Sache mit Create

 Funktionen

 Objekte, Vektoren und mehr

 Zusammenfassung

 Ein paar Fragen ...

 ... und eine Aufgabe

 Kapitel 2: HTML und Babylon

 Get Zip

 Abnabelung 1: babylon.js

 Abnabelung 2: Notepad++

 Ansehen und starten?

 Zusammenfassung

 Ein paar Fragen ...

 ... aber keine Aufgabe

 Kapitel 3: Projekt-Erweiterung

 INDEX.HMTL und GAME.JS

 Funktionsanweisungen

 Tasten-Abfrage mit »if«

 Fehlersuche

 Grenzkontrollen

 Zusammenfassung

 Ein paar Fragen ...

 ... und ein paar Aufgaben

 Kapitel 4: Spiele-Physik

 Objekt-Material

 Kacheln, Alpha und Color

 Masse und Gravitation

 Krafteinwirkung

 Eigene Funktionen

 Zusammenfassung

 Ein paar Fragen ...

 ... und zwei Aufgaben

 Kapitel 5: Mit und ohne Grenzen

 Eine eigene js-Datei

 Mauerwerk

 Kameraführung

 Kugeln schubsen

 Zufallszahlen und Schleifen

 Zusammenfassung

 Ein paar Fragen ...

 ... und einige Aufgaben

 Kapitel 6: Kleiner Krabbelkurs

 Neues Spiel?

 Sprites

 Insekt als Player

 Die Sache mit der Maus

 Klick-Wanderung

 Zusammenfassung

 Ein paar Fragen ...

 ... und eine Aufgabe

 Kapitel 7: Wanzenjagd

 Freilauf

 Klick und Platt

 Zielen und treffen

 Eine Horde von Wanzen

 Zusammenfassung

 ... und zwei Aufgaben

 Kapitel 8: Sightseeing

 Ein leeres Spielfeld

 Gravitation und Kollision

 Ein neuer Player

 Spielfeld mit Hindernissen

 Kontaktaufnahme

 Zusammenfassung

 Ein paar Fragen ...

 ... und eine Aufgabe

 Kapitel 9: Landschaften

 Ein Terrain

 Heightmaps

 Terrain-Texturen

 Bäume

 Bumpmaps

 Zusammenfassung

 Ein paar Fragen ...

 ... und eine Aufgabe

 Kapitel 10: Die vier Elemente

 Eine Skybox für den Himmel

 Wasser für den See

 Baumaterial »herstellen«

 Die Hütte zusammenbauen

 Zusammenfassung

 Ein paar Fragen ...

 ... und ein paar Aufgaben

 Kapitel 11: Android selbst gemacht

 Kopf, Rumpf und Glieder

 Alles zusammen

 Face Texture

 Der Android bewegt sich

 Kollisionsprobleme?

 Zusammenfassung

 Ein paar Fragen ...

 ... und eine Aufgabe

 Kapitel 12: Animationen

 Keyframes

 Arm- und Beingymnastik

 Walking

 Start und Stopp

 Mehr Animationen?

 Zusammenfassung

 Ein paar Fragen ...

 ... und zwei Aufgaben

 Kapitel 13: Kontakt-Spiele

 Bewegung im Kugelfeld

 Kontaktsuche

 Aus Kugeln werden Bäume

 2D in 3D

 Treffer sehen und hören

 Spiel auf Zeit

 Zusammenfassung

 Ein paar Fragen ...

 ... und ein paar Aufgaben

 Zum Schluss

 Anhang A

 Für Eltern ...

 ... und für Lehrer

 Anhang B

 Der Babylon-Playground

 Anhang C

 Browser-Vielfalt

 Anhang D

 Kleine Checkliste

 Kleine Hilfsmittel

Spiele programmieren mit JavaScript für Kids

Hans-Georg Schumann

[image:]

[image:]

Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

ISBN 978-3-95845-579-5

1. Auflage 2017

www.mitp.de

E-Mail: mitp-verlag@sigloch.de

Telefon: +49 7953 / 7189 - 079

Telefax: +49 7953 / 7189 - 082

© 2017 mitp Verlags GmbH & Co. KG

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Katja Völpel

Sprachkorrektorat: Petra Heubach-Erdmann

Covergestaltung: Christian Kalkert

electronic publication: III-satz, Husby, www.drei-satz.de

Dieses Ebook verwendet das ePub-Format und ist optimiert für die Nutzung mit dem iBooks-reader auf dem iPad von Apple. Bei der Verwendung anderer Reader kann es zu Darstellungsproblemen kommen.

Der Verlag räumt Ihnen mit dem Kauf des ebooks das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheherrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und Einspeicherung und Verarbeitung in elektronischen Systemen.

Der Verlag schützt seine ebooks vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die ebooks mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

Für

Janne, Julia, Katrin und Daniel

Vorwort

Eigene Fantasiewelten erschaffen, in denen man sich frei bewegen kann. Selbst gebauten Figuren begegnen. Abenteuer selbst erfinden, den Verlauf von Ereignissen selbst bestimmen: Wie wäre das?

Um ein Spiel selbst zu erstellen, muss man vom Programmieren anfangs eigentlich noch gar nichts verstehen. Denn zuallererst braucht man eine Idee und dann einen Plan.

Wovon soll das Spiel handeln? Welche Geschichte soll es erzählen? Personen, Orte und Ereignisse, all das führt zu einem Plan, der umfasst, was zu diesem Spiel gehören soll. Und erst wenn der Plan »steht«, kann die eigentliche Umsetzung in ein Programmprojekt beginnen. Dann allerdings sollte man schon möglichst gut programmieren können.

