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PREFACE

The great advancements in the design of microchips, digital systems, and computer hardware over the past 40 years have given birth to digital signal processing (DSP) which has grown over the years into a ubiquitous, multifaceted, and indispensable subject of study. As such, DSP has been applied in most disciplines ranging from engineering to economics and from astronomy to molecular biology. Consequently, it would take a multivolume encyclopedia to cover all the facets, aspects, and ramifications of DSP, and such a treatise would require many authors. This book focuses instead on the fundamentals of DSP, namely, on the representation of signals by mathematical models and on the processing of signals by discrete-time systems. Various types of processing are possible for signals, but the processing of interest in this volume is almost always linear. It typically involves reshaping, transforming, or manipulating the frequency spectrum of the signal of interest.

The author considers the processing of continuous- and discrete-time signals to be different facets of the same subject of study without a clear demarcation where the processing of continuous-time signals by analog systems ends, and the processing of discrete-time signals by digital systems begins. Discrete-time signals sometimes exist as distinct entities that are not derived from or related to corresponding continuous-time signals. The processing of such a signal would result in a transformed discrete-time signal, which would be, presumably, an enhanced, or in some way, more desirable version of the original signal. Obviously, reference to an underlying continuous time signal would be irrelevant in such a case. However, more often than not discrete-time signals are derived from corresponding continuous-time signals and, as a result, they inherit the spectral characteristics of the latter. Discrete-time signals of this type are often processed by digital systems, and after that, they are converted back to continuous-time signals. A case in point can be found in the recording industry where music is first sampled to generate a discrete-time signal, which is then recorded on a disc. When the disc is played back, the discrete-time signal is converted into a continuous-time signal. In order to preserve the spectrum of the underlying continuous-time signal, e.g., that delightful piece of music, through this series of signal manipulations, special attention must be paid to the spectral relationships that exist between continuous- and discrete-time signals.

In the past, signal processing appeared in various concepts in more traditional courses like telecommunications, control, circuit theory, and in instrumentation. The signal processing done was analog, and discrete components were used to achieve the various objectives. However, in the later part of the 20th century we saw the introduction of computers and their fast and tremendous growth. In the late 1960s and early 1970s, a number of researchers resorted to modeling and simulation of various concepts in their research endeavors, using digital computers, in order to determine performance and optimize their designs. It is these endeavors that led to the development of many digital signal processing algorithms which we know today. With the rapid growth of computing power in terms of speed and memory capacity, a number of researchers wanted to obtain their results from near real-time to real time. This saw the development of processors and I/O devices that were dedicated to real-time data processing; though initially at lower speeds, they are currently capable of processing high speed data including video signals. The many algorithms that were developed in the research activities, combined with software and hardware that was developed for processing by industry, ushered in a new course into the university curriculum – Digital Signal Processing.

For many years, the course titled Digital Signal Processing was offered as a postgraduate course with students required to have a background in telecommunications (spectral analysis), circuit theory and of course mathematics. The course provided the foundation to do more advanced research in the field. Though this was useful, it did not provide all the necessary background that many industries required; to write efficient programs and to develop applications. In many institutions a simplified version of the postgraduate course has filtered into the undergraduate programs. This book is an attempt to bridge the gap. It can serve as a text for undergraduate or graduate courses and various scenarios are possible depending on the background preparation of the class and the curriculum of the institution.


CHAPTER 1

INTRODUCTION TO DIGITAL SIGNAL PROCESSING (DSP)

1.1 INTRODUCTION




Digital signal processing (DSP) is an area of science and technology that has developed rapidly over the past few decades. The techniques and applications of DSP are as old as Newton and Gauss and as new as digital computers and integrated circuits (ICs). The rapid development of DSP is a result of the significant advances in digital computer technology and IC fabrication.

DSP is concerned with the representation of signals by sequences of numbers or symbols and the processing of these sequences. Processing means the modification of sequences into a form that is in some sense more desirable.

In another words, DSP is a mathematical manipulation of discrete-time signals to get more desirable properties of the signal, such as less noise or distortion.

The classical numerical analysis formulas such as those used for interpolation, differentiation, and integration are also DSP algorithms.

DSP finds application in various fields such as speech communication, data communication, image processing, radar engineering, seismology, sonar engineering, biomedical engineering, acoustics, nuclear science, and many others.

DSP can be applied to one-dimensional signals as well as multidimensional signals. Example of the one-dimensional signal is speech and an example of the two-dimensional signal is an image. Many picture processing applications require the use of two-dimensional signal processing techniques. Two-dimensional signal processing includes X-ray enhancement, analysis of aerial photographs (these photographs are necessary for detection of a forest fire or crop damage), analysis of satellite weather photographs, etc. Analysis of seismic data is required in oil exploration, earthquake measurements, and monitoring of nuclear tests. These utilize multidimensional signal processing techniques. The impact of DSP techniques will undoubtedly promote revolutionary advances in many fields of application. A notable example is telephony where digital techniques dramatically increased economy and flexibility in implementing switching and transmission systems.



1.2 APPLICATIONS OF DIGITAL SIGNAL PROCESSING




There are a variety of application areas of DSP because of the availability of high-resolution spectral analysis. It requires high-speed processor to implement the Fast Fourier transform (FFT). Some of these areas are

1.Speech processing,

2.Image processing,

3.Radar signal processing,

4.Digital communications,

5.Spectral analysis, and

6.Sonar signal processing.

Many of the above applications are discussed in Chapter 13.

Some of the other applications of DSP are in

a.Transmission lines,

b.Advanced optical fiber communication,

c.Analysis of sound and vibration signals,

d.Implementation of speech recognition algorithms,

e.Very Large-Scale Integration technology,

f.Telecommunication networks,

g.Microprocessor systems,

h.Satellite communications,

i.Telephony transmission,

j.Aviation,

k.Astronomy,

l.Industrial noise control, and

m.New DSP algorithms and many more.

Speech Processing: Speech is a one-dimensional signal. Digital processing of speech is applied to a wide range of speech problems such as speech spectrum analysis and channel vocoders (voice coders). DSP is applied to speech coding, speech enhancement, speech analysis and synthesis, speech recognition, and speaker recognition.

Image Processing: Any two-dimensional pattern is called an image. Digital processing of images requires two-dimensional DSP tools such as discrete Fourier transform, fast Fourier transform (FFT) algorithms, and z-transforms. Processing of electrical signals extracted from images by digital techniques includes image formation and recording, image compression, image restoration, image reconstruction, and image enhancement.

Radar Signal Processing: Radar stands for “radio detection and ranging.” Improvement in signal processing is possible by digital technology. The development of DSP has led to greater sophistication of radar tracking algorithms. Radar systems consist of transmitting–receiving antenna, digital processing system, and control unit.

Digital Communications: Application of DSP in digital communication especially telecommunications comprises digital transmission using PCM, digital switching using time-division multiplexing, echo control, and digital tape recorders. DSP in telecommunication systems is found to be cost-effective due to the availability of medium- and large-scale digital ICs. These ICs have desirable properties such as small size, low cost, low power, immunity to noise, and reliability.

Spectral Analysis: Frequency-domain analysis is easily and effectively possible in DSP using fast Fourier transform (FFT) algorithms. These algorithms reduce computational complexity and also reduce the computational time.

Sonar Signal Processing: Sonar stands for “sound navigation and ranging.” Sonar is used to determine the range, velocity, and direction of targets that are remote from the observer. Sonar uses sound waves at lower frequencies to detect objects underwater.

