Die Irrationalitätsmaße der Riemannschen Zetafunktion an den Stellen 2 und 3

Inhaltsangabe:Problemstellung: In den Lehrbüchern der Analysis werden irrationale Zahlen als diejenigen Zahlen bezeichnet, die nicht dem Körper der rationalen Zahlen Q angehören, d.h. die sich nicht durch Brüche ganzer Zahlen darstellen lassen. Der Begriff irrational wird im Fremdwörterlexikon als mit dem Verstand nicht faßbar, dem logischen Denken nicht zugänglich, vernunftwidrig erklärt (vgl. [7], S. 342). Dies macht einerseits die Problematik deutlich, die mit der Einführung dieses Begriffes verbunden ist und verleitet andererseits jedoch zu metaphysischen Spekulationen, die nach REMMERT und ULLRICH "zu nichts führen". In der... alles anzeigen expand_more

Inhaltsangabe:Problemstellung:

In den Lehrbüchern der Analysis werden irrationale Zahlen als diejenigen Zahlen bezeichnet, die nicht dem Körper der rationalen Zahlen Q angehören, d.h. die sich nicht durch Brüche ganzer Zahlen darstellen lassen. Der Begriff irrational wird im Fremdwörterlexikon als mit dem Verstand nicht faßbar, dem logischen Denken nicht zugänglich, vernunftwidrig erklärt (vgl. [7], S. 342). Dies macht einerseits die Problematik deutlich, die mit der Einführung dieses Begriffes verbunden ist und verleitet andererseits jedoch zu metaphysischen Spekulationen, die nach REMMERT und ULLRICH "zu nichts führen".

In der Vergangenheit hat es sich als sehr schwierig und aufwendig erwiesen, die Irrationalität bestimmter Zahlen nachzuweisen. Die Existenz von irrationalen Zahlen war bereits den Griechen in der Antike bekannt. PYTHAGORAS (6. Jahrhundert v. Chr.) "soll ihre Entdeckung mit dem Opfer von 100 Ochsen gefeiert haben" ([13], S. 139).

APÉRY stellte 1978 auf den "Journèes Arithmétiques" in Marseilles-Luminy einen sehr komplexen Beweis der Irrationaliät von psi(3):= Summe aller nhoch-3, n=2 bis n=unendlich = 1hoch-3+2hoch-3+3hoch-3+... vor, der bei seiner Zuhörerschaft zunächst auf Unglaube und Verwunderung stieß und somit das Interesse am Thema Irrationalität neu erweckte. Ein Jahr später lieferte BEUKERS in seiner Veröffentlichung "A note on the irrationality of psi(2) and psi(3)" eine etwas andere, elegantere Beweisidee unter Verwendung von Legendre-Polynomen. Zugleich stellte sich die Frage, wie "gut" sich irrationale Zahlen durch rationale Zahlen approximieren lassen. ALLADI und ROBINSON definieren in [3] das Irrationalitätsmaß einer irrationalen Zahl, welches eine Aussage über die "Güte" und "Schnelligkeit" der Approximation zuläßt.

Im Rahmen dieser Arbeit werden Irrationalitätsmaße der Riemannschen Zetafunktion an den Stellen 2 und 3 bestimmt. Das Irrationalitätsmaß von psi(2) ist 10,851 und von psi(3) 12,418. Der Beweis der Irrationalität von psi(2) und psi(3) findet seine Idee in den Veröffentlichungen von BEUKERS. Im folgenden soll die Strategie zur Bestimmung eines Irrationalitätsmaßes von psi(2) skizziert werden, die in der vorliegenden Arbeit in Kapitel 2 detailliert ausgeführt wird.



Inhaltsverzeichnis:Inhaltsverzeichnis:

Einleitung1

Bezeichnungen4

1.Allgemeine Überlegungen zur Irrationalität und zum Irrationalitätsmaß5

2.Das Irrationalitätsmaß von psi (2)11

2.1Approximation von psi (2) durch eine rationale […]



Inhaltsangabe:Problemstellung:

In den Lehrbüchern der Analysis werden irrationale Zahlen als diejenigen Zahlen bezeichnet, die nicht dem Körper der rationalen Zahlen Q angehören, d.h. die sich nicht durch Brüche ganzer Zahlen darstellen lassen. Der Begriff irrational wird im Fremdwörterlexikon als mit dem Verstand nicht faßbar, dem logischen ...

weniger anzeigen expand_less
Weiterführende Links zu "Die Irrationalitätsmaße der Riemannschen Zetafunktion an den Stellen 2 und 3"

Versandkostenfreie Lieferung! (eBook-Download)

Als Sofort-Download verfügbar

eBook
38,00 €

  • SW9783832409364

Ein Blick ins Buch

Book2Look-Leseprobe

Andere kauften auch

Andere sahen sich auch an

info