Wir wollen hier gar nicht so hoch hinaus: Ein professionelles Game wird heutzutage ja von einer ganzen Gruppe von Leuten erstellt, darunter Designer, Künstler, Techniker und nicht zuletzt natürlich Programmierer.

Trotzdem dauert die Arbeitszeit häufig mindestens Monate, wenn nicht Jahre. Die Beteiligten machen einen Vollzeitjob, es ist ihr Beruf. Hier hast du als Einzelgänger nur eine Chance, wenn deine Spielidee so hervorragend und einmalig ist, dass sie alles andere überstrahlt.

Bleiben wir also auf dem harten Boden der Tatsachen und planen wir nicht ein gigantisches Meisterwerk, sondern kümmern wir uns um solide Grundlagen. Wenn du die beherrschst, hast du durchaus Voraussetzungen, auch einmal an einem professionellen Spielprojekt mitzuwirken.

Welche Werkzeuge benötigen wir?

Um Spiele im 2D- und 3D-Bereich zu erstellen, brauchen wir als Herzstück eine sogenannte Engine​. Sie muss mit physikalischen Gesetzen umgehen können, damit die Spielwelt mit ihren Figuren und Ereignissen möglichst echt wirkt. Und sie muss grafische Effekte beherrschen, damit das Ganze auch optisch etwas hermacht.

Und das brauchst du:

	
die Babylon Engine​, ein vollwertiges System, das vielfältige Möglichkeiten zum Erstellen von auch professionellen Spielen bietet.

[image:]

	
einen Editor, der dich beim Programmieren unterstützt. Mehr als Notepad, den Windows bereits »eingebaut« hat, bietet Notepad++​, das wir in diesem Buch einsetzen.

Programmiert wird in der Sprache JavaScript​, in der auch die komplette Babylon Game Engine erstellt wurde.

	
​Damit die Programme funktionieren, benötigen wir also einen Browser, wie du ihn für das Surfen im Internet benutzt: Ob Google Chrome, Microsoft Edge oder Mozilla Firefox, jeder Browser versteht JavaScript. (Näheres über einige Unterschiede erfährst du im Anhang.)

[image:]Wir verwenden hier die derzeit aktuelle Babylon-Version 2.5. Die bekommst du zum Herunterladen auf http://www.babylonjs.com. Dort erfährst du auch, ob es eine neuere Version gibt. Alle Programme im Buch funktionieren mit babylon.JS 2.5. Bei deutlich höheren Versionsnummern müssen vielleicht einige Programme neu angepasst werden.

Einen komfortablen Editor zum Bearbeiten deiner Programme findest du auf https://notepad-plus-plus.org.

Und was bietet dieses Buch?

Vorwiegend geht es um die Programmiersprache JavaScript und natürlich um Spiele. Du erfährst hier unter anderem

	
einiges über JavaScript

	
etwas über Tasten- und Maussteuerung

	
wie man 2D-Spiele mit Sprites erstellt

	
wie man Material und Texturen einsetzt

	
wie man eine Landschaft zum Spielfeld macht

	
wie man einen Androiden selber baut

	
etwas über den Umgang mit Kollisionen

	
wie man Objekte animiert

Im Anhang gibt es dann noch zusätzliche Informationen, unter anderem über Anpassungsprobleme und den Umgang mit Fehlern.

Einleitung

Wie arbeite ich mit diesem Buch?

Um dir den Weg vom ersten Projekt bis zu einem 3D-Game einfacher zu machen, gibt es einige zusätzliche Symbole, die ich dir hier gern erklären möchte:

Arbeitsschritte

	
Wenn du dieses Zeichen siehst, heißt das: Es gibt etwas zu tun. Damit kommen wir beim Entwickeln Schritt für Schritt einem neuen Ziel immer näher.

[image:]

Grundsätzlich lernt man besser, wenn man etwas selber programmiert. Aber nicht immer hat man große Lust dazu. Weil es alle Projekte im Buch auch zum Download gibt, findest du am Ende des einen oder anderen Abschnitts auch den jeweiligen Dateinamen (zum Beispiel [image:] MyGame1). Wenn du also das Projekt nicht selbst erstellen willst, kannst du es stattdessen auch aus dem Internet laden – zu finden unter www.mitp.de/577

Fragen und Aufgaben

Am Ende eines Kapitels gibt es jeweils eine Reihe von Fragen und Aufgaben. Diese Übungen sind nicht immer ganz einfach, aber sie helfen dir, deine Spiele noch besser zu entwickeln. Lösungen zu den Aufgaben findest du ebenfalls auf der mitp-Homepage. Du kannst sie dir alle im Editor von Windows oder auch in deinem Textverarbeitungsprogramm anschauen. Oder du lässt sie dir ausdrucken und hast sie dann schwarz auf weiß, um sie neben deinen PC zu legen.

Notfälle

[image:]Vielleicht hast du irgendetwas falsch gemacht oder etwas vergessen. Oder es wird gerade knifflig. Dann fragst du dich, was du nun tun sollst. Bei diesem Symbol findest du eine Lösungsmöglichkeit. Auch ganz hinten im Anhang D findest du ein paar Hinweise zur Pannenhilfe.

Wichtige Stellen im Buch

[image:]Hin und wieder findest du ein solch dickes Ausrufezeichen im Buch. Dann ist das eine Stelle, an der etwas besonders Wichtiges steht.

[image:]Wenn es um eine ausführlichere Erläuterung geht, tritt Buffi in Erscheinung und schnuppert in seiner Kiste mit Tipps & Tricks.

Was brauchst du für dieses Buch?

Du findest die Babylon Engine als komplette Entwicklungsumgebung zum Download auf dieser Homepage:

http://www.babylonjs.com

Babylon ist kostenlos, du kannst dir dort sogar dein System zusammenstellen, indem du es mit verschiedenen Zusätzen erweiterst.