DSP can be used to process sonar signals, for the purpose of navigation and ranging.



1.3 SIGNALS




A signal can be defined as a function of one or more independent variable(s) which conveys information. Independent variables may be time, space, etc., and depend on the type of signals.

Examples of signals are speech signals, pictures, electrocardiogram (ECG) signals, etc. A speech signal is represented mathematically as a function of time and a picture signal is represented as a brightness function of two spatial variables.

[image: ]

FIGURE 1.1  Speech signals.



1.4 CLASSIFICATION OF SIGNALS




Any investigation in signal processing is started with a classification of signals involved in the specific application. Signals can be classified in the following classes:

1.Multichannel and multidimensional signals,

2.Continuous-time and discrete-time signals,

3.Analog and digital signals,

4.Deterministic and random signals,

5.Energy and power signals, and

6.Periodic and non-periodic signals.

Now, we will discuss these in detail in subsequent sections.



1.4.1 Multichannel and Multidimensional Signals


Multichannel Signals: Signals which are generated by multiple sources or multiple sensors are called multichannel signals. These signals are represented by a vector:

[image: ].

The signal represents a 3-channel signal. In electrocardiography, 3-lead and 12-lead electrocardiographs are often used in practice, which results in 3-channel and 12-channel signals, respectively.

Multidimensional Signal: A signal is called a multidimensional signal if it is a function of M independent variables. For example, Speech signal is a one-dimensional signal because the amplitude of the signal depends upon a single independent variable, namely, time. TV Picture Signal: A B/W picture signal is an example of a two-dimensional signal because the brightness of the signal at each point is a function of two spatial independent variables, namely, x and y. Variables x and y are width and height of the picture element.

A colored picture signal is an example of three-dimensional signal because brightness of the signal at each point is a function of three independent variables, namely, x, y, and time (t).



1.4.2 Continuous-time and Discrete-time Signals


Continuous-time Signals: A signal that varies continuously with time is called a continuous-time signal. These are defined for every value of the independent variable, namely, time. For example, speech signal and temperature of the room are continuous-time signals. The continuous-time signal is shown in Figure 1.2.

[image: ]

FIGURE 1.2  Continuous-time signal.

Discrete-time Signal: Discrete-time signals are signals which are defined at discrete times (Figure 1.3). These are represented by sequences of numbers. For example, the rail traffic signal is a discrete-time signal.

[image: ]

FIGURE 1.3  Discrete-time signal.

Discrete-time signals can be recovered by periodic sampling of continuous-time signals. Figure 1.3 illustrates the discrete-time signal.



1.4.3 Analog and Digital Signals


Analog Signals: Analog signals are signals of which both the dependent variable and the independent variable(s) are continuous in nature. Analog signals arise when a physical waveform is converted into an electrical signal. This conversion is performed by means of a transducer. For example, telephone speech signals, TV signals, etc., are very common types of the analog signal.

Telephone Speech Signals. A telephone message comprises speech sounds having vowels and consonants. These sounds produce an audio signal. These sound waves are converted into analog electrical signals by means of a transducer (microphone). The transducer is a device that converts non-electrical quantities into electrical signals, for example, a microphone. Continuous-amplitude, continuous-time signals are called analog signals. The Analog signal is shown in Figure 1.1.

Digital Signals: Digital signals are signals of which both the dependent variable and the independent variables are discrete in nature. Digital signals comprise pulses occurring at discrete intervals of time. Telegraph and teleprinter signals are the examples of digital signals. Figure 1.4 illustrates a telegraph signal.

[image: ]

FIGURE 1.4  Telegraph signal (Digital signal).



1.4.4 Deterministic and Random Signals


Deterministic Signals. A deterministic signal is one that has no uncertainty with respect to its value at any value of an independent variable, namely, time. For example, the rectangular pulse given by Eq. (1.1) is a deterministic signal. Figures 1.5 and. 1.6 illustrate rectangular pulse and cosine signal, respectively; both are an example of the deterministic signal.

[image: ]

FIGURE 1.5  Rectangular pulse.

[image: ]

FIGURE 1.6  Cosine signal.

[image: ].(1.1)

Another example of the deterministic signal is sinusoidal signals such as sine waves and cosine waves as given in Eq. (1.2):

s(t) = A cos wt, − ∞ < t < ∞.(1.2)

Random signal: A random signal is a signal which has some degree of uncertainty with respect to its value at any value of independent variable namely, time. For example, thermal agitation noise in conductors is a random signal.

[image: ]

FIGURE 1.7  Random signal.



1.4.5 Energy and Power Signals


Energy signal: A signal is called an energy signal if and only if its total energy is finite. For example, the rectangular pulse is an energy signal.

Power signal: A signal is called a power signal if and only if its average power is finite. For example, sinusoidal waves are power signals.

The energy signals have zero average power and power signals have infinite energy. It means that both signals are mutually exclusive.



1.4.6 Periodic and Non-periodic Signals


Periodic Signal: A signal which repeats its waveform after a fixed period of time is called as a periodic signal. This fixed time is called Time period (T0).

In other words, a signal which satisfies the condition s(t) = s(t + T0) for all t is called a periodic signal. For example, sinusoidal signals are the example of a periodic signal.

Non-periodic Signal: A signal which does not satisfy the above condition is called non-periodic signal.

Unit rectangular pulse is an example of a non-periodic signal.

Usually, periodic signals and random signals are power signals and deterministic signals, and non-periodic signals are energy signals.



1.5 SIGNAL PROCESSING SYSTEMS




A system responds to particular signals by producing other signals having some desired behavior.

Signal processing systems are of two types depending on the type of signal to be processed.

1.Continuous-time systems.

2.Discrete-time systems.



1.5.1 Continuous-time Systems


Continuous-time systems are the systems for which both input and output are continuous-time signals. H(s) is the transfer function of a continuous-time system. Figure 1.8 illustrates the block diagram of a continuous-time system.

[image: ]

FIGURE 1.8  Block diagram of continuous-time system.

An example of continuous-time system is an analog filter which is used to reduce the noise corrupting a message signal.



1.5.2 Discrete-time Systems


Discrete-time systems are systems for which both the input and output are discrete-time signals. H(z) is the transfer function of a discrete-time system. Figure 1.9 illustrates the block diagram of a discrete-time system.

[image: ]

FIGURE 1.9  Block diagram of discrete-time system.

An example of a discrete-time system is a digital computer.



1.6 SIGNAL PROCESSING




Changing the basic nature of signal to obtain the desired shaping of the input signal is called signal processing. Signal processing is concerned with the representation, transformation, and manipulation of signals and the information they contain.

Signal processing is of two types depending upon the type of signal to be processed.

1.Analog signal processing (ASP), and

2.Digital signal processing (DSP).



1.6.1 Analog Signal Processing


In ASP, continuous-amplitude continuous-time signals are processed. Various types of analog signals are processed through low-pass filters, high-pass filters, band-pass filters, and band-reject filters to obtain the desired shaping of the input signal. Another example of ASP is the production of the modulated carrier using a high-frequency oscillator, and the modulating audio signal and a modulator. Figure 1.10 illustrates the block diagram of an ASP system.

[image: ]

FIGURE 1.10  Block diagram of ASP system.



1.6.2 Digital Signal Processing


Digital signal processing (DSP) is a numerical processing of signals on a digital computer or some other data processing machine. Figure 1.11 illustrates the block diagram of DSP system.