Die Beispielprojekte in diesem Buch findest du ebenso wie die Lösungen zu den Aufgaben auf der Homepage des Verlages in der gerade aktuellen Version:

http://www.mitp.de/577

[image:]Alle Projekt-Ordner enthalten nur die Beispiel-Programme, nicht aber die Babylon Engine – aus Copyright-Gründen. Du musst also selbst die Babylon-Datei herunterladen und in den jeweiligen Projekt-Ordner kopieren.

Betriebssystem

Die meisten Computer arbeiten heute mit dem Betriebssystem Windows. Davon brauchst du eine der Versionen ab 7. Mit Babylon lassen sich übrigens nicht nur Spiele für Windows entwickeln, sondern auch für andere Systeme.

Speichermedien

Auf jeden Fall benötigst du etwas wie einen USB-Stick oder eine SD-Card, auch wenn du deine Programme auf die Festplatte speichern willst. Auf einem externen Speicher sind deine Arbeiten auf jeden Fall zusätzlich sicher aufgehoben.

Gegebenenfalls bitte deine Eltern oder Lehrer um Hilfe: Sie sollten den Anhang A lesen. Dann können sie dir bei den ersten Schritten besser helfen.

Kapitel 1: Das erste Projekt

Du möchtest natürlich gleich dein erstes Spiel erstellen. So schnell geht das leider nicht, aber mit dem Programmieren können wir sofort loslegen. Du brauchst dazu anfangs nur den Browser, mit dem du auch im Internet surfst. Dort benutzen wir eine »Spiel-Maschine« namens Babylon, mit der lassen sich jede Menge Spiele erstellen. Aber wir fangen erst mal mit etwas Einfachem an.

In diesem Kapitel lernst du

	
wie man in Babylon einsteigt

	
wie man Objekte in einem Projekt einsetzt

	
etwas über 2D und 3D

	
wie man die Position von Objekten ändert

	
was Funktionen und Vektoren sind

In Babylon einsteigen

​Starte einen Browser deiner Wahl, das kann zum Beispiel Microsoft Edge, Google Chrome oder Mozilla Firefox sein. Dort gib in der Adresszeile diese Adresse ein:

http://www.babylonjs.com/

Nach einer Weile landest du auf der Homepage von Babylon JS​. Dort findest du eins der Werkzeuge, die wir für dieses Buch brauchen: ein komplettes System zum Erstellen von Spielen.

[image:]

Probieren wir das gleich aus.

	
Klicke auf die Schaltfläche Try, um in den sogenannten Playground​ umzuschalten.

[image:]

Auf der rechten Seite siehst du eine Fläche und darüber eine Kugel. In diesem Bereich findet auch später dein Spiel statt.

[image:]Man nennt das Ganze auch Spielwelt​, denn natürlich lässt sich dieser Bereich später auf den ganzen Bildschirm vergrößern. Wie bei einem echten Spiel kann man dann auch nach rechts oder links weiterwandern. Das alles gehört zur Spielwelt (die mitunter sogar riesig sein kann).

Die Fläche unter der Kugel ist so etwas wie das Spielfeld​. Und die Kugel selbst ist dann die Spielfigur​. Und damit kennst du nun das, was mindestens zu einem Spiel gehört: eine Spielfigur und ein Spielfeld.

Auf der linken Seite deines Browsers befindet sich furchtbar viel Text. Alles, was da steht, ist in der Programmiersprache JavaScript​ geschrieben. Und das ist auch die Sprache, in der du hier vorwiegend programmieren wirst. (Und jetzt kannst du dir wohl denken, was das »JS« hinter »Babylon« bedeutet, oder?)

Es bleibt dir nicht erspart, sich näher mit dem »ganzen Kram« zu befassen, der da steht. Ein besserer Ausdruck dafür ist Quelltext​. Wir gehen das Ganze gleich langsam Zeile für Zeile durch. Genau genommen ist es gar nicht so viel, wie es zuerst aussieht.

Ich habe alle Zeilen, die mit einem doppelten Schrägstrich beginnen, einmal entfernt, weil sie für das Funktionieren des Programms nicht nötig sind. Es handelt sich um sogenannte Kommentare​, in denen (auf Englisch) erläutert wird, was an der jeweiligen Stelle passiert (oder passieren soll). Solche Zeilen werden von Babylon einfach übersprungen.

Was übrig bleibt, sieht so aus:

var createScene = function () {
 var scene = new BABYLON.Scene(engine);
 var camera = new BABYLON.FreeCamera
 ("camera1", new BABYLON.Vector3(0,5,-10), scene);
 camera.setTarget(BABYLON.Vector3.Zero());
 camera.attachControl(canvas, true);
 var light = new BABYLON.HemisphericLight
 ("light1", new BABYLON.Vector3(0,1,0), scene);
 light.intensity = 0.7;
 var sphere = BABYLON.Mesh.CreateSphere
 ("sphere1", 16, 2, scene);
 sphere.position.y = 1;
 var ground = BABYLON.Mesh.CreateGround
 ("ground1", 6, 6, 2, scene);
 return scene;
};

In Wirklichkeit hat der Quelltext noch weniger Zeilen, ich musste nur einige sehr lange Exemplare auf zwei Buch-Zeilen verteilen.

Dieser Quelltext ist eine Ansammlung von Anweisungen​, die der Computer ausführen soll. Jede davon wird mit einem Semikolon​ (;) abgeschlossen. Alle Anweisungen zusammen bewirken das, was du rechts neben dem Text zu sehen bekommst.