[image: ]

FIGURE 1.11  Block diagram of DSP system.

A digital system such as digital computer takes input signal in discrete-time sequence form and converts it in discrete-time output sequence.



1.7 ADVANTAGES OF DIGITAL SIGNAL PROCESSING OVER ANALOG SIGNAL PROCESSING




Digital signal processing has the following advantages:

1.Digital signal processing operations can be changed by changing the program in a digital programmable system, that is, these are flexible systems.

2.Better control of accuracy in digital systems is compared to analog systems.

3.Digital signals are easily stored on magnetic media such as magnetic tape without loss of quality of reproduction of the signal.

4.Digital signals can be processed offline, that is, these are easily transported.

5.Sophisticated signal processing algorithms can be implemented by DSP method.

6.Digital circuits are less sensitive to tolerances of component values.

7.Digital systems are independent of temperature, aging, and other external parameters.

8.Digital circuits can be reproduced easily in large quantities at a comparatively lower cost.

9.Cost of processing per signal in DSP is reduced by time-sharing of given processor among a number of signals.

10.Processor characteristics during processing, as in adaptive filters can be easily adjusted in digital implementation.

11.Digital system can be cascaded without any loading problems.



1.8 ELEMENTS OF DIGITAL SIGNAL PROCESSING SYSTEM




A majority of the signals encountered in science are analog in nature. In analog signals, both the dependent variable and independent variable(s) are continuous. Such signals may be processed directly by analog systems (i.e., analog filters) for the purpose of changing their characteristics or extracting some desired information.

Analog signals can also be processed digitally using DSP techniques. To process analog signals digitally, an interface between the analog signal and digital processor is needed. This interface is termed an analog-to-digital converter. The output of the analog-to-digital converter is a digital signal. This digital signal is appropriate for the digital processor.

The digital signal processor may be a large programmable digital computer or a small microprocessor.

In some applications such as in speech communication, we require digital signal in analog form at the receiver end. Here, we need another interface, called digital-to-analog converter. Figure 1.12 illustrates the block diagram of a DSP system.

[image: ]

FIGURE 1.12  Block diagram of a digital signal processing system.



EXERCISES




1.Define a signal. Give some examples of signals.

2. Give the classification of signals.

3. What is signal processing? Differentiate between ASP and DSP.

4. What are the basic elements of the DSP system?

5. What are the advantages of DSP over ASP?

6. Differentiate multichannel and multidimensional signals. Give some examples of these signals.

7. What is the importance of DSP in various fields of engineering and technology? Give a brief account of its applications.





CHAPTER 2

REVIEW OF DISCRETE—TIME SIGNALS AND SYSTEMS

2.1 INTRODUCTION




In Chapter 1, we have introduced the concept of digital signal processing. In this chapter, we will study discrete-time signals and systems. Discrete-time signals are obtained either by periodical sampling of continuous-time signals or by a recursion formula. Discrete-time signals are represented by discrete-time sequences.

If both input and output for a system are discrete, then this system is termed a discrete-time system. An example of a discrete-time system is a digital computer.

In this chapter, we first study discrete-time signals: various ways of representing discrete-time signals, different methods of obtaining discrete-time signals, elementary discrete-time signals, and manipulation of discrete-time signals.

After studying discrete-time signals, we will study discrete-time systems and their classification. In this chapter, we will also study LTI discrete-time systems, convolution and correlation operations for LTI discrete-time systems, inverse systems, and deconvolution operations.

Finally, we will study sampling of continuous-time signals, Nyquist rate, sampling theorem, aliasing, and reconstruction of the sampled version of continuous-time signals.



2.2 DISCRETE-TIME SIGNALS




Discrete-time signals are defined for discrete values of an independent variable (time). Discrete-time signal is not defined at instants between two successive samples.

Discrete-time signals are represented in two ways:

s(n), N1 ≤ n ≤ N2(2.1)

where N1 and N2 are the first and the last sample points, respectively, in a given discrete-time signal.

It represents non-uniformly spaced samples, and these are shown in Figure 2.1(a):

s(nTs), N1 ≤ n ≤ N2(2.2)

It represents uniformly spaced samples, and these are shown in Figure 2.1(b).

[image: ]

FIGURE 2.1  (a) Discrete-time signal showing non-uniformly spaced samples (there is no sampling period Ts) and (b) Discrete-time signal showing uniformly spaced samples.



2.2.1 Representation of Discrete-Time Signals


Discrete-time signal sequences can be represented in the following four ways:

1.Graphical Representation

2.Functional Representation

3.Tabular Representation

4.Sequence Representation.

Graphical Representation: Discrete-time signals can be represented by a graph when the signal is defined for every integer value of n for − ∞ < n < ∞. This is illustrated in Figure 2.2.

[image: ]

FIGURE 2.2  Graphical representation of a discrete-time signal.

Functional Representation: Discrete-time signals can be represented functionally as given below:

[image: ](2.3)

Tabular Representation: Discrete-time signals can also be represented by a table as follows:

[image: ]

Sequence Representation: An infinite-duration (−∞ ≤ n ≤ ∞) signal with the time as origin (n = 0) and indicated by the symbol ↑.

[image: ](2.4)



2.2.2 Methods of Obtaining a Signal Sequence


There are three methods of obtaining a sequence:

1.To generate a set of numbers and order them into sequence form,

Example: s(n) = n, 0 ≤ n ≤ N − 1(2.5)

2.A sequence is generated by some recursion relation:

Example: s(n) = [image: ]s(n − 1)(2.6)

with initial condition s(0) = 1

generates a sequence

s(n) = [image: ], 0 ≤ n ≤ ∞(2.7)

3.A sequence is also obtained by periodic sampling of continuous-time signals. Periodic measurement of continuous-time signals is called periodic sampling.

Discrete-time sequence, s(nTs) = [image: ] −∞ < n < ∞(2.8)

where Ts is the sampling interval and s(t) is a continuous-time signal.



2.2.3 Some Elementary Discrete-Time Signals


There are some basic signals which play an important role in the study of discrete-time signals and systems.

These signals are given as follows:

1.unit-sample (impulse) Sequence, δ(n),

2.unit-step sequence, u(n),

3.unit-ramp sequence, r(n),

4.exponential sequence, and

5.sinusoidal sequence.

Unit-Sample Sequence: Figure 2.3 shows a unit-sample sequence, it is denoted by δ(n) and is defined as follows:

[image: ](2.9)

[image: ]

FIGURE 2.3  Graphical representation δ(n).

Unit-Step Sequence: It is denoted by u(n) and is defined as follows:

[image: ](2.10)

Figure 2.4 illustrates the graphical representation of the unit-step sequence.

[image: ]

FIGURE 2.4  Graphical representation of u(n).

Unit-Ramp Sequence: It is denoted by r(n) and is defined as follows:

[image: ](2.11)

Figure 2.5 shows the graphical representation of the unit-ramp sequence.

[image: ]

FIGURE 2.5  Graphical representation of r(n).

Exponential Sequence: It is defined as

s(n) = (A)n for all values of n(2.12)

If parameter A is real, then s(n) is a real sequence. Figure 2.6 illustrates a graphical representation of the exponential sequence.

[image: ]

FIGURE 2.6  Graphical representation of exponential sequences.

Sinusoidal Sequences: There are two types of sinusoidal sequences, one is called the sine sequence and the other is called the cosine sequence.