[image:]Da taucht ständig dieses Wörtchen var​ auf. Das ist eine Abkürzung für Variable. Direkt dahinter steht ein Name und dann folgt ein sogenanntes Zuweisungszeichen (=), das wie ein Gleichheitszeichen aussieht.

[image:]

Jedes Mal, wenn var erscheint, heißt das: Es gibt etwas Neues, das Programm oder Spiel wird um ein neues Element erweitert. Dabei ist die Variable ein Platzhalter oder eine Art Behälter, dessen Inhalt veränderbar ist.

Und die Zuweisung​ bedeutet, dass in den Behälter etwas »eingefüllt« wird. Hinter dem Zuweisungszeichen kann alles Mögliche stehen. Und wie du oben siehst, werden dem Spiel mithilfe von var Elemente hinzugefügt (wie Kamera, Licht, Kugel und Untergrund).

​Zu beachten ist, dass bei einigen var-Zuweisungen ein zusätzliches new nötig ist. Ich komme weiter unten darauf zurück.

Schauen wir jetzt mal noch genauer hin. Dabei beginnen wir nicht ganz oben. Das wäre noch zu kompliziert, dazu kommen wir also erst später. Beginnen wir mit den Zeilen, in denen wir selbst schon mal etwas »machen« können.

[image:]

Ein Objekt positionieren

In den beiden Anweisungen, die ich meine, geht es zuerst um ein Objekt namens sphere​, zu Deutsch: Kugel. Diese Zeilenfolge sorgt dafür, dass nebenan im Fenster eine solche Kugel zu sehen ist:

var sphere = BABYLON.Mesh.CreateSphere
("sphere1", 16, 2, scene);
sphere.position.y = 1;

Mit CreateSphere()​ wird eine Kugel erzeugt. Und mit position wird diese Kugel auf der Unterlage positioniert und nicht »dazwischen«.

	
Damit du verstehst, was ich damit meine, ändere die betreffende Zeile einmal so um:

// sphere.position.y = 1;

Durch die zwei vorgeschalteten Schrägstriche (//) wird das Ganze zu einem Kommentar. Es ist damit keine Anweisung mehr und wird nach dem Programmstart übersprungen.

	
Klicke nun oben links auf Run, um das Programm neu zu starten.

[image:]

Und schon sackt die Kugel in den Untergrund. Mit dem Zusatz position​ können wir also die Position eines Objekts ändern.

Standardmäßig wird ein neues Objekt erst mal in die Mitte einer Spielwelt gesetzt. Das entspricht dann diesem Positionswert:

sphere.position.y = 0;

Wenn man also für position gar nichts angibt, dann wird der Wert auf 0 gesetzt. Aber schauen wir mal genauer hin. Da steht ja auch noch ein y. Vielleicht weißt du aus der Schule, was ein Koordinatensystem​ ist. Da gibt es eine x-Achse (= Horizontale oder Waagerechte) und eine y-Achse (= Vertikale oder Senkrechte).

[image:]

Entlang der x-Achse​ geht es also nach links oder rechts, entlang der y-Achse​ nach oben oder unten. Genau in der Mitte, wo sich die Achsen kreuzen, sind die Koordinatenwerte (0 | 0). Das nennt man 2D.

In Babylon gibt es noch eine dritte Ache, die man z-Achse​ nennt. An der entlang geht es nach vorn oder nach hinten. Damit haben wir 3D.

Schaut man von vorn auf das Koordinatensystem, dann kann man diese Achse nicht sehen. Um alle Achsen dennoch in 2D sichtbar zu machen, greift man zu einem optischen Trick: Die z-Achse wird als Diagonale dargestellt.

[image:]

​Und so kann man die Richtungen für die Positionierung von Objekten wie zum Beispiel einer Kugel in einer Tabelle zusammenfassen:

	
Achse

	
X

	
Y

	
Z

	
Richtung

	
links-rechts

	
oben-unten

	
vorn-hinten

[image:]2D​ oder 3D​? Was genau bedeutet das und was ist der Unterschied? Ein Bild auf einem Blatt Papier ist zweidimensional (abgekürzt: 2D), es hat zwei Dimensionen, eine Länge und eine Breite. Dein Computer oder dein Smartphone sind dreidimensional (abgekürzt: 3D), denn dort gibt es zusätzlich noch eine Höhe oder Dicke.

Bei Spielen gibt es das eigentlich nicht, denn die Darstellung auf dem Monitor oder Display ist immer 2D. Die dritte Dimension wird künstlich erzeugt, es sieht dann für die Augen so aus, als wäre das Ganze 3D. Mit Babylon können die Spiele 2D oder 3D sein.

Probieren wir doch gleich mal aus, wie sich die Lage der Kugel verändern lässt.

	
Entferne zuerst die Kommentarzeichen (//). Dann ändere die vorhandene Zeile so um:

sphere.position.x = 1;

Und dann so:

sphere.position.z = 1;

	
Vergiss nicht, jedes Mal auf Run zu klicken.

Im einen Fall verschiebt sich die (eingesackte) Kugel nach rechts, im anderen nach hinten:

[image:]

	
Nun mache aus der vorhandenen Zeile die folgenden drei:

sphere.position.x = -2;
sphere.position.y = 1;
sphere.position.z = 2;

	
Dann klicke auf Run.

[image:]

Und du kannst sehen, dass die Kugel nun hinten links in der Ecke liegt, und nicht in, sondern auf der Spielfläche.

[image:]Wenn du etwas falsch eingetippt oder versehentlich etwas gelöscht hast, kannst du das in der Regel mit Strg+Z wieder rückgängig machen.

Die Sache mit Create

Du weißt also jetzt, wie man eine Kugel als Spielelement erzeugt und in Position bringt. (Spielfigur ist hier noch etwas übertrieben, solange sich das »Ding« nicht bewegen kann. Aber warte ab, das kommt noch.)

Was ist mit anderen Objekten? Da muss es doch noch mehr geben.

	
Probiere doch mal das Folgende aus: Entferne die Zeilen für die Kugel und ersetze sie durch diese:

var box = BABYLON.Mesh.CreateBox("box1", 2, scene);
box.position.y = 1;

Damit bekommst du nun einen Würfel.

[image:]

Weitere Objekte wirst du im Laufe dieses Buches kennenlernen. Nun kümmern wir uns um das Drumherum. Das ist auch wichtig dafür, dass wir eine Kugel oder einen Würfel auf einem Spielfeld zu sehen bekommen. Das Spielfeld, auch Untergrund genannt, wird übrigens so erzeugt:

var ground = BABYLON.Mesh.CreateGround
 ("ground1", 6, 6, 2, scene);

Das erledigt die Funktion CreateGround()​. Womit wir nun schon mal diese drei Funktionen kennen:

	
CreateSphere()

	
Eine Kugel erzeugen

	
CreateGround()

	
Eine Fläche (als Untergrund) erzeugen

	
CreateBox()

	
Einen Quader oder Würfel erzeugen

Alle werden mit »Create« eingeleitet, dem englischen Wort für »Erzeugen«. Schon ganz zu Anfang kannst du bestimmen, wie groß das jeweilige Objekt sein soll. Dafür sind sogenannte Parameter da, die in Klammern hinter dem Create-Namen stehen.

[image:]

[image:]Eine Zwischenbemerkung zu den Anführungszeichen​ ("), die hier immer wieder auftauchen: Bis jetzt sind dir wohl immer die doppelten begegnet. Wenn du dir Quelltexte im Internet ansiehst, wirst du aber auch oft auf die einfachen Anführungszeichen (') stoßen. In JavaScript sind beide gleichwertig erlaubt.

[image:]Falls du Probleme hast, die Anführungszeichen auf der Tastatur zu finden, versuch’s mal mit Shift+2 und Shift+#.

	
Probiere jetzt diese Anweisungen für das Spielfeld gleich einmal aus:

var ground = BABYLON.Mesh.CreateGround
 ("ground1", 15, 15, 2, scene);

oder:

var ground = BABYLON.Mesh.CreateGround
 ("ground1", 5, 25, 2, scene);

Und hier ein Beispiel für eine große Kugel:

var sphere = BABYLON.Mesh.CreateSphere
("sphere1", 16, 10, scene);
sphere.position.y = 5;

Wie wäre es mit einem kleinen Würfel?

var box = BABYLON.Mesh.CreateBox("box1", 0.4, scene);
box.position.y = 0.2;

	
​Experimentiere selber mit eigenen Werten.

Wie du siehst, kannst du auch Dezimalzahlen einsetzen. Denk aber daran, dass du hier kein Komma, sondern einen Punkt verwendest:

box.position.y = 0.2; // richtig
box.position.y = 0,2; // falsch

Funktionen

Kommen wir jetzt zur ersten Zeile des Quelltextes, wie er seit dem Start im linken Browser-Bereich steht:

var createScene = function () {

Hier wird eine Funktion definiert, die createScene​ heißt.

[image:]Was ist eigentliche eine Funktion​. Eine Funktion ist eine Methode, eine Arbeitsanweisung für den Computer.

Kurz: Was in einer Funktion steht, führt der Computer aus. Zum Beispiel eine Kugel erzeugen und auf dem Bildschirm beziehungsweise in einem Browser darstellen.

Das Besondere ist, dass du nicht nur Funktionen benutzen kannst, die es bereits gibt – wie zum Beispiel CreateSphere –, sondern du kannst dir auch deine eigenen Funktionen programmieren. Und wenn du die dem Computer »befiehlst«, dann führt er sie auch aus.

Funktions-Variablen können in JavaScript diese Form haben:

var Name = function () { };

Zuerst kommt das Wort var​, wie du weißt eine Abkürzung für Variable. Dahinter folgt sofort ein Name, meistens ein englisches Wort, man könnte aber auch ein deutsches nehmen, zum Beispiel:

var laufLos = function () { };
var gibMirGeld = function () { };

[image:]Wenn ein Name aus mehreren Teilen besteht, kann man ihn nicht durch ein Leerzeichen oder Bindestriche trennen. Dann setzt man mittendrin einzelne Großbuchstaben ein. Ein Name muss immer eine zusammenhängende Zeichenkette sein.

In JavaScript wird zwischen Groß- und Kleinschreibung unterschieden: laufLos und lauflos und Lauflos sind also nicht dasselbe!

Warum es einerseits createScene() und andererseits CreateSphere() heißt? Vielleicht, weil das erste eine selbst definierte Funktion ist, das zweite eine in Babylon bereits eingebaute.

Nach dem Namen folgt ein Zuweisungszeichen (=). Das anschließende Wort function​ besagt, dass es sich um eine Funktion handelt.

[image:]Bis hierhin dürfte es klar sein, doch was sollen die vielen Klammern dahinter?

​​Das erste Paar von runden Klammern ist in unserem Beispiel leer. In JavaScript müssen hinter function immer solche Klammern stehen.

Manche Funktionen übernehmen auch Parameter​, wie du schon zum Beispiel bei CreateSphere() gesehen hast. Parameter sind also Elemente, die eine Funktion übernehmen und intern weiter benutzen kann. Auf Parameter kommen wir später immer wieder zu sprechen.

Neben den Funktionen gibt es noch ganz normale Variablen zum Beispiel für Zahlen. Die haben keine Klammern. Du wirst auch diesen Typ noch kennenlernen.