Sine sequence is defined as follows:

s(n) = sin ω0n, for all n

and cosine sequence is defined as follows:

s(n) = cos ω0n, for all n

Figure 2.7 illustrates the graphical representation of cosine type sinusoidal sequence.

[image: ]

FIGURE 2.7  Graphical representation of cosine type sinusoidal sequence.



2.2.4 Manipulation of Discrete-Time Signals


Here, we will study some simple modifications in independent variable (time) and dependent variable (amplitude of signal). Such modification is required in DSP techniques.

Transformation of the Independent Variable (time): Modification of time can be done in three ways:

1.time shifting,

2.folding, and

3.time scaling.

Time Shifting: A signal can be shifted in time by replacing n by n − k, where k is integer and n is a discrete-time index.

If k is a positive integer, the result of time shifting is a delay of signal by k units of time.

If k is a negative integer, the result of time shifting is the advance of signal by |k| units of time. Figure 2.8 illustrates a graphical representation of time shifting of a discrete-time sequence s(n).

[image: ]

FIGURE 2.8  Graphical representation of (a) original sequence, s(n) (b) delayed sequence by one unit in time, s(n − 1) (c) advanced sequence by one unit in time, s(n + 1) (d) folded sequence of above original signal, s(n), s(−n) (e) shifted version of folded sequence s(−n), s(−n + 1).

Folding: If independent variable (time) n is replaced by −n, then signal folding (mirror image) about the time origin (n = 0) will take place.

Operations of folding and time delaying (or advancing) a signal are not commutative. Figure 2.8(d) illustrates the graphical representation of folding operation of original sequence s(n).

Time scaling: Time scaling is performed by replacing independent variable n by mn, where m is an integer. Time scaling is also called down sampling.

[image: ]

[image: ]

FIGURE 2.9  Graphical representation of (a) original sequence, s(n) (b) time-scaled version of s(n) by factor 2, y(n) = s(2n) (c) Amplitude-scaled version s(n) by factor 2, y(n) = 2s(n).

Transformation of the Dependent Variable (Signal Amplitude): Modification of signal amplitude can be done in three ways:

1.Addition of Sequences.

2.Multiplication of Sequences.

3.Amplitude Scaling of Sequence.

Addition of Sequences: The sum of two discrete-time sequences is given by

y(n) = s1(n) + s2(n), −∞ < n < ∞(2.13)

Addition of two sequences is shown in Figure 2.10(a).

Multiplication of Sequences: The product of two discrete-time sequences is given by

y(n) = s1 (n), s2(n), −∞ < n < ∞(2.14)

Multiplication of two sequences is shown in Figure 2.10(b).

[image: ]

FIGURE 2.10  Graphical representation of (a) sum of two sequences, s(n) = s1(n) + s2(n), (b) multiplication of two sequences, s(n) ⋅ s1(n) ⋅ s2(n).

Amplitude Scaling of Sequence: Amplitude scaling of a signal by a constant B is accomplished by multiplying the value of every signal sample by B.

y(n) = Bs(n), −∞ < n < ∞(2.15)

where B is real constant quantity.



2.3 DISCRETE-TIME SYSTEMS




A discrete-time system is a device or an algorithm in which both the input and the output are discrete-time signals. A block diagram representation of a discrete-time system is shown in Figure 2.11.

[image: ]

FIGURE 2.11  Block diagram representation of discrete-time system.

Output of a discrete-time system is given by

y(n) = Ts(n), where T is an operator

Examples of discrete-time system are

[image: ]

Basic Building Blocks of a Discrete-time System: A discrete-time system (digital filter) consists of an interconnection of three simple building blocks or elements: Adders, multipliers, and delay elements. Adder is also called as a summing element. It performs addition of two or more discrete-time signals. The multiplier performs multiplication of a discrete-time signal with a scalar quantity. The adder and multiplier are conceptually simple components which are readily implemented in the arithmetic logic unit of a computer. Delay elements allow access to future and past values in the discrete-time signal. Delays are two types: positive and negative. A positive delay is simply called delay and it is implemented by a memory register which stores the current values of a discrete-time signal for one sample interval. These stored samples are available for future calculations. Positive delay is indicated by [image: ].

A negative delay is also called as advance. It is used to look ahead to the next value in the discrete-time signal and is indicated by [image: ].

Typical advances are used for non-real-time applications such as image processing. Advances in discrete-time signals simplify the analysis of discrete-time systems (digital filters). In real-time applications, advances are not permitted.

[image: ]

FIGURE 2.12  Illustration of basic building blocks or elements of a discrete-time system (digital filter) (a) adder or summing element (b) multiplier or multiplication element (c) positive delay element or simply "delay" (d) negative delay element or "advance."

A discrete-time system involves selecting and interconnecting a finite number of building block and determination of mutiplier coefficients. These three building blocks are shown in Figure 2.12.

We can easily understand the meaning of these building blocks (or elements) of a discrete-time systems or digital filters by an example.

Three sample averager is an example of a digital filter and its input–output relationship is given by the following difference equation:

y(n) = [image: ] [s(n − 1) + s(n) + s(n + 1)]

It means output of a three-sample averager is equal to the average the previous, present, and future input values. It is a non-recursive digital filter. The advance serves to access the next value of discrete-time sequence while the delay stores the previous value.

Its network structure is shown in Figure 2.13.

[image: ]

FIGURE 2.13  Three-sample averager. (It is an example of non-recursive digital filter).



2.3.1 Classification of Discrete-time Systems


Discrete-time systems can be classified in five groups:

1.Memoryless systems and systems with memory.

2.Time-invariant and time-varying systems.

3.Linear systems and non-linear systems.

4.Casual systems and non-casual systems.

5.Stable system and unstable systems.

We now discuss these groups one by one.

Memoryless Systems and Systems with Memory: Memoryless systems are also called static systems. A discrete-time system is called memoryless system if its output at any instant n depends at most on the input at the same instant, but not on past or future values of input samples.

[image: ] Both systems are static systems

On the other hand, output of a system which depends on past or future samples of the input signal is called system with memory. It is also called dynamic system. These systems require memory for storage for future and past samples of input signal. For example, three-sample averager system,

y(n) = [image: ] [s(n − 1) + s(n) + s(n + 1)]

is a dynamic system.

Time-Invariant and Time-varying Systems: A system is called time invariant if its input–output characteristics do not change with time.

If the response to a delayed input and the delayed response are equal, then the system is called time-invariant system.

The response to a delayed input is denoted by y(n, k) and the delayed response is denoted as y(n − k). If both responses, y(n, k) and y(n − k) are equal, then the system is called time-invariant system. If both responses are not equal, then the system is called time-varying system. For example,

Differentiator

y(n) = s(n) − s(n − 1) is a time-invariant system.

Time multiplier

y(n) = ns(n) is a time-varying system.

EXAMPLE 2.1

Check the system for time invariance which is characterized by the difference equation:

y(n) = ns(n).

Solution: The response to a delayed input is

y(n, k) = ns(n − k)

The delayed response is

y(n − k) = (n − k) s(n − k)

Both responses are not equal:

y(n, k) ≠ y(n − k)

Therefore, the given discrete-time system y(n) = ns(n) is not time invariant. It is a time-varying system.

EXAMPLE 2.2

Check the system for time invariance which is characterized by difference equation:

y(n) = s(n) − s(n − 1).

SOLUTION:

The response to a delayed input is

y(n, k) = s(n − k) − s(n − k − 1)

The delayed response is

y(n − k) = s(n − k) − s(n − k − 1)

Both responses are equal:

y(n, k) = y(n − k)

Above system is time invariant.

Linear Systems and Non-Linear Systems: A system which satisfies superposition principle is called a linear system. A system which does not satisfy superposition principle is termed as a non-linear system.

Superposition principle is stated as follows:


Response of the system to a weighted sum of input signals is equal to the corresponding weighted sum of responses of the system to each of the individual input signals.



A system is linear if and only if

T [As1(n) + Bs2(n)] = AT [s1(n)] + BT [s2(n)]

where s1(n) and s2(n) are arbitrary input sequences and A and B are arbitrary constants.

[image: ]

This is a non-linear system. This will be further clarified in Ex. 2.3.

EXAMPLE 2.3

Check the systems for linearity

i.y(n) = ns(n)

ii.y(n) = αs(n) + β, where α and β are constants.

Solution:

i.The corresponding outputs for two discrete-time sequences s1(n) and s2(n) are

y1(n) = ns1(n)

y2(n) = ns2(n)

A linear combination of two input sequences results in the output

[image: ]

A linear combination of the two outputs results in the output

Ay1(n) + By2(n) = Ans1(n) + Bns2(n)(2)

Since both outputs are equal, the system is linear.

ii.The corresponding outputs for two discrete-time sequences s1(n) and s2(n) are

y1(n) = αs1(n) + β

y2(n) = αs2(n) + β

A linear combination of s1(n) and s2(n) results in the output

[image: ]

Linear combination of the two outputs results in the output

[image: ]

The system is non-linear.

Causal Systems and Non-Causal Systems: A system in which present output depends only on present and past inputs is called causal system.

A system is called non-causal system if its present output depends on future values of the input. Most of the real-time physical systems are causal systems, and processing of images and geophysical signals are the examples of non-causal systems.

Differentiator, y(n) = s(n) − s(n − 1) is a causal system because its present output y(n) depends only on present input s(n) and past input s(n − 1), and system y(n) = s(n) + 3s(n + 1) is a non-causal system because its present output y(n) also depends on future input s(n + 1).

Stable Systems and Unstable Systems: An initially relaxed system is said to be bounded input bounded output (BIBO) stable if and only if every bounded input produces a bounded output.

Bounded input

|s(n)| ≥ Ms < ∞ ⇒ Bounded Input

|s(n)| ≥ My < ∞ ⇒ Bounded Output



2.3.2 Linear-Time-Invariant (LTI) Systems


A system which satisfies the condition of linearity and time invariance is called a linear time-invariant (LTI) system.

Response of a discrete time LTI system is computed by convolution sum. Discrete time LTI systems are described by constant coefficient difference equations.

In discrete time LTI systems category, we will study the following topics:

1.FIR and IIR discrete-time LTI systems.

2.Recursive and Non-recursive discrete-time systems.

3.Causal LTI systems.

4.Impulse response of LTI systems.

5.Stability of LTI systems.

6.Discrete-time systems described by difference equations.

FIR and IIR LTI Discrete-time Systems: LTI systems are classified in two groups on the basis of number of samples taken in computing its unit-sample (impulse) response.

a.Finite-Duration Impulse Response (FIR) LTI systems.

b.Infinite-Duration Impulse Response (IIR) LTI systems.

If impulse response of a LTI system is computed for a finite number of sample points [Finite duration], then such systems are called FIR systems.

FIR LTI discrete-time systems can be realized either recursively or non-recursively.

On the other hand, if impulse response of a LTI system is computed for an infinite number of sample points [Infinite duration], then the system is called IIR system.

IIR systems can only be realized by recursive method.

Recursive and Non-Recursive Discrete Time Systems: A system of which present output y(n) at time n depends on any number of past output values y(n − 1), y(n − 2) ... is called a recursive discrete-time system.

The output of a causal recursive system is given by

	y(n) = f [y(n − 1), y(n − 2), ... y(n − N), s(n), s(n − 1) ... ](2.16)

where y(n), y(n − 1) ... are outputs and s(n), s(n − 1) ... are inputs.

A first-order system:

y(n) = αy(n − 1) + s(n) is an example of recursive system.

A system of which present output y(n) at time n depends only on present and past values of input signal, s(n), s(n − 1), s(n − 2), ... is called non-recursive system.

The output of a causal non-recursive system is given by

y(n) = f [s(n), s(n − 1), s(s − 2), ...](2.17)

A differentiator, y(n) − s(n) − s(n − 1), is an example of non-recursive system.

Causal LTI System: Causal system is a system of which output depends only on present and past inputs but does not depend on future input sample values.

Causality of LTI systems can be translated into a condition on the impulse responses, h(n), or in other words, causality can be determined in terms of impulse response h(n).

If impulse response is zero for negative values of n, then the system is called a causal LTI system. The convolution sum formula for causal LTI system may be modified and given as follows:

y(n) = [image: ](2.18)

Response of a causal system to a causal input sequence is also a causal sequence.

If a sequence is zero for a negative value of n, then the sequence is called as causal sequence.

EXAMPLE 2.4

Determine the unit-step response of the LTI system with unit-sample response, h(n) = Anu(n), |A| < 1.

Solution: For computing the unit-step response, we put input sequence, s(n) equal to unit-step sequence, u(n).

u(n) is a causal sequence, and the system is also causal.

From convolution sum formula. We learn more about convolution given in Art. 2.3.

[image: ]

Impulse Response of LTI Systems: The value of the response or output of a LTI system when the input is equal to unit-sample (impulse) sequence, d(n) is called impulse response, h(n). It is also called unit-sample response.

LTI systems are completely characterized by their impulse response.

Stability of LTI Systems: Stability is an important property for the practical implementation of a system.

A LTI system is bounded input bounded output (BIBO) stable if its impulse response, h(n), is absolutely summable. Absolutely summable means summation of sequence h(n) is possible and sequence h(n) is a converging sequence.

Stability of a LTI system in terms of impulse response, h(n), is given by

Sh ≡ [image: ](2.19)

EXAMPLE 2.5

Check the stability of a LTI system with unit-sample (impulse) response,

h(n) = Anu(n), where A is a constant.

Solution: Condition for stability for LTI system is given by

[image: ]

This series coverages otherwise it diverges.

Therefore, the system is stable for |A| < 1.

Discrete-Time Systems described by Difference Equations: We are already familiar that continuous-time systems are described by differential equations. But discrete-time systems are described by difference equations.

For example, a differentiator for discrete-time systems are described by its difference equation

y(n) = s(n) − s(n − 1)

A three-sample averager is also described by its difference equation

y(n) = [image: ] [s(n) + s(n − 1) + s(n + 1)]

The input–output relationship of discrete-time system is also described by its difference equation.

There are two methods by which difference equations can be solved.

1.Direct Method. This method is directly applicable in the time domain. We are not discussing this method in this book.

2.Indirect Method. It is also called z-transform method. This method will be discussed in Chapter 3.



2.4 CONVOLUTION OF TWO DISCRETE-TIME SIGNALS




Convolution sum is used to compute the response of Linear-time-invariant (LTI) discrete-time systems. LTI systems are completely characterized by its unit-sample (impulse) response, h(n). This system is shown in Figure 2.14.

[image: ]

FIGURE 2.14  LTI system.