Nun zum zweiten Paar, den geschweiften Klammern. Die umfassen das, was eine Funktion ausmacht, nämlich alle Anweisungen.

[image:]Wenn du die Klammern auf deiner Tastatur nicht findest: Für die runden benutzt du Shift+8 und Shift+9, für die geschweiften AltGr+ 7 und AltGr+0.

Nun rutsche mal ein bisschen zurück, damit du den Quelltext komplett im Blick hast.

[image:]

Wie du siehst, ist das Ganze eine einzige Funktion, die in der ersten Zeile mit der öffnenden geschweiften Klammer endet. Und ganz unten zum Schluss, in der letzten Zeile, da findest du die schließende Klammer.​​

[image:]

Beide Klammern sind Marken, sie kennzeichnen den Anfang und das Ende eines Anweisungsblocks. Und dessen Inneres schauen wir uns jetzt an.​

var scene = new BABYLON.Scene(engine);

​Schon wieder was mit var. Diesmal handelt es sich um eine Objekt-Variable namens scene. Frei übersetzt heißt das: Eine Spielszene in Babylon wird erzeugt. Als Nächstes geht es um die Erzeugung einer Kamera:​​​​

var camera = new BABYLON.FreeCamera
("camera1", new BABYLON.Vector3(0,5,-10), scene);

Die Kamera ist nötig, damit du im Spiel überhaupt etwas von der Szene siehst. Sie lässt sich natürlich auch frei bewegen, um durch die Spielszene zu wandern. Zum Start wird die Kamera auf den Mittelpunkt der Spielwelt justiert:​

camera.setTarget(BABYLON.Vector3.Zero());

Das erledigt die Funktion setTarget​. Und da ist noch eine Zeile, die sich mit der Kamera befasst:

camera.attachControl(canvas, true);

​Die Funktion attachControl()​ sorgt dafür, dass die Kamera steuerbar wird. Das merkst du daran, dass du mit der Maus und den Tasten etwas bewegen kannst.

	
Probiere das mal aus: Klicke in den rechten Bereich mit der Kugel und der Unterlage. Bewege die Maus mit gedrückter Maustaste. Dann drücke eine der Pfeiltasten.

	
Anschließend setze Kommentarzeichen (//) vor die attachControl-Zeile und wiederhole das Ganze. Diesmal dürfte das Verschieben der Szene nicht mehr klappen. Vergiss nicht, die Schrägstriche wieder zu entfernen.

Neben der Kamera ist natürlich das Licht wichtig, das für die Sichtbarkeit einer Szene zuständig ist:​

var light = new BABYLON.HemisphericLight
("light1", new BABYLON.Vector3(0,1,0), scene);

Nach dem »Anschalten« wird noch die Lichtstärke etwas heruntergeregelt (voreingestellt ist der Wert 1):​

light.intensity = 0.7;

Du kannst ja mal mit verschieden Werten experimentieren. So sieht es bei mir aus, wenn die Lichtintensität auf 1 eingestellt ist (links) oder wenn das Licht aus ist (rechts):

[image:]

	
Es gibt natürlich auch die Möglichkeit, dem Licht höhere Werte als 1 zu geben. Schau mal, wie es aussieht, wenn du light.intensity auf 3 oder mehr setzt.

Nun kommen einige Zeilen, die du schon kennst. Hier werden Spielfigur und Spielfeld erzeugt, auch das läuft über Objekt-Variablen:

var sphere = BABYLON.Mesh.CreateSphere
("sphere1", 16,2, scene);
sphere.position.y = 1;
var ground = BABYLON.Mesh.CreateGround
("ground1", 6,6,2, scene);

Ganz zum Schluss siehst du noch eine Zeile, die ziemlich unscheinbar aussieht:

return scene;

Mit der Anweisung return​ ist die Funktion createScene zu Ende. (Auf die genaue Bedeutung dieser letzten Zeile kommen wir später noch zurück.)

Nicht zu vergessen ist die abschließende geschweifte Klammer. (Das Semikolon ist an dieser Stelle nicht zwingend nötig.)

​Hier sind noch mal alle Schritte zusammen, die mindestens für eine Spielszene nötig sind – sozusagen als »Kochrezept«:

[image:]

In der letzten Anweisung steht das »XXX« für die jeweilige Figur, die man verwenden will (zum Beispiel Kugel, Quader, Person, Fahrzeug, Fläche). Davon hängt dann auch ab, welche Parameter dahinter gebraucht werden – deshalb ein weiteres »xxx«.

Objekte, Vektoren und mehr

Da ist einiges an Objekt-Variablen zusammengekommen. Ich fasse sie alle einmal in einer Tabelle zusammen: ​​

	
scene

	
Die Spielszene, auch Level genannt

	
camera

	
Die Kamera, um an jede Stelle der Spielwelt zu gelangen

	
light

	
Das Licht, das die gesamte Szene erleuchtet

	
sphere

	
Die Spielfigur, hier nur eine Kugel

	
ground

	
Das Spielfeld, hier ein einfacher Untergrund

Und damit hast du auch die Grundzutaten für fast jedes Spiel. In einem größeren Spiel gibt es unzählige Objekte, darunter natürlich auch viele, die sich bewegen (lassen).

[image:]​An dieser Stelle komme ich noch mal auf das new zurück. Wird einer Variablen eine Funktion (wie zum Beispiel CreateSphere()) zugewiesen, so geht das direkt, die Variable erhält das, was die Funktion zurückgibt.

[image:]

Wird einer Variablen ein Objekttyp (wie zum Beispiel FreeCamera) zugewiesen, muss das Objekt neu erzeugt werden. Daher wird hier ein new vorangestellt.