Convolution sum for a LTI discrete-time system is defined as follows:

y(n) = [image: ]



2.4.1 Procedure for Computing Convolution Sum


Convolution sum between s(n) and h(n) involves the following four steps:

1.Folding: Take the mirror image of h(k) about k = 0 to obtain h(−k).

2.Shifting: Shift h(−k) by n0 to the right (left) if n0 is +ve (−ve) to obtain h(n0 − k).

3.Multiplication: Multiply s(k) by h(n0 − k) to obtain the product sequence Pn0(k) = s(k) h(n0 − k).

4.Summation: Sum all the values of the product sequences Pn0(k) to obtain the value of the output at the time n = n0.

Above procedure results in the response of the system at a single time instant, n = n0.

If we are interested in evaluating the response of the system over all time instants, −∞ < n < ∞, then repetition of steps 2 to 4 is necessary till the response at all time instants is obtained.

Note: If one sequence has M points and second sequence has N points then convolution of these sequences will have M + N − 1 points.

EXAMPLE 2.6

Determine the response of a discrete-time system to input signal s(n) = {2, 1, 3, 1}.

Also given unit-sample (impulse) response

h(n) = {1, 2, 2, −1}.

Solution: Convolution sum is defined as follows:

[image: ]

[image: ]

[image: ]

If sequences s(n) and h(n) have M sample points and N sample points, respectively, then convolution of these sequences will have M + N − 1 sample points. In this example, sequence s(n) has 4 points, and sequence h(n) has 4 points.

Then convolution of these sequences will have 4 + 4 − 1 = 7 points

[image: ]

Resultant of convolution sum of s(n) and h(n) is y(n) and is given as follows:

[image: ]

EXAMPLE 2.7

Compute the convolution sum y(n) = s(n) * h(n) of the pair of signals given by

[image: ]

Solution: Since both s(n) and h(n) are causal sequences. These sequences are causal because both sequences are multiplier of u(n), and u(n) is defined as follows:

u(n) = [image: ]

u(n) is a causal sequence and its value is 1 for positive time instants.

Convolution sum is defined as follows:

[image: ]

Now, u(k) = 1 for k = 0 and u(n − k) = 1, for k = n

y(n) = [image: ]

for all integer values of k ranging from 0 to n.

Case I: If A = B

[image: ]

Case II: If A ≠ B

[image: ]



2.4.2 Linear Convolution


Linear convolution of two discrete-time sequences can be performed by graphical method. In this method, both discrete-time sequences are represented on graphs individually. We can understand linear convolution by graphical method with the help of following examples.

EXAMPLE 2.8

Determine the linear convolution y(n) = s(n) * h(n) of the following two signals:

[image: ]

Solution: Linear convolution is defined as follows:

y(n) = [image: ]

Figure 2.15 illustrates the computation of linear convolution of two discrete-time sequences using graphs.

For n ≤ 0, h(n − k) s(k) is given by

[image: ]

[image: ]

[image: ]

FIGURE 2.15

[image: ]

Therefore, for all n, y(n) is given by

y(n) = [image: ] u(n)

This is the resultant of convolution of h(k) and s(k) by graphical method

y(n) = [image: ] u(n)

can be sketched as shown in Figure 2.15(i).

[image: ]

(i) Graphical representation of y(n).

EXAMPLE 2.9

Determine linear convolution of the sequences

s(n) = 2nu(−n) and h(n) = u(n)

Solution: Linear convolution of two discrete-time sequences is given by

y(n) = [image: ]

The sequences s(k) and h(n − k) are sketched as a function of k in Figure 2.16(a). Here, s(k) is zero for k > 0 and h(n − k) is zero for k > n.

Here, we observe that s(k) h(n − k) is always non-zero samples along the k-axis.

Where n ≥ 0, s(k) h(n − k) has non-zero samples for k ≤ 0. There will be two cases.

Case I: For n ≥ 0,

y(n) = [image: ]

= [image: ]

Thus y(n) = 2, for n ≥ 0. It is a constant value.

Case II: For n < 0, s(k) h(n − k) has non-zero sample for k ≤ n.

[image: ]

[image: ]

[image: ]

FIGURE 2.16  (a)

[image: ]

This complex sequence y(n) can be visualized by the graph given in Figure 2.16(b).

[image: ]

FIGURE 2.16  (b)



2.4.3 Properties of Convolution Sum


Convolution is a mathematical operation between two signal sequences s(n) and h(n). This operation satisfies following properties:

1.Commutative law

2.Associative law

3.Distributive law.

Commutative Law: Commutation sum satisfies commutative law. According to commutative law for a system shown in Figure 2.17,

[image: ]

FIGURE 2.17  LTI system

[image: ]

This is true only for LTI discrete-time systems.

Associative Law: Convolution sum also satisfies the associative law.

According to associative law for the systems shown in Figure 2.18,

[s(n) * h1(n)] * h2(n) = s(n) * [h1(n) * h2(n)]

[image: ]

FIGURE 2.18  Cascading of two discrete-time LTI systems.

Distributive Law: This law is also satisfied by convolution sum of two discrete-time LTI systems. According to the distribution law for the systems shown in Figure 2.19,

s(n) * [h1(n) + h2(n)] = s(n) * h1(n) + s(n) * h2(n)

[image: ]

FIGURE 2.19  Two discrete-time LTI systems in parallel.



2.5 INVERSE SYSTEMS




Convolution is used to determine output y(n) for any arbitrary input s(n) and unit-sample response h(n) of the LTI discrete-time system. There are some practical applications where we have an output signal y(n) from a system of which characteristics are unknown and we are required to determine the input signal s(n).

For example: In high-speed data (digital information) transmission through telephone channels, the channel distorts the signal and causes Inter Symbol Intereference (ISI) among the data symbols. ISI causes errors in the data recovered from the channel. In such circumstances, we require a corrective system which, when cascaded with the channel will produce a reciprocal signal of the desired transmitted signal. This system is called as an equalizer in digital communications. Figure 2.20 illustrates the block diagram of a system and an inverse system (both are cascaded).

[image: ]

FIGURE 2.20  Block diagram showing system (channel) and inverse system (equalizer).

Inverse System: The frequency response of corrective system is basically reciprocal of the frequency response of the system which causes distortion (in telephony for digital transmission it is called ISI).

H(z) = Transfer function of direct system.
HI(z) = Transfer function of inverse system.

For direct system–inverse system cascading

H(z) . HI(z) = 1

Deconvolution: The distorted system produces an output y(n) which is the convolution of the input with unit-sample response h(n). Inverse system produces s(n) by taking y(n) as input and this operation is called deconvolution.

Inverse system can be designed by comparing the received signal with the transmitted signal. The process of determining the characteristics of an unknown system, h(n) or H(ω) by a set of measurements performed on the system is termed as system identification.

Deconvolution is often used in seismic signal processing.

A system is said to be invertible if there is a one-to-one correspondence between its input and output signals. The cascading of a direct system and its inverse system is equivalent to the identity system, i.e., H(z).HI(z) = 1 or h(n) * hI(n) = δ(n). Inverse systems are applicable in geophysics and digital communications. Figure 2.21 illustrates the block diagram showing cascading of direct and inverse systems.

[image: ]

FIGURE 2.21  Block diagram showing cascading of direct system and inverse system.

From Figure 2.21,

v(n) = h(n) * h1(n) * s(n) = s(n)(2.20)

For identity system,

h(n) * hI(n) = δ(n)(2.21)

Taking the z-transform * of Eqn. (2.21), we get

H(z) HI(z) = 1(2.22)

Therefore, transfer function for inverse system will be

HI(z) = [image: ](2.23)

If transfer function of direct system is rational, then

H(z) = [image: ](2.24)

The transfer function of an inverse system is given by

H1(z) = [image: ] (2.25)

Thus, the zeros of H(z) become the poles of HI(z) and poles of H(z) become the zeros of HI (z). If H(z) is an all-zero system (FIR system), then HI(z) is an all-pole system. If H(z) is an all-pole system, then H1(z) will be all-zero system (FIR system).

EXAMPLE 2.10

Find out the inverse of the system with unit-sample response h(n) = (1/3)n u(n).

Solution:

[image: ]

This is a causal, stable, and an all-pole system.

Its inverse system will be all-zero system (FIR system). It is given by

[image: ]

[image: ]

hI(n) is the unit-sample response of inverse system of H(z).

EXAMPLE 2.11

Find out the inverse of the system with unit-sample response:

[image: ]

This is an all-zero system (FIR system).

Transfer function of the inverse system

HI(z) = [image: ]

This inverse system has a zero at z = 0 (i.e., origin) and a pole at z = 1/3.

In this case, there are two possible ROCs, and hence, there will be two possible inverse systems as shown in Figure 2.22.

Case I: ROC of HI(z):[image: ]

[image: ]

This is the unit-sample response of a causal and stable system.

Case II: ROC of HI(z): |z| < 1

[image: ]

FIGURE 2.22  Two possible ROCs for H (z) = [image: ]

[image: ]

This system is the unstable and anticausal.



2.6 CORRELATION OF TWO DISCRETE-TIME SIGNALS




A mathematical operation that has close resemblance with convolution is called correlation. Correlation operation also requires two discrete-time sequences just as convolution.

The objective in computing the correlation between two signals is to measure the degree of similarity of two signals. By measuring the degree of correlation, we can extract some information that depends on the application. Here, application means the type of system where correlation operation is used for extracting some information. It is required in radar, sonar, digital communications, and other areas of engineering and technology. Resultant of correlation operation of two discrete-time sequences is a discrete-time sequence.

If the two sequences are identical, then the resultant of correlation of two discrete-time sequences is called auto-correlation sequence.

If the two sequences are different, then the resultant of correlation of two sequences is called cross-correlation sequence.

Digital communication is one of the areas where correlation operation is often used.



2.6.1 Cross-correlation and Auto-correlation Sequences


Suppose s(n) and y(n) are two real signal sequences which have finite energy. It means that these are some energy sequences.

The cross-correlation of s(n) and y(n) is a sequence RSY(l) which is defined as follows:

[image: ]

Comparing equations (2.26) and (2.27), we get

RSY(l) = RYS(−l)(2.28)

where RSY(l) is a folded version of RYS(l). Here, folding is done with respect to l = 0.

EXAMPLE 2.12

Determine the cross-correlation sequence RSY(l) of the sequences

s(n) = {2, 1, 3}

↑

y(n) = {1, 2, 2}.

↑

Solution: Number of sample points in resultant of correlation of two discrete-time sequences = 3 + 3 − 1 = 5.

Cross-correlation sequence is defined as follows:

[image: ]

[image: ]

[image: ]

Note: If s(n) has M sample points and y(n) has N sample points in their sequences, then its resultant cross-correlation sequence will have M + N − 1 sample points just like linear convolution of two discrete-time sequences will have.

EXAMPLE 2.13

Compute the auto-correlation of the signal

s(n) = Anu(n), 0 < A < 1.

Solution: Since s(n) is an infinite-duration signal and its auto-correlation will also have infinite duration.

There will be two cases:

Case I: If l ≥ 0

[image: ]

Case II: For l < 0

[image: ]

From Eqns. (1) and (2), we get

[image: ]

Hence, auto-correlation of the signal s(n) = Anu(n), 0 < A < l is given as follows:

Rss(l) = [image: ], −∞ < l < ∞(3)



2.7 SIGNALS AND VECTORS




There is a perfect analogy between signals and vectors. Signals are not just like vectors. Signals are vectors. A vector can be represented as a sum of its components in a variety of ways, depending on the choice of coordinate system. A signal can also be represented as a sum of its components in a variety of ways.



2.7.1 Component of a Vector


A vector is specified by its magnitude and its direction. Here, vectors are represented by an alphabet over which an arrow is shown. For example, [image: ] is a vector with magnitude or length [image: ]. Consider two vectors [image: ] and [image: ], as shown in Figure 2.23. Let the component of [image: ] and [image: ] be c[image: ]. Geometrically the component of [image: ] along [image: ] is the projection of [image: ] on [image: ]. The component of [image: ] along [image: ] is obtained by drawing a perpendicular from the tip of [image: ] on the vector [image: ]. It is shown in Figure 2.23.

[image: ]

FIGURE 2.23  Illustration of two vectors v and x

Vector [image: ] can be expressed in terms of [image: ] as follows:

[image: ] = c[image: ] + [image: ](2.29)

However, this is not the only way to express vector [image: ] in terms of vector [image: ]. Figure 2.24 shows two of the infinite other possibilities.

[image: ]

FIGURE 2.24  Illustration of approximation of a vector in terms of another vector.

From Figs. 2.24(a) and 2.24(b), we have

[image: ](2.30)

In each of these three representations of Figs. 2.23, 2.24(a), and 2.24(b), vector [image: ] can be represented in terms of [image: ] plus another vector (called the error vector).

If we approximate [image: ] by c[image: ] in Figure 2.23,

[image: ] [image: ] c[image: ](2.31)

The error in this approximation is the vector [image: ]. Similarly, the errors in the approximations in Figs. 2.24(a) and 2.24(b) are [image: ] and [image: ]2. But the error vector e is the smallest.

Now, we can define mathematically the component of a vector [image: ] along [image: ] to be c[image: ], where c is chosen to minimize the length of the error vector [image: ].

For convenience, we can define the scalar or dot or inner product of two vectors [image: ] and [image: ] as follows:

[image: ] = [image: ] cos θ(2.32)

where θ = angle between vectors [image: ] and [image: ].

By using above definition, we can express magnitude of vector [image: ], i.e.,[image: ] as follows:

[image: ] = [image: ](2.33)

Magnitude of a vector is also called length of the vector.

Now, the length of the component of [image: ] along [image: ] is [image: ] cos θ, but it is also equal to c[image: ].

[image: ]

On multiplying both sides of Eqn. (2.34) by [image: ], we get

[image: ]

From Eqns. (2.33) and (2.35), we get

c = [image: ](2.36)

since [image: ].

From Figure 2.23, it is apparent that when vectors [image: ] and [image: ] are perpendicular, or orthogonal, then vector [image: ] has a zero component along [image: ]; consequently, c = 0.

Now, we can conclude from Eqn. (2.36) that if vectors [image: ] and [image: ] are to be orthogonal then their dot or scalar product must be zero, i.e.,

[image: ]



2.7.2 Component of a Signal


Now, we can extend the concepts of vector component and orthogonality to signals. We consider the problem of approximating a real signal v(t) in terms of another real signal x(t) over an interval [t1, t2]:

v(t) [image: ] c x(t), t1 ≤ t ≤ t2(2.37)

The error e(t) in this approximation is given by

e(t) = [image: ](2.38)

We now select some criterion for the “best approximation.” We know that the signal energy is one possible measure of a signal size. For best approximation, we need to minimize the error signal e(t). This error signal minimizes its size which is its energy Ee over the interval [t1, t2].