Hier bleiben wir erst einmal noch bei den Zutaten, die Babylon uns beim ersten Start anbietet. Doch schon im nächsten Kapitel basteln wir an unserer Spielwelt herum.

Natürlich reichen meine Erläuterungen nicht aus, um jedes einzelne Wort im Quelltext zu verstehen. Was mit dem großgeschriebenen BABYLON gemeint ist, dürfte klar sein, damit sprechen wir direkt die »Spiel-Maschine« (englisch Game Engine) an, mit der wir es hier zu tun haben.

[image:]Was hat es mit dem Wort Vector3​ auf sich, das immer wieder auftaucht?

Der Begriff Vektor​ stammt aus der Mathematik. Mit einem Vektor lässt sich ein Punkt in einem Koordinatensystem festlegen. Den Mittelpunkt unserer Spielwelt bezeichnen wir mit dem Vektor (0, 0, 0). Dabei stehen die einzelnen Nullen für die x-, y- und z-Koordinaten.

Der Name Vector3 drückt aus, dass wir es hier mit dreidimensionalen Vektoren zu tun haben. Natürlich gibt es in Babylon auch einen Vector2.

​Vector.Zero() übrigens bedeutet, dass alle Koordinaten eines Vektors auf 0 gesetzt werden.

Zu anderen Wörtern werde ich hier jetzt nichts weiter sagen, die meisten lernst du nach und nach in den folgenden Kapiteln kennen.

Widmen wir uns jetzt noch mal der Arbeitsumgebung von Babylon im Browser, eher wir diesen wieder verlassen. Bis jetzt haben wir oben in der Menüleiste nur die Schaltfläche Run benutzt. Doch die anderen Optionen solltest du auch noch kurz kennenlernen.

[image:]

Hier steht alles Wichtige in einer Tabelle:

	
Run

	
Das links stehende Programm starten und rechts anschauen, was passiert

	
Save

	
Eine Szene im »Playground« speichern, damit sie später wieder zur Verfügung steht. An die Adresse der Website wird dann eine Zeichenkette angehängt, sodass sie zum Beispiel so aussieht:

http://www.babylonjs-playground.com/#DNCK5

Unter einer solchen Adresse kannst du deinen Quelltext dann erreichen.

	
Get.zip

	
Die aktuelle Szene als komprimierte Datei mit dem Namen sample.zip auf deiner Festplatte speichern

	
New

	
Ein neues Projekt erzeugen

	
Clear

	
Den ganzen Quelltext löschen

	
Font size

	
Die Schriftgröße des Quelltextes einstellen

	
Safe Mode

	
Sicheren Modus einstellen: Wenn du deinen Quelltext geändert hast, wirst du gewarnt, ehe du die Seite verlässt.

	
Editor

	
Den Quelltext ausblenden, damit du die Szene im ganzen Browserfenster sehen kannst

	
Debug layer

	
Ein Hilfsmittel dazuschalten, mit dem du Fehlern besser nachspüren kannst

	
Basic scene

	
Wechseln auf verschiedene Szenen und Quelltexte, die Babylon zum Anschauen und Ausprobieren anbietet

	
Fullscreen

	
Vollbildanzeige auf dem Monitor

Ich empfehle dir, außer der hier kennengelernten Basic scene noch einige weitere Szenen durchzutesten, die Babylon dir anbietet. Dabei kannst du auch schon mal einen Blick auf die jeweiligen Quelltexte werfen, wenn du willst.

[image:]Mit dem Ausprobieren allerdings solltest du vorsichtig sein. Vor allem mit dem Ändern des Textes, den du da siehst. Vielleicht ist dir nach einem Klick auf Run eine ähnliche Meldung schon einmal begegnet:​​

[image:]

Compilation​ bedeutet, dass der Computer versucht hat, den Quelltext zu einem ausführbaren Programm zu machen (man könnte auch sagen: zu einer App, die läuft). Und Error heißt, dass er dabei auf einen Fehler gestoßen ist, der es ihm unmöglich macht, das Programm auszuführen.

In der Regel steht darunter ein Hinweis, wo der Fehler stecken könnte. Hier ist es eine vergessene Klammer. Oder du hast ein Wort falsch geschrieben? Oft fehlt auch ein anderes Zeichen (Punkt, Komma, Semikolon).

Finde den Fehler, korrigiere ihn, dann klicke erneut auf Run.

OEBPS/Images/1_Abbildung_d9e167.jpg

OEBPS/Images/1_Abbildung_d9e15.jpg
& Babylons - 3Dengine X+ —

o
[*| =7 a -

babyl%

DOWNLOAD GITHUB

Features Third-party Specifications GitHub Documentation

Forum Sandbox CYOS Uservoice Material editor

OEBPS/Images/1_Abbildung_d32e287.jpg

OEBPS/Images/_Abbildung_d6e3.jpg

OEBPS/Images/1_Abbildung_d46e70.jpg
Lvar=\Funktionsname\(); J

4

’ var Name = new Objektname|();

OEBPS/Images/1_Abbildung_d13e102.jpg
pd

OEBPS/Images/kids_achtung.png

OEBPS/Images/kids_hilfe.png

OEBPS/Images/8594.png

OEBPS/Images/_Abbildung_d9e22.jpg

OEBPS/Images/1_Abbildung_d13e53.jpg
var createScene = function () {
var scene = new BABYLON.Scene(engine);
var camera = neu BABYLON.FreeCamera(
camera. setTarget (BABYLON. Vector3.Zero());
camera.attachControl (canvas, true);

light.intensity = .7;
s sob ABLON o<k, CreateSphere(
//sphers pns)t)on y = 1;