Energy of error signal is given by

Ee = [image: ] e2(t) dt(2.39)

Substituting Eqn. (2.38) in Eqn. (2.39), we get

Ee = [image: ](2.40)

Note that the R.H.S. of Eqn. (2.40) is definite integral with time t as a dummy variable. Hence, Ee is a function of the parameter c (not t) and Ee is minimum for some choice of c.

For minimization of Ee, a necessary condition is given as follows:

[image: ] = 0(2.41)

Putting Eqn. (2.40) in Eqn. (2.41), we get

[image: ] = 0

Expanding the squared term inside the integral, we get

[image: ] = 0

[image: ]

Up to now, we have seen a remarkable similarity between the behavior of vectors and signals as indicated by the following two equations:

[image: ]

It is evident from these two parallel expressions that area under the product of two signals corresponds to the scalar or dot product of two vectors. In fact, the area under the product of v(t) and x(t) is called the inner product of v(t) and x(t).

The energy of a signal is the inner product of a signal with itself and corresponds to the vector length squared (which is the inner product of the vectors with itself).

If a signal v(t) is approximated by another signal x(t) as follows:

v(t) [image: ] c x(t) then the optimum value of c that minimizes the energy of the error signal in this approximation by Eqn. (2.42).

We have a signal v(t) which contains a component cx(t), where c is given by Eqn. (2.42). Note that in vector terminology, cx(t) is the projection of v(t) on x(t). From the vector-signal analogy, we say that if the component of a signal v(t) of the form x(t) is zero (That is, c = 0), the signals v(t) and x(t) are orthogonal over the interval [t1, t2]. Therefore, we define the real signals v(t) and x(t) to be orthogonal over the interval [t1, t2] if

[image: ] = 0(2.43)



2.7.3 Orthogonality in Complex Signals


So far, our discussion was restricted to real functions of time “t.” Now, we generalize our discussion to complex functions of time “t.” We consider the same problem of approximating a function v(t) by a function x(t) over an interval (t1 ≤ t ≤ t2):

v(t) [image: ] cx(t)(2.44)

In this case, both the coefficient c and the error

e(t) = v(t) − cx(t)(2.45)

are complex (in general).

For the best approximation, we choose c such that we minimize Ee (Energy of the error signal) and given by

Ee = [image: ](2.46)

We also know that

[image: ]

After some manipulation in Eqn. (2.46) and using result of Eqn. (2.47), we can express the integral Ee in Eqn. (2.46) as follows:

[image: ]

Since the first two terms on the R.H.S. are independent of c, it is clear that Ee is minimized by choosing c such that the third term is zero. This gives

[image: ]

This result needs to redefine orthogonality for the complex case as follows:

Two complex functions x1(t) and x2(t) are orthogonal over an interval (t1 ≤ t ≤ t2) if

[image: ]

Either equality suffices. This is the general definition of orthogonality. This equation will reduce to Eqn. [image: ], when the functions are real.



2.7.4 Energy of the Sum of Orthogonal Signals


We already know that the length of the sum of two orthogonal vectors is equal to the sum of the lengths squared of the two vectors. Thus, if vectors [image: ] and [image: ] are orthogonal, and if [image: ] = [image: ] + [image: ], then

[image: ] = [image: ]

Similar results are also available for signals. The energy of the sum of the two orthogonal signals is equal to the sum of the energies of the two signals. Thus, if signals x(t) and y(t) are orthogonal over an interval [t1, t2], and if

z(t) = x(t) + y(t), then

Ez = Ex + Ey(2.50)

Real signals case is special case of complex signals

[image: ]

This last result follows from the fact that because of orthogonality, the two integrals of the cross products x(t) y*(t) and x*(t) y(t) are zero. This result can be extended to the sum of any number of mutually orthogonal signals.

EXAMPLE 2.14

Determine the component in signal v(t) of the form sin(t) for the square signal v(t). It is shown in Figure 2.25. In other words, approximate v(t) in terms of sin(t):

v(t) [image: ] c sin (t), 0 ≤ t ≤ 2π

So that the energy of the error signal is minimum.

[image: ]

FIGURE 2.25  Approximation of a square signal in terms of a single sinusoid.

Solution: In this case,

x(t) = sin(t)(1)

Energy of signal x(t) is determined as follows:

[image: ]

Constant C is determined as follows:

[image: ]

[image: ]

Eqn.(4) represents the best approximation of v(t) by the function sin(t), which minimizes the error energy.



2.8 REPRESENTATION OF SIGNALS ON ORTHOGONAL BASIS




In this section, we discuss a method of representing a signal as a sum of orthogonal signals. Here again, we can benefit from the insight gained from a similar problem with vectors. We know that a vector can be represented as the sum of orthogonal vectors, which form the coordinate system of a vector space. The problem with signals is analogous. The results for signals are parallel to those for vectors. Here, we need review of vector representation.



2.8.1 Orthogonal Vector Space


Now, we consider a three-dimensional (3−D) Cartesian vector space described by three mutually orthogonal vectors x1, x2, and x3. It is shown in Figure 2.26. First, we shall seek to approximate a three-dimensional vector (v) in terms of two mutually orthogonal vector x1 and x2:

v [image: ] c1x1 + c2x2

The error in this approximation is given by

[image: ]

We can see from Figure 2.26 that the length of e is minimum when e is perpendicular to x1 − x2 plane, and c1x1 and c2x2 are the projections or components of v on x1 and x2, respectively. Therefore, the constants c1 and c2 are given by Eqn. (2.52)

c = [image: ](2.52)

Now let us determine the best approximation to v in terms of all three mutually orthogonal vectors x1, x2, and x3:

v [image: ] c1x1 + c2x2 + c3x3(2.53)

Figure 2.26 shows that a unique choice of c1, c2, and c3 exists, for which Eqn. (2.52) is no longer an approximation but an equality:

[image: ]

FIGURE 2.26  Representation of a vector in three-dimensional space.

v = c1x1 + c2x2 + c3x3

In this case, c1x1, c2x2, and c3x3 are the projections or components of v on x1, x2, and x3, respectively. We can note here that the error in the approximation is zero when v is approximated in terms of three mutually orthogonal vectors x1, x2, and x3. This is because v is a three-dimensional vector and the vectors x1, x2, and x3 represent a complete set of orthogonal vectors in three-dimensional space. Here, the meaning of word “complete” is that it is impossible to find in this space another vector x4 that is orthogonal to all three vectors x1, x2, and x3. Any vector in this space can then be represented (with zero error) in terms of these three vectors. Such vectors are called basis vectors. If a set of vectors {xi} is not complete, the error in the approximation will generally not be zero.

Thus, in the three-dimensional case, it is generally not possible to represent a vector v in terms of only two basis vectors without an error.

The choice of basis vectors is not unique. In fact, a set of basis vectors corresponds to particular choice of coordinate system. Thus a three-dimensional vector v may be represented in many different ways which depends on the coordinate system used.

We can summarize, if a set of vectors {xi} is mutually orthogonal, that is, if

xm ⋅ xn = [image: ]

and if this basis set is complete, a vector v in this space can be expressed as

v = c1x1 + c2x2 + c3x:3
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