VETEround = BRBVLON-TEaT, CreateGround(

return scene;

OEBPS/Images/1_Abbildung_d22e70.jpg
l CreateSphere (‘'spheref’, 16,@ scene); l

Breite, Tiefe (Lénge)—\ Durchmesser
[CreateGround ('ground1’, 2, scene); J

[CreateBox ('box1',@ scene);)

Breite = Lange = Hi)‘heT

OEBPS/Images/1_Abbildung_d22e21.jpg
Run Save Getzip New Clear J§ Font 12+

var createScene n () {
var scene = new BABYLON.Scene(engine);
var camera = new BABYLON.FreeCamera(
camera. setTarget (BABYLON. Vector3. Zero())
canera. attachControl (canvas, true)

light.intensity = 0.7;

PR RNV

var box = BABYLON. Mesh CreateBox(. 2, scene);

5

box.position.y =

var ground = BABYLON.Mesh. CreateGround(

return scene;

OEBPS/Images/1_Abbildung_d32e336.jpg
1. Spielszene erzeugen
var - = new BABYLON.Scene (engine) ;

2. Kamera "aufstellen"

var - = new BABYLON.FreeCamera ("cameral",

new BABYLON.Vector3(0,5,-10), scene);
camera.setTarget (BABYLON.Vector3.Zero());
camera.attachControl (canvas, true);

3. Licht "einschalten”

var - = new BABYLON.HemisphericLight ("lightl",
new BABYLON.Vector3(0,1,0), scene);

4. Objekte erzeugen

var _ = BABYLON.Mesh.CreateXXX (xxx, scene);

OEBPS/Images/1_Abbildung_d9e34.jpg
B3 Babylonjs Playground X +

babylonjs-playground.com *

—

Run Save Getzp New Clear

ion () {

var createScene = funct:

/ This creat i <
4 var scene = new BABYLON.Scene(engine);

/1

/ This tan the camera to scene origin

/I This attaches the camera to the canvas
camera.attachControl (canvas, true);

// This create!

ground" shape. Params: name, w

return scene;

OEBPS/Images/1_Abbildung_d46e257.jpg
Compilation error
Expected)’

OEBPS/Images/kids_tipp.png

OEBPS/Images/1_Abbildung_d32e174.jpg
ene = new BABYLON.Scene (eng

var camer W.Freecamera(camem

camera. setTarget(BABVLON Vector3.zero());
attachControl (canvas, true);

Safe Mode

~Editor

new BABYLON.Vector3(e|

nght intensity = 0.7;

16, 2, scene);

sphere.position.y = 1;

6, 6, 2, scene);

return scene;

OEBPS/Images/cover_D3589DEB_AABE3B35.jpg
mit JavaScript g
Script s lPRE

OEBPS/Images/1_Abbildung_d46e134.jpg
Run | Save Get.zip New Clear Font: 12~ [] safe Mode

ditor +Debug layer Basic scene v j Fullscreen

Run | Save Get.zip New Clear Font: 14 ~ [Safe Mode +Editor -Debug layer Basic scene v J Fullscreen

OEBPS/Images/1_Abbildung_d13e85.jpg

OEBPS/Images/1_Abbildung_d13e224.jpg
PRERVIEAPE

GREERRES

Var createscene = function () {
var scene = new BABYLON.Scene(engine); (60fps|
var camera = new BABYLON.FreeCamera(
camera. setTarget (BABYLON. Vector3.Zero());
camera. attachControl (canvas, true);

light.intensity = .7;
s sob BABYL QN Hech CreateSphere(
sphere.. pos)t)un x=-2;

sphere.position.y =

sphere.position.z =

Var ground = BABYLON. =" CreateGround(

return scene;

OEBPS/Images/1_Abbildung_d9e199.jpg
Run Save Getzip New Clear | Font:12~

1 var createScene = function () {
2 var scene = new BABYLON.Scene(engine);

3 var camera = neu BABYLON.FreeCamera(» new BABYLON.Vector3(g|
4 camera.setTarget(BABYLON.Vector3.Zero());

5 camera.attachControl (canvas, true);

6 i i , new BABYLON. Vect
7 light.intensity = .7;

8

9 BABYLON. Mesh. CreateSphere(. 16, 2, scene);

10 spher‘e pos)t)un y=-1

1n ground = BABYLON. Mesh. CreateGround(.6, 6, 2, scene);
12

13 return scene;

OEBPS/Images/1_Abbildung_d13e196.jpg

OEBPS/Images/10_AADRM.jpg
mitp

Hinweis des Verlages zum Urheberrecht und
Digitalen Rechtemanagement (DRM)

Der Verlag raumt lhnen mit dem Kauf des ebooks das
Recht ein, die Inhalte im Rahmen des geltenden
Urheberrechts zu nutzen. Dieses Werk, einschlieBlich
aller seiner Teile, ist urheberrechtlich geschiitzt. Jede
Verwertung auBerhalb der engen Grenzen des Urhe-
berrechtsgesetzes ist ohne Zustimmung des Verlages
unzuldssig und strafbar. Dies gilt insbesondere fiir Ver-
vielféltigungen, Ubersetzungen, Mikroverfilmungen und
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Der Verlag schiitzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement.
Bei Kauf im Webshop des Verlages werden die ebooks
mit einem nicht sichtbaren digitalen Wasserzeichen
individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signa-
tur durch die Shopbetreiber. Angaben zu diesem DRM
finden Sie auf den Seiten der jeweiligen Anbieter.

OEBPS/Images/mitp.png
mitp

OEBPS/Images/1_Abbildung_d32e182.jpg
var [Name = function () { -

AnweisungsBlock]

4

by

|

=l
TEndmarke

Anfangsmarke